linux-stable/fs/bcachefs/btree_update_interior.c

2191 lines
57 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "extents.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"
#include <linux/random.h>
static void btree_node_will_make_reachable(struct btree_update *,
struct btree *);
static void btree_update_drop_new_node(struct bch_fs *, struct btree *);
static void bch2_btree_set_root_ondisk(struct bch_fs *, struct btree *, int);
/* Debug code: */
static void btree_node_interior_verify(struct btree *b)
{
struct btree_node_iter iter;
struct bkey_packed *k;
BUG_ON(!b->level);
bch2_btree_node_iter_init(&iter, b, &b->key.k.p);
#if 1
BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) ||
bkey_cmp_left_packed(b, k, &b->key.k.p));
BUG_ON((bch2_btree_node_iter_advance(&iter, b),
!bch2_btree_node_iter_end(&iter)));
#else
const char *msg;
msg = "not found";
k = bch2_btree_node_iter_peek(&iter, b);
if (!k)
goto err;
msg = "isn't what it should be";
if (bkey_cmp_left_packed(b, k, &b->key.k.p))
goto err;
bch2_btree_node_iter_advance(&iter, b);
msg = "isn't last key";
if (!bch2_btree_node_iter_end(&iter))
goto err;
return;
err:
bch2_dump_btree_node(b);
printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode,
b->key.k.p.offset, msg);
BUG();
#endif
}
/* Calculate ideal packed bkey format for new btree nodes: */
void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
{
struct bkey_packed *k;
struct bset_tree *t;
struct bkey uk;
bch2_bkey_format_add_pos(s, b->data->min_key);
for_each_bset(b, t)
for (k = btree_bkey_first(b, t);
k != btree_bkey_last(b, t);
k = bkey_next(k))
if (!bkey_whiteout(k)) {
uk = bkey_unpack_key(b, k);
bch2_bkey_format_add_key(s, &uk);
}
}
static struct bkey_format bch2_btree_calc_format(struct btree *b)
{
struct bkey_format_state s;
bch2_bkey_format_init(&s);
__bch2_btree_calc_format(&s, b);
return bch2_bkey_format_done(&s);
}
static size_t btree_node_u64s_with_format(struct btree *b,
struct bkey_format *new_f)
{
struct bkey_format *old_f = &b->format;
/* stupid integer promotion rules */
ssize_t delta =
(((int) new_f->key_u64s - old_f->key_u64s) *
(int) b->nr.packed_keys) +
(((int) new_f->key_u64s - BKEY_U64s) *
(int) b->nr.unpacked_keys);
BUG_ON(delta + b->nr.live_u64s < 0);
return b->nr.live_u64s + delta;
}
/**
* btree_node_format_fits - check if we could rewrite node with a new format
*
* This assumes all keys can pack with the new format -- it just checks if
* the re-packed keys would fit inside the node itself.
*/
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
struct bkey_format *new_f)
{
size_t u64s = btree_node_u64s_with_format(b, new_f);
return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
}
/* Btree node freeing/allocation: */
static bool btree_key_matches(struct bch_fs *c,
struct bkey_s_c_extent l,
struct bkey_s_c_extent r)
{
const struct bch_extent_ptr *ptr1, *ptr2;
extent_for_each_ptr(l, ptr1)
extent_for_each_ptr(r, ptr2)
if (ptr1->dev == ptr2->dev &&
ptr1->gen == ptr2->gen &&
ptr1->offset == ptr2->offset)
return true;
return false;
}
/*
* We're doing the index update that makes @b unreachable, update stuff to
* reflect that:
*
* Must be called _before_ btree_update_updated_root() or
* btree_update_updated_node:
*/
static void bch2_btree_node_free_index(struct btree_update *as, struct btree *b,
struct bkey_s_c k,
struct bch_fs_usage *stats)
{
struct bch_fs *c = as->c;
struct pending_btree_node_free *d;
struct gc_pos pos = { 0 };
for (d = as->pending; d < as->pending + as->nr_pending; d++)
if (!bkey_cmp(k.k->p, d->key.k.p) &&
btree_key_matches(c, bkey_s_c_to_extent(k),
bkey_i_to_s_c_extent(&d->key)))
goto found;
BUG();
found:
BUG_ON(d->index_update_done);
d->index_update_done = true;
/*
* We're dropping @k from the btree, but it's still live until the
* index update is persistent so we need to keep a reference around for
* mark and sweep to find - that's primarily what the
* btree_node_pending_free list is for.
*
* So here (when we set index_update_done = true), we're moving an
* existing reference to a different part of the larger "gc keyspace" -
* and the new position comes after the old position, since GC marks
* the pending free list after it walks the btree.
*
* If we move the reference while mark and sweep is _between_ the old
* and the new position, mark and sweep will see the reference twice
* and it'll get double accounted - so check for that here and subtract
* to cancel out one of mark and sweep's markings if necessary:
*/
/*
* bch2_mark_key() compares the current gc pos to the pos we're
* moving this reference from, hence one comparison here:
*/
if (gc_pos_cmp(c->gc_pos, b
? gc_pos_btree_node(b)
: gc_pos_btree_root(as->btree_id)) >= 0 &&
gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0)
bch2_mark_key_locked(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&d->key),
false, 0, pos,
NULL, 0, BCH_BUCKET_MARK_GC);
}
static void __btree_node_free(struct bch_fs *c, struct btree *b)
{
trace_btree_node_free(c, b);
BUG_ON(btree_node_dirty(b));
BUG_ON(btree_node_need_write(b));
BUG_ON(b == btree_node_root(c, b));
BUG_ON(b->ob.nr);
BUG_ON(!list_empty(&b->write_blocked));
BUG_ON(b->will_make_reachable);
clear_btree_node_noevict(b);
bch2_btree_node_hash_remove(&c->btree_cache, b);
mutex_lock(&c->btree_cache.lock);
list_move(&b->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
}
void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
{
struct open_buckets ob = b->ob;
btree_update_drop_new_node(c, b);
b->ob.nr = 0;
clear_btree_node_dirty(b);
btree_node_lock_type(c, b, SIX_LOCK_write);
__btree_node_free(c, b);
six_unlock_write(&b->lock);
bch2_open_buckets_put(c, &ob);
}
void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
struct btree_iter *linked;
for_each_btree_iter(iter, linked)
BUG_ON(linked->l[b->level].b == b);
/*
* Is this a node that isn't reachable on disk yet?
*
* Nodes that aren't reachable yet have writes blocked until they're
* reachable - now that we've cancelled any pending writes and moved
* things waiting on that write to wait on this update, we can drop this
* node from the list of nodes that the other update is making
* reachable, prior to freeing it:
*/
btree_update_drop_new_node(c, b);
six_lock_write(&b->lock, NULL, NULL);
__btree_node_free(c, b);
six_unlock_write(&b->lock);
six_unlock_intent(&b->lock);
}
static void bch2_btree_node_free_ondisk(struct bch_fs *c,
struct pending_btree_node_free *pending)
{
BUG_ON(!pending->index_update_done);
bch2_mark_key(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&pending->key),
false, 0,
gc_phase(GC_PHASE_PENDING_DELETE),
NULL, 0, 0);
}
static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
struct disk_reservation *res,
struct closure *cl,
unsigned flags)
{
struct write_point *wp;
struct btree *b;
BKEY_PADDED(k) tmp;
struct bkey_i_extent *e;
struct open_buckets ob = { .nr = 0 };
struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
unsigned nr_reserve;
enum alloc_reserve alloc_reserve;
if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) {
nr_reserve = 0;
alloc_reserve = RESERVE_ALLOC;
} else if (flags & BTREE_INSERT_USE_RESERVE) {
nr_reserve = BTREE_NODE_RESERVE / 2;
alloc_reserve = RESERVE_BTREE;
} else {
nr_reserve = BTREE_NODE_RESERVE;
alloc_reserve = RESERVE_NONE;
}
mutex_lock(&c->btree_reserve_cache_lock);
if (c->btree_reserve_cache_nr > nr_reserve) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
ob = a->ob;
bkey_copy(&tmp.k, &a->k);
mutex_unlock(&c->btree_reserve_cache_lock);
goto mem_alloc;
}
mutex_unlock(&c->btree_reserve_cache_lock);
retry:
wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, 0,
writepoint_ptr(&c->btree_write_point),
&devs_have,
res->nr_replicas,
c->opts.metadata_replicas_required,
alloc_reserve, 0, cl);
if (IS_ERR(wp))
return ERR_CAST(wp);
if (wp->sectors_free < c->opts.btree_node_size) {
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, &wp->ptrs, ob, i)
if (ob->sectors_free < c->opts.btree_node_size)
ob->sectors_free = 0;
bch2_alloc_sectors_done(c, wp);
goto retry;
}
e = bkey_extent_init(&tmp.k);
bch2_alloc_sectors_append_ptrs(c, wp, e, c->opts.btree_node_size);
bch2_open_bucket_get(c, wp, &ob);
bch2_alloc_sectors_done(c, wp);
mem_alloc:
b = bch2_btree_node_mem_alloc(c);
/* we hold cannibalize_lock: */
BUG_ON(IS_ERR(b));
BUG_ON(b->ob.nr);
bkey_copy(&b->key, &tmp.k);
b->ob = ob;
return b;
}
static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
{
struct bch_fs *c = as->c;
struct btree *b;
BUG_ON(level >= BTREE_MAX_DEPTH);
BUG_ON(!as->reserve->nr);
b = as->reserve->b[--as->reserve->nr];
BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id));
set_btree_node_accessed(b);
set_btree_node_dirty(b);
bch2_bset_init_first(b, &b->data->keys);
memset(&b->nr, 0, sizeof(b->nr));
b->data->magic = cpu_to_le64(bset_magic(c));
b->data->flags = 0;
SET_BTREE_NODE_ID(b->data, as->btree_id);
SET_BTREE_NODE_LEVEL(b->data, level);
b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr;
bch2_btree_build_aux_trees(b);
btree_node_will_make_reachable(as, b);
trace_btree_node_alloc(c, b);
return b;
}
struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
struct btree *b,
struct bkey_format format)
{
struct btree *n;
n = bch2_btree_node_alloc(as, b->level);
n->data->min_key = b->data->min_key;
n->data->max_key = b->data->max_key;
n->data->format = format;
SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
btree_node_set_format(n, format);
bch2_btree_sort_into(as->c, n, b);
btree_node_reset_sib_u64s(n);
n->key.k.p = b->key.k.p;
return n;
}
static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
struct btree *b)
{
struct bkey_format new_f = bch2_btree_calc_format(b);
/*
* The keys might expand with the new format - if they wouldn't fit in
* the btree node anymore, use the old format for now:
*/
if (!bch2_btree_node_format_fits(as->c, b, &new_f))
new_f = b->format;
return __bch2_btree_node_alloc_replacement(as, b, new_f);
}
static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
{
struct btree *b = bch2_btree_node_alloc(as, level);
b->data->min_key = POS_MIN;
b->data->max_key = POS_MAX;
b->data->format = bch2_btree_calc_format(b);
b->key.k.p = POS_MAX;
btree_node_set_format(b, b->data->format);
bch2_btree_build_aux_trees(b);
six_unlock_write(&b->lock);
return b;
}
static void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve)
{
bch2_disk_reservation_put(c, &reserve->disk_res);
mutex_lock(&c->btree_reserve_cache_lock);
while (reserve->nr) {
struct btree *b = reserve->b[--reserve->nr];
six_unlock_write(&b->lock);
if (c->btree_reserve_cache_nr <
ARRAY_SIZE(c->btree_reserve_cache)) {
struct btree_alloc *a =
&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
a->ob = b->ob;
b->ob.nr = 0;
bkey_copy(&a->k, &b->key);
} else {
bch2_open_buckets_put(c, &b->ob);
}
btree_node_lock_type(c, b, SIX_LOCK_write);
__btree_node_free(c, b);
six_unlock_write(&b->lock);
six_unlock_intent(&b->lock);
}
mutex_unlock(&c->btree_reserve_cache_lock);
mempool_free(reserve, &c->btree_reserve_pool);
}
static struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c,
unsigned nr_nodes,
unsigned flags,
struct closure *cl)
{
struct btree_reserve *reserve;
struct btree *b;
struct disk_reservation disk_res = { 0, 0 };
unsigned sectors = nr_nodes * c->opts.btree_node_size;
int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD;
if (flags & BTREE_INSERT_NOFAIL)
disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
/*
* This check isn't necessary for correctness - it's just to potentially
* prevent us from doing a lot of work that'll end up being wasted:
*/
ret = bch2_journal_error(&c->journal);
if (ret)
return ERR_PTR(ret);
if (bch2_disk_reservation_get(c, &disk_res, sectors,
c->opts.metadata_replicas,
disk_res_flags))
return ERR_PTR(-ENOSPC);
BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
/*
* Protects reaping from the btree node cache and using the btree node
* open bucket reserve:
*/
ret = bch2_btree_cache_cannibalize_lock(c, cl);
if (ret) {
bch2_disk_reservation_put(c, &disk_res);
return ERR_PTR(ret);
}
reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO);
reserve->disk_res = disk_res;
reserve->nr = 0;
while (reserve->nr < nr_nodes) {
b = __bch2_btree_node_alloc(c, &disk_res,
flags & BTREE_INSERT_NOWAIT
? NULL : cl, flags);
if (IS_ERR(b)) {
ret = PTR_ERR(b);
goto err_free;
}
ret = bch2_mark_bkey_replicas(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&b->key));
if (ret)
goto err_free;
reserve->b[reserve->nr++] = b;
}
bch2_btree_cache_cannibalize_unlock(c);
return reserve;
err_free:
bch2_btree_reserve_put(c, reserve);
bch2_btree_cache_cannibalize_unlock(c);
trace_btree_reserve_get_fail(c, nr_nodes, cl);
return ERR_PTR(ret);
}
/* Asynchronous interior node update machinery */
static void bch2_btree_update_free(struct btree_update *as)
{
struct bch_fs *c = as->c;
bch2_journal_pin_flush(&c->journal, &as->journal);
BUG_ON(as->nr_new_nodes);
BUG_ON(as->nr_pending);
if (as->reserve)
bch2_btree_reserve_put(c, as->reserve);
mutex_lock(&c->btree_interior_update_lock);
list_del(&as->list);
closure_debug_destroy(&as->cl);
mempool_free(as, &c->btree_interior_update_pool);
percpu_ref_put(&c->writes);
closure_wake_up(&c->btree_interior_update_wait);
mutex_unlock(&c->btree_interior_update_lock);
}
static void btree_update_nodes_reachable(struct closure *cl)
{
struct btree_update *as = container_of(cl, struct btree_update, cl);
struct bch_fs *c = as->c;
bch2_journal_pin_drop(&c->journal, &as->journal);
mutex_lock(&c->btree_interior_update_lock);
while (as->nr_new_nodes) {
struct btree *b = as->new_nodes[--as->nr_new_nodes];
BUG_ON(b->will_make_reachable != (unsigned long) as);
b->will_make_reachable = 0;
mutex_unlock(&c->btree_interior_update_lock);
/*
* b->will_make_reachable prevented it from being written, so
* write it now if it needs to be written:
*/
btree_node_lock_type(c, b, SIX_LOCK_read);
bch2_btree_node_write_cond(c, b, btree_node_need_write(b));
six_unlock_read(&b->lock);
mutex_lock(&c->btree_interior_update_lock);
}
while (as->nr_pending)
bch2_btree_node_free_ondisk(c, &as->pending[--as->nr_pending]);
mutex_unlock(&c->btree_interior_update_lock);
closure_wake_up(&as->wait);
bch2_btree_update_free(as);
}
static void btree_update_wait_on_journal(struct closure *cl)
{
struct btree_update *as = container_of(cl, struct btree_update, cl);
struct bch_fs *c = as->c;
int ret;
ret = bch2_journal_open_seq_async(&c->journal, as->journal_seq, cl);
if (ret == -EAGAIN) {
continue_at(cl, btree_update_wait_on_journal, system_wq);
return;
}
if (ret < 0)
goto err;
bch2_journal_flush_seq_async(&c->journal, as->journal_seq, cl);
err:
continue_at(cl, btree_update_nodes_reachable, system_wq);
}
static void btree_update_nodes_written(struct closure *cl)
{
struct btree_update *as = container_of(cl, struct btree_update, cl);
struct bch_fs *c = as->c;
struct btree *b;
/*
* We did an update to a parent node where the pointers we added pointed
* to child nodes that weren't written yet: now, the child nodes have
* been written so we can write out the update to the interior node.
*/
retry:
mutex_lock(&c->btree_interior_update_lock);
as->nodes_written = true;
switch (as->mode) {
case BTREE_INTERIOR_NO_UPDATE:
BUG();
case BTREE_INTERIOR_UPDATING_NODE:
/* The usual case: */
b = READ_ONCE(as->b);
if (!six_trylock_read(&b->lock)) {
mutex_unlock(&c->btree_interior_update_lock);
btree_node_lock_type(c, b, SIX_LOCK_read);
six_unlock_read(&b->lock);
goto retry;
}
BUG_ON(!btree_node_dirty(b));
closure_wait(&btree_current_write(b)->wait, cl);
list_del(&as->write_blocked_list);
mutex_unlock(&c->btree_interior_update_lock);
/*
* b->write_blocked prevented it from being written, so
* write it now if it needs to be written:
*/
bch2_btree_node_write_cond(c, b, true);
six_unlock_read(&b->lock);
break;
case BTREE_INTERIOR_UPDATING_AS:
/*
* The btree node we originally updated has been freed and is
* being rewritten - so we need to write anything here, we just
* need to signal to that btree_update that it's ok to make the
* new replacement node visible:
*/
closure_put(&as->parent_as->cl);
/*
* and then we have to wait on that btree_update to finish:
*/
closure_wait(&as->parent_as->wait, cl);
mutex_unlock(&c->btree_interior_update_lock);
break;
case BTREE_INTERIOR_UPDATING_ROOT:
/* b is the new btree root: */
b = READ_ONCE(as->b);
if (!six_trylock_read(&b->lock)) {
mutex_unlock(&c->btree_interior_update_lock);
btree_node_lock_type(c, b, SIX_LOCK_read);
six_unlock_read(&b->lock);
goto retry;
}
BUG_ON(c->btree_roots[b->btree_id].as != as);
c->btree_roots[b->btree_id].as = NULL;
bch2_btree_set_root_ondisk(c, b, WRITE);
/*
* We don't have to wait anything anything here (before
* btree_update_nodes_reachable frees the old nodes
* ondisk) - we've ensured that the very next journal write will
* have the pointer to the new root, and before the allocator
* can reuse the old nodes it'll have to do a journal commit:
*/
six_unlock_read(&b->lock);
mutex_unlock(&c->btree_interior_update_lock);
/*
* Bit of funny circularity going on here we have to break:
*
* We have to drop our journal pin before writing the journal
* entry that points to the new btree root: else, we could
* deadlock if the journal currently happens to be full.
*
* This mean we're dropping the journal pin _before_ the new
* nodes are technically reachable - but this is safe, because
* after the bch2_btree_set_root_ondisk() call above they will
* be reachable as of the very next journal write:
*/
bch2_journal_pin_drop(&c->journal, &as->journal);
as->journal_seq = bch2_journal_last_unwritten_seq(&c->journal);
btree_update_wait_on_journal(cl);
return;
}
continue_at(cl, btree_update_nodes_reachable, system_wq);
}
/*
* We're updating @b with pointers to nodes that haven't finished writing yet:
* block @b from being written until @as completes
*/
static void btree_update_updated_node(struct btree_update *as, struct btree *b)
{
struct bch_fs *c = as->c;
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
BUG_ON(!btree_node_dirty(b));
as->mode = BTREE_INTERIOR_UPDATING_NODE;
as->b = b;
list_add(&as->write_blocked_list, &b->write_blocked);
mutex_unlock(&c->btree_interior_update_lock);
/*
* In general, when you're staging things in a journal that will later
* be written elsewhere, and you also want to guarantee ordering: that
* is, if you have updates a, b, c, after a crash you should never see c
* and not a or b - there's a problem:
*
* If the final destination of the update(s) (i.e. btree node) can be
* written/flushed _before_ the relevant journal entry - oops, that
* breaks ordering, since the various leaf nodes can be written in any
* order.
*
* Normally we use bset->journal_seq to deal with this - if during
* recovery we find a btree node write that's newer than the newest
* journal entry, we just ignore it - we don't need it, anything we're
* supposed to have (that we reported as completed via fsync()) will
* still be in the journal, and as far as the state of the journal is
* concerned that btree node write never happened.
*
* That breaks when we're rewriting/splitting/merging nodes, since we're
* mixing btree node writes that haven't happened yet with previously
* written data that has been reported as completed to the journal.
*
* Thus, before making the new nodes reachable, we have to wait the
* newest journal sequence number we have data for to be written (if it
* hasn't been yet).
*/
bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
}
static void interior_update_flush(struct journal *j,
struct journal_entry_pin *pin, u64 seq)
{
struct btree_update *as =
container_of(pin, struct btree_update, journal);
bch2_journal_flush_seq_async(j, as->journal_seq, NULL);
}
static void btree_update_reparent(struct btree_update *as,
struct btree_update *child)
{
struct bch_fs *c = as->c;
child->b = NULL;
child->mode = BTREE_INTERIOR_UPDATING_AS;
child->parent_as = as;
closure_get(&as->cl);
/*
* When we write a new btree root, we have to drop our journal pin
* _before_ the new nodes are technically reachable; see
* btree_update_nodes_written().
*
* This goes for journal pins that are recursively blocked on us - so,
* just transfer the journal pin to the new interior update so
* btree_update_nodes_written() can drop it.
*/
bch2_journal_pin_add_if_older(&c->journal, &child->journal,
&as->journal, interior_update_flush);
bch2_journal_pin_drop(&c->journal, &child->journal);
as->journal_seq = max(as->journal_seq, child->journal_seq);
}
static void btree_update_updated_root(struct btree_update *as)
{
struct bch_fs *c = as->c;
struct btree_root *r = &c->btree_roots[as->btree_id];
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
/*
* Old root might not be persistent yet - if so, redirect its
* btree_update operation to point to us:
*/
if (r->as)
btree_update_reparent(as, r->as);
as->mode = BTREE_INTERIOR_UPDATING_ROOT;
as->b = r->b;
r->as = as;
mutex_unlock(&c->btree_interior_update_lock);
/*
* When we're rewriting nodes and updating interior nodes, there's an
* issue with updates that haven't been written in the journal getting
* mixed together with older data - see btree_update_updated_node()
* for the explanation.
*
* However, this doesn't affect us when we're writing a new btree root -
* because to make that new root reachable we have to write out a new
* journal entry, which must necessarily be newer than as->journal_seq.
*/
}
static void btree_node_will_make_reachable(struct btree_update *as,
struct btree *b)
{
struct bch_fs *c = as->c;
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
BUG_ON(b->will_make_reachable);
as->new_nodes[as->nr_new_nodes++] = b;
b->will_make_reachable = 1UL|(unsigned long) as;
closure_get(&as->cl);
mutex_unlock(&c->btree_interior_update_lock);
}
static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
{
struct btree_update *as;
unsigned long v;
unsigned i;
mutex_lock(&c->btree_interior_update_lock);
v = xchg(&b->will_make_reachable, 0);
as = (struct btree_update *) (v & ~1UL);
if (!as) {
mutex_unlock(&c->btree_interior_update_lock);
return;
}
for (i = 0; i < as->nr_new_nodes; i++)
if (as->new_nodes[i] == b)
goto found;
BUG();
found:
array_remove_item(as->new_nodes, as->nr_new_nodes, i);
mutex_unlock(&c->btree_interior_update_lock);
if (v & 1)
closure_put(&as->cl);
}
static void btree_interior_update_add_node_reference(struct btree_update *as,
struct btree *b)
{
struct bch_fs *c = as->c;
struct pending_btree_node_free *d;
mutex_lock(&c->btree_interior_update_lock);
/* Add this node to the list of nodes being freed: */
BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending));
d = &as->pending[as->nr_pending++];
d->index_update_done = false;
d->seq = b->data->keys.seq;
d->btree_id = b->btree_id;
d->level = b->level;
bkey_copy(&d->key, &b->key);
mutex_unlock(&c->btree_interior_update_lock);
}
/*
* @b is being split/rewritten: it may have pointers to not-yet-written btree
* nodes and thus outstanding btree_updates - redirect @b's
* btree_updates to point to this btree_update:
*/
void bch2_btree_interior_update_will_free_node(struct btree_update *as,
struct btree *b)
{
struct bch_fs *c = as->c;
struct closure *cl, *cl_n;
struct btree_update *p, *n;
struct btree_write *w;
struct bset_tree *t;
set_btree_node_dying(b);
if (btree_node_fake(b))
return;
btree_interior_update_add_node_reference(as, b);
/*
* Does this node have data that hasn't been written in the journal?
*
* If so, we have to wait for the corresponding journal entry to be
* written before making the new nodes reachable - we can't just carry
* over the bset->journal_seq tracking, since we'll be mixing those keys
* in with keys that aren't in the journal anymore:
*/
for_each_bset(b, t)
as->journal_seq = max(as->journal_seq,
le64_to_cpu(bset(b, t)->journal_seq));
mutex_lock(&c->btree_interior_update_lock);
/*
* Does this node have any btree_update operations preventing
* it from being written?
*
* If so, redirect them to point to this btree_update: we can
* write out our new nodes, but we won't make them visible until those
* operations complete
*/
list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
list_del(&p->write_blocked_list);
btree_update_reparent(as, p);
}
clear_btree_node_dirty(b);
clear_btree_node_need_write(b);
w = btree_current_write(b);
/*
* Does this node have any btree_update operations waiting on this node
* to be written?
*
* If so, wake them up when this btree_update operation is reachable:
*/
llist_for_each_entry_safe(cl, cl_n, llist_del_all(&w->wait.list), list)
llist_add(&cl->list, &as->wait.list);
/*
* Does this node have unwritten data that has a pin on the journal?
*
* If so, transfer that pin to the btree_update operation -
* note that if we're freeing multiple nodes, we only need to keep the
* oldest pin of any of the nodes we're freeing. We'll release the pin
* when the new nodes are persistent and reachable on disk:
*/
bch2_journal_pin_add_if_older(&c->journal, &w->journal,
&as->journal, interior_update_flush);
bch2_journal_pin_drop(&c->journal, &w->journal);
w = btree_prev_write(b);
bch2_journal_pin_add_if_older(&c->journal, &w->journal,
&as->journal, interior_update_flush);
bch2_journal_pin_drop(&c->journal, &w->journal);
mutex_unlock(&c->btree_interior_update_lock);
}
void bch2_btree_update_done(struct btree_update *as)
{
BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
bch2_btree_reserve_put(as->c, as->reserve);
as->reserve = NULL;
continue_at(&as->cl, btree_update_nodes_written, system_freezable_wq);
}
struct btree_update *
bch2_btree_update_start(struct bch_fs *c, enum btree_id id,
unsigned nr_nodes, unsigned flags,
struct closure *cl)
{
struct btree_reserve *reserve;
struct btree_update *as;
if (unlikely(!percpu_ref_tryget(&c->writes)))
return ERR_PTR(-EROFS);
reserve = bch2_btree_reserve_get(c, nr_nodes, flags, cl);
if (IS_ERR(reserve)) {
percpu_ref_put(&c->writes);
return ERR_CAST(reserve);
}
as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
memset(as, 0, sizeof(*as));
closure_init(&as->cl, NULL);
as->c = c;
as->mode = BTREE_INTERIOR_NO_UPDATE;
as->btree_id = id;
as->reserve = reserve;
INIT_LIST_HEAD(&as->write_blocked_list);
bch2_keylist_init(&as->parent_keys, as->inline_keys);
mutex_lock(&c->btree_interior_update_lock);
list_add_tail(&as->list, &c->btree_interior_update_list);
mutex_unlock(&c->btree_interior_update_lock);
return as;
}
/* Btree root updates: */
static void __bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
{
/* Root nodes cannot be reaped */
mutex_lock(&c->btree_cache.lock);
list_del_init(&b->list);
mutex_unlock(&c->btree_cache.lock);
mutex_lock(&c->btree_root_lock);
BUG_ON(btree_node_root(c, b) &&
(b->level < btree_node_root(c, b)->level ||
!btree_node_dying(btree_node_root(c, b))));
btree_node_root(c, b) = b;
mutex_unlock(&c->btree_root_lock);
bch2_recalc_btree_reserve(c);
}
static void bch2_btree_set_root_inmem(struct btree_update *as, struct btree *b)
{
struct bch_fs *c = as->c;
struct btree *old = btree_node_root(c, b);
struct bch_fs_usage stats = { 0 };
__bch2_btree_set_root_inmem(c, b);
mutex_lock(&c->btree_interior_update_lock);
percpu_down_read(&c->usage_lock);
bch2_mark_key_locked(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&b->key),
true, 0,
gc_pos_btree_root(b->btree_id),
&stats, 0, 0);
if (old && !btree_node_fake(old))
bch2_btree_node_free_index(as, NULL,
bkey_i_to_s_c(&old->key),
&stats);
bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
gc_pos_btree_root(b->btree_id));
percpu_up_read(&c->usage_lock);
mutex_unlock(&c->btree_interior_update_lock);
}
static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b, int rw)
{
struct btree_root *r = &c->btree_roots[b->btree_id];
mutex_lock(&c->btree_root_lock);
BUG_ON(b != r->b);
bkey_copy(&r->key, &b->key);
r->level = b->level;
r->alive = true;
if (rw == WRITE)
c->btree_roots_dirty = true;
mutex_unlock(&c->btree_root_lock);
}
/**
* bch_btree_set_root - update the root in memory and on disk
*
* To ensure forward progress, the current task must not be holding any
* btree node write locks. However, you must hold an intent lock on the
* old root.
*
* Note: This allocates a journal entry but doesn't add any keys to
* it. All the btree roots are part of every journal write, so there
* is nothing new to be done. This just guarantees that there is a
* journal write.
*/
static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
struct btree_iter *iter)
{
struct bch_fs *c = as->c;
struct btree *old;
trace_btree_set_root(c, b);
BUG_ON(!b->written &&
!test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
old = btree_node_root(c, b);
/*
* Ensure no one is using the old root while we switch to the
* new root:
*/
bch2_btree_node_lock_write(old, iter);
bch2_btree_set_root_inmem(as, b);
btree_update_updated_root(as);
/*
* Unlock old root after new root is visible:
*
* The new root isn't persistent, but that's ok: we still have
* an intent lock on the new root, and any updates that would
* depend on the new root would have to update the new root.
*/
bch2_btree_node_unlock_write(old, iter);
}
/* Interior node updates: */
static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
struct btree_iter *iter,
struct bkey_i *insert,
struct btree_node_iter *node_iter)
{
struct bch_fs *c = as->c;
struct bch_fs_usage stats = { 0 };
struct bkey_packed *k;
struct bkey tmp;
BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, b));
mutex_lock(&c->btree_interior_update_lock);
percpu_down_read(&c->usage_lock);
if (bkey_extent_is_data(&insert->k))
bch2_mark_key_locked(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(insert),
true, 0,
gc_pos_btree_node(b), &stats, 0, 0);
while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
bkey_iter_pos_cmp(b, &insert->k.p, k) > 0)
bch2_btree_node_iter_advance(node_iter, b);
/*
* If we're overwriting, look up pending delete and mark so that gc
* marks it on the pending delete list:
*/
if (k && !bkey_cmp_packed(b, k, &insert->k))
bch2_btree_node_free_index(as, b,
bkey_disassemble(b, k, &tmp),
&stats);
bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
gc_pos_btree_node(b));
percpu_up_read(&c->usage_lock);
mutex_unlock(&c->btree_interior_update_lock);
bch2_btree_bset_insert_key(iter, b, node_iter, insert);
set_btree_node_dirty(b);
set_btree_node_need_write(b);
}
/*
* Move keys from n1 (original replacement node, now lower node) to n2 (higher
* node)
*/
static struct btree *__btree_split_node(struct btree_update *as,
struct btree *n1,
struct btree_iter *iter)
{
size_t nr_packed = 0, nr_unpacked = 0;
struct btree *n2;
struct bset *set1, *set2;
struct bkey_packed *k, *prev = NULL;
n2 = bch2_btree_node_alloc(as, n1->level);
n2->data->max_key = n1->data->max_key;
n2->data->format = n1->format;
SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
n2->key.k.p = n1->key.k.p;
btree_node_set_format(n2, n2->data->format);
set1 = btree_bset_first(n1);
set2 = btree_bset_first(n2);
/*
* Has to be a linear search because we don't have an auxiliary
* search tree yet
*/
k = set1->start;
while (1) {
if (bkey_next(k) == vstruct_last(set1))
break;
if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
break;
if (bkey_packed(k))
nr_packed++;
else
nr_unpacked++;
prev = k;
k = bkey_next(k);
}
BUG_ON(!prev);
n1->key.k.p = bkey_unpack_pos(n1, prev);
n1->data->max_key = n1->key.k.p;
n2->data->min_key =
btree_type_successor(n1->btree_id, n1->key.k.p);
set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
set_btree_bset_end(n1, n1->set);
set_btree_bset_end(n2, n2->set);
n2->nr.live_u64s = le16_to_cpu(set2->u64s);
n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s);
n2->nr.packed_keys = n1->nr.packed_keys - nr_packed;
n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked;
n1->nr.live_u64s = le16_to_cpu(set1->u64s);
n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
n1->nr.packed_keys = nr_packed;
n1->nr.unpacked_keys = nr_unpacked;
BUG_ON(!set1->u64s);
BUG_ON(!set2->u64s);
memcpy_u64s(set2->start,
vstruct_end(set1),
le16_to_cpu(set2->u64s));
btree_node_reset_sib_u64s(n1);
btree_node_reset_sib_u64s(n2);
bch2_verify_btree_nr_keys(n1);
bch2_verify_btree_nr_keys(n2);
if (n1->level) {
btree_node_interior_verify(n1);
btree_node_interior_verify(n2);
}
return n2;
}
/*
* For updates to interior nodes, we've got to do the insert before we split
* because the stuff we're inserting has to be inserted atomically. Post split,
* the keys might have to go in different nodes and the split would no longer be
* atomic.
*
* Worse, if the insert is from btree node coalescing, if we do the insert after
* we do the split (and pick the pivot) - the pivot we pick might be between
* nodes that were coalesced, and thus in the middle of a child node post
* coalescing:
*/
static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
struct btree_iter *iter,
struct keylist *keys)
{
struct btree_node_iter node_iter;
struct bkey_i *k = bch2_keylist_front(keys);
struct bkey_packed *p;
struct bset *i;
BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
while (!bch2_keylist_empty(keys)) {
k = bch2_keylist_front(keys);
BUG_ON(bch_keylist_u64s(keys) >
bch_btree_keys_u64s_remaining(as->c, b));
BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0);
BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0);
bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter);
bch2_keylist_pop_front(keys);
}
/*
* We can't tolerate whiteouts here - with whiteouts there can be
* duplicate keys, and it would be rather bad if we picked a duplicate
* for the pivot:
*/
i = btree_bset_first(b);
p = i->start;
while (p != vstruct_last(i))
if (bkey_deleted(p)) {
le16_add_cpu(&i->u64s, -p->u64s);
set_btree_bset_end(b, b->set);
memmove_u64s_down(p, bkey_next(p),
(u64 *) vstruct_last(i) -
(u64 *) p);
} else
p = bkey_next(p);
BUG_ON(b->nsets != 1 ||
b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
btree_node_interior_verify(b);
}
static void btree_split(struct btree_update *as, struct btree *b,
struct btree_iter *iter, struct keylist *keys,
unsigned flags)
{
struct bch_fs *c = as->c;
struct btree *parent = btree_node_parent(iter, b);
struct btree *n1, *n2 = NULL, *n3 = NULL;
u64 start_time = local_clock();
BUG_ON(!parent && (b != btree_node_root(c, b)));
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
bch2_btree_interior_update_will_free_node(as, b);
n1 = bch2_btree_node_alloc_replacement(as, b);
if (keys)
btree_split_insert_keys(as, n1, iter, keys);
if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) {
trace_btree_split(c, b);
n2 = __btree_split_node(as, n1, iter);
bch2_btree_build_aux_trees(n2);
bch2_btree_build_aux_trees(n1);
six_unlock_write(&n2->lock);
six_unlock_write(&n1->lock);
bch2_btree_node_write(c, n2, SIX_LOCK_intent);
/*
* Note that on recursive parent_keys == keys, so we
* can't start adding new keys to parent_keys before emptying it
* out (which we did with btree_split_insert_keys() above)
*/
bch2_keylist_add(&as->parent_keys, &n1->key);
bch2_keylist_add(&as->parent_keys, &n2->key);
if (!parent) {
/* Depth increases, make a new root */
n3 = __btree_root_alloc(as, b->level + 1);
n3->sib_u64s[0] = U16_MAX;
n3->sib_u64s[1] = U16_MAX;
btree_split_insert_keys(as, n3, iter, &as->parent_keys);
bch2_btree_node_write(c, n3, SIX_LOCK_intent);
}
} else {
trace_btree_compact(c, b);
bch2_btree_build_aux_trees(n1);
six_unlock_write(&n1->lock);
bch2_keylist_add(&as->parent_keys, &n1->key);
}
bch2_btree_node_write(c, n1, SIX_LOCK_intent);
/* New nodes all written, now make them visible: */
if (parent) {
/* Split a non root node */
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
} else if (n3) {
bch2_btree_set_root(as, n3, iter);
} else {
/* Root filled up but didn't need to be split */
bch2_btree_set_root(as, n1, iter);
}
bch2_open_buckets_put(c, &n1->ob);
if (n2)
bch2_open_buckets_put(c, &n2->ob);
if (n3)
bch2_open_buckets_put(c, &n3->ob);
/* Successful split, update the iterator to point to the new nodes: */
bch2_btree_iter_node_drop(iter, b);
if (n3)
bch2_btree_iter_node_replace(iter, n3);
if (n2)
bch2_btree_iter_node_replace(iter, n2);
bch2_btree_iter_node_replace(iter, n1);
bch2_btree_node_free_inmem(c, b, iter);
bch2_btree_iter_verify_locks(iter);
bch2_time_stats_update(&c->times[BCH_TIME_btree_split], start_time);
}
static void
bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
struct btree_iter *iter, struct keylist *keys)
{
struct btree_iter *linked;
struct btree_node_iter node_iter;
struct bkey_i *insert = bch2_keylist_front(keys);
struct bkey_packed *k;
/* Don't screw up @iter's position: */
node_iter = iter->l[b->level].iter;
/*
* btree_split(), btree_gc_coalesce() will insert keys before
* the iterator's current position - they know the keys go in
* the node the iterator points to:
*/
while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
(bkey_cmp_packed(b, k, &insert->k) >= 0))
;
while (!bch2_keylist_empty(keys)) {
insert = bch2_keylist_front(keys);
bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter);
bch2_keylist_pop_front(keys);
}
btree_update_updated_node(as, b);
for_each_btree_iter_with_node(iter, b, linked)
bch2_btree_node_iter_peek(&linked->l[b->level].iter, b);
bch2_btree_iter_verify(iter, b);
}
/**
* bch_btree_insert_node - insert bkeys into a given btree node
*
* @iter: btree iterator
* @keys: list of keys to insert
* @hook: insert callback
* @persistent: if not null, @persistent will wait on journal write
*
* Inserts as many keys as it can into a given btree node, splitting it if full.
* If a split occurred, this function will return early. This can only happen
* for leaf nodes -- inserts into interior nodes have to be atomic.
*/
void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
struct btree_iter *iter, struct keylist *keys,
unsigned flags)
{
struct bch_fs *c = as->c;
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
BUG_ON(!b->level);
BUG_ON(!as || as->b);
bch2_verify_keylist_sorted(keys);
if (as->must_rewrite)
goto split;
bch2_btree_node_lock_for_insert(c, b, iter);
if (!bch2_btree_node_insert_fits(c, b, bch_keylist_u64s(keys))) {
bch2_btree_node_unlock_write(b, iter);
goto split;
}
bch2_btree_insert_keys_interior(as, b, iter, keys);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_btree_iter_reinit_node(iter, b);
bch2_btree_node_unlock_write(b, iter);
btree_node_interior_verify(b);
/*
* when called from the btree_split path the new nodes aren't added to
* the btree iterator yet, so the merge path's unlock/wait/relock dance
* won't work:
*/
bch2_foreground_maybe_merge(c, iter, b->level,
flags|BTREE_INSERT_NOUNLOCK);
return;
split:
btree_split(as, b, iter, keys, flags);
}
int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
unsigned flags)
{
struct btree *b = iter->l[0].b;
struct btree_update *as;
struct closure cl;
int ret = 0;
struct btree_iter *linked;
/*
* We already have a disk reservation and open buckets pinned; this
* allocation must not block:
*/
for_each_btree_iter(iter, linked)
if (linked->btree_id == BTREE_ID_EXTENTS)
flags |= BTREE_INSERT_USE_RESERVE;
closure_init_stack(&cl);
/* Hack, because gc and splitting nodes doesn't mix yet: */
if (!down_read_trylock(&c->gc_lock)) {
if (flags & BTREE_INSERT_NOUNLOCK)
return -EINTR;
bch2_btree_iter_unlock(iter);
down_read(&c->gc_lock);
if (btree_iter_linked(iter))
ret = -EINTR;
}
/*
* XXX: figure out how far we might need to split,
* instead of locking/reserving all the way to the root:
*/
if (!bch2_btree_iter_upgrade(iter, U8_MAX,
!(flags & BTREE_INSERT_NOUNLOCK))) {
ret = -EINTR;
goto out;
}
as = bch2_btree_update_start(c, iter->btree_id,
btree_update_reserve_required(c, b), flags,
!(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
if (IS_ERR(as)) {
ret = PTR_ERR(as);
if (ret == -EAGAIN) {
BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
bch2_btree_iter_unlock(iter);
ret = -EINTR;
}
goto out;
}
btree_split(as, b, iter, NULL, flags);
bch2_btree_update_done(as);
/*
* We haven't successfully inserted yet, so don't downgrade all the way
* back to read locks;
*/
__bch2_btree_iter_downgrade(iter, 1);
out:
up_read(&c->gc_lock);
closure_sync(&cl);
return ret;
}
void __bch2_foreground_maybe_merge(struct bch_fs *c,
struct btree_iter *iter,
unsigned level,
unsigned flags,
enum btree_node_sibling sib)
{
struct btree_update *as;
struct bkey_format_state new_s;
struct bkey_format new_f;
struct bkey_i delete;
struct btree *b, *m, *n, *prev, *next, *parent;
struct closure cl;
size_t sib_u64s;
int ret = 0;
closure_init_stack(&cl);
retry:
BUG_ON(!btree_node_locked(iter, level));
b = iter->l[level].b;
parent = btree_node_parent(iter, b);
if (!parent)
goto out;
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
goto out;
/* XXX: can't be holding read locks */
m = bch2_btree_node_get_sibling(c, iter, b,
!(flags & BTREE_INSERT_NOUNLOCK), sib);
if (IS_ERR(m)) {
ret = PTR_ERR(m);
goto err;
}
/* NULL means no sibling: */
if (!m) {
b->sib_u64s[sib] = U16_MAX;
goto out;
}
if (sib == btree_prev_sib) {
prev = m;
next = b;
} else {
prev = b;
next = m;
}
bch2_bkey_format_init(&new_s);
__bch2_btree_calc_format(&new_s, b);
__bch2_btree_calc_format(&new_s, m);
new_f = bch2_bkey_format_done(&new_s);
sib_u64s = btree_node_u64s_with_format(b, &new_f) +
btree_node_u64s_with_format(m, &new_f);
if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
sib_u64s /= 2;
sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
}
sib_u64s = min(sib_u64s, btree_max_u64s(c));
b->sib_u64s[sib] = sib_u64s;
if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
six_unlock_intent(&m->lock);
goto out;
}
/* We're changing btree topology, doesn't mix with gc: */
if (!down_read_trylock(&c->gc_lock))
goto err_cycle_gc_lock;
if (!bch2_btree_iter_upgrade(iter, U8_MAX,
!(flags & BTREE_INSERT_NOUNLOCK))) {
ret = -EINTR;
goto err_unlock;
}
as = bch2_btree_update_start(c, iter->btree_id,
btree_update_reserve_required(c, parent) + 1,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE,
!(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
if (IS_ERR(as)) {
ret = PTR_ERR(as);
goto err_unlock;
}
trace_btree_merge(c, b);
bch2_btree_interior_update_will_free_node(as, b);
bch2_btree_interior_update_will_free_node(as, m);
n = bch2_btree_node_alloc(as, b->level);
n->data->min_key = prev->data->min_key;
n->data->max_key = next->data->max_key;
n->data->format = new_f;
n->key.k.p = next->key.k.p;
btree_node_set_format(n, new_f);
bch2_btree_sort_into(c, n, prev);
bch2_btree_sort_into(c, n, next);
bch2_btree_build_aux_trees(n);
six_unlock_write(&n->lock);
bkey_init(&delete.k);
delete.k.p = prev->key.k.p;
bch2_keylist_add(&as->parent_keys, &delete);
bch2_keylist_add(&as->parent_keys, &n->key);
bch2_btree_node_write(c, n, SIX_LOCK_intent);
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
bch2_open_buckets_put(c, &n->ob);
bch2_btree_iter_node_drop(iter, b);
bch2_btree_iter_node_replace(iter, n);
bch2_btree_iter_verify(iter, n);
bch2_btree_node_free_inmem(c, b, iter);
bch2_btree_node_free_inmem(c, m, iter);
bch2_btree_update_done(as);
up_read(&c->gc_lock);
out:
bch2_btree_iter_verify_locks(iter);
/*
* Don't downgrade locks here: we're called after successful insert,
* and the caller will downgrade locks after a successful insert
* anyways (in case e.g. a split was required first)
*
* And we're also called when inserting into interior nodes in the
* split path, and downgrading to read locks in there is potentially
* confusing:
*/
closure_sync(&cl);
return;
err_cycle_gc_lock:
six_unlock_intent(&m->lock);
if (flags & BTREE_INSERT_NOUNLOCK)
goto out;
bch2_btree_iter_unlock(iter);
down_read(&c->gc_lock);
up_read(&c->gc_lock);
ret = -EINTR;
goto err;
err_unlock:
six_unlock_intent(&m->lock);
up_read(&c->gc_lock);
err:
BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK));
if ((ret == -EAGAIN || ret == -EINTR) &&
!(flags & BTREE_INSERT_NOUNLOCK)) {
bch2_btree_iter_unlock(iter);
closure_sync(&cl);
ret = bch2_btree_iter_traverse(iter);
if (ret)
goto out;
goto retry;
}
goto out;
}
static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
struct btree *b, unsigned flags,
struct closure *cl)
{
struct btree *n, *parent = btree_node_parent(iter, b);
struct btree_update *as;
as = bch2_btree_update_start(c, iter->btree_id,
(parent
? btree_update_reserve_required(c, parent)
: 0) + 1,
flags, cl);
if (IS_ERR(as)) {
trace_btree_gc_rewrite_node_fail(c, b);
return PTR_ERR(as);
}
bch2_btree_interior_update_will_free_node(as, b);
n = bch2_btree_node_alloc_replacement(as, b);
bch2_btree_build_aux_trees(n);
six_unlock_write(&n->lock);
trace_btree_gc_rewrite_node(c, b);
bch2_btree_node_write(c, n, SIX_LOCK_intent);
if (parent) {
bch2_keylist_add(&as->parent_keys, &n->key);
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
} else {
bch2_btree_set_root(as, n, iter);
}
bch2_open_buckets_put(c, &n->ob);
bch2_btree_iter_node_drop(iter, b);
bch2_btree_iter_node_replace(iter, n);
bch2_btree_node_free_inmem(c, b, iter);
bch2_btree_update_done(as);
return 0;
}
/**
* bch_btree_node_rewrite - Rewrite/move a btree node
*
* Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
* btree_check_reserve() has to wait)
*/
int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
__le64 seq, unsigned flags)
{
struct closure cl;
struct btree *b;
int ret;
flags |= BTREE_INSERT_NOFAIL;
closure_init_stack(&cl);
bch2_btree_iter_upgrade(iter, U8_MAX, true);
if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) {
if (!down_read_trylock(&c->gc_lock)) {
bch2_btree_iter_unlock(iter);
down_read(&c->gc_lock);
}
}
while (1) {
ret = bch2_btree_iter_traverse(iter);
if (ret)
break;
b = bch2_btree_iter_peek_node(iter);
if (!b || b->data->keys.seq != seq)
break;
ret = __btree_node_rewrite(c, iter, b, flags, &cl);
if (ret != -EAGAIN &&
ret != -EINTR)
break;
bch2_btree_iter_unlock(iter);
closure_sync(&cl);
}
bch2_btree_iter_downgrade(iter);
if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
up_read(&c->gc_lock);
closure_sync(&cl);
return ret;
}
static void __bch2_btree_node_update_key(struct bch_fs *c,
struct btree_update *as,
struct btree_iter *iter,
struct btree *b, struct btree *new_hash,
struct bkey_i_extent *new_key)
{
struct btree *parent;
int ret;
/*
* Two corner cases that need to be thought about here:
*
* @b may not be reachable yet - there might be another interior update
* operation waiting on @b to be written, and we're gonna deliver the
* write completion to that interior update operation _before_
* persisting the new_key update
*
* That ends up working without us having to do anything special here:
* the reason is, we do kick off (and do the in memory updates) for the
* update for @new_key before we return, creating a new interior_update
* operation here.
*
* The new interior update operation here will in effect override the
* previous one. The previous one was going to terminate - make @b
* reachable - in one of two ways:
* - updating the btree root pointer
* In that case,
* no, this doesn't work. argh.
*/
if (b->will_make_reachable)
as->must_rewrite = true;
btree_interior_update_add_node_reference(as, b);
/*
* XXX: the rest of the update path treats this like we're actually
* inserting a new node and deleting the existing node, so the
* reservation needs to include enough space for @b
*
* that is actually sketch as fuck though and I am surprised the code
* seems to work like that, definitely need to go back and rework it
* into something saner.
*
* (I think @b is just getting double counted until the btree update
* finishes and "deletes" @b on disk)
*/
ret = bch2_disk_reservation_add(c, &as->reserve->disk_res,
c->opts.btree_node_size *
bch2_extent_nr_ptrs(extent_i_to_s_c(new_key)),
BCH_DISK_RESERVATION_NOFAIL|
BCH_DISK_RESERVATION_GC_LOCK_HELD);
BUG_ON(ret);
parent = btree_node_parent(iter, b);
if (parent) {
if (new_hash) {
bkey_copy(&new_hash->key, &new_key->k_i);
ret = bch2_btree_node_hash_insert(&c->btree_cache,
new_hash, b->level, b->btree_id);
BUG_ON(ret);
}
bch2_keylist_add(&as->parent_keys, &new_key->k_i);
bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
if (new_hash) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, &new_key->k_i);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
} else {
bkey_copy(&b->key, &new_key->k_i);
}
} else {
struct bch_fs_usage stats = { 0 };
BUG_ON(btree_node_root(c, b) != b);
bch2_btree_node_lock_write(b, iter);
mutex_lock(&c->btree_interior_update_lock);
percpu_down_read(&c->usage_lock);
bch2_mark_key_locked(c, BKEY_TYPE_BTREE,
bkey_i_to_s_c(&new_key->k_i),
true, 0,
gc_pos_btree_root(b->btree_id),
&stats, 0, 0);
bch2_btree_node_free_index(as, NULL,
bkey_i_to_s_c(&b->key),
&stats);
bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
gc_pos_btree_root(b->btree_id));
percpu_up_read(&c->usage_lock);
mutex_unlock(&c->btree_interior_update_lock);
if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, &new_key->k_i);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
} else {
bkey_copy(&b->key, &new_key->k_i);
}
btree_update_updated_root(as);
bch2_btree_node_unlock_write(b, iter);
}
bch2_btree_update_done(as);
}
int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
struct btree *b, struct bkey_i_extent *new_key)
{
struct btree *parent = btree_node_parent(iter, b);
struct btree_update *as = NULL;
struct btree *new_hash = NULL;
struct closure cl;
int ret;
closure_init_stack(&cl);
if (!bch2_btree_iter_upgrade(iter, U8_MAX, true))
return -EINTR;
if (!down_read_trylock(&c->gc_lock)) {
bch2_btree_iter_unlock(iter);
down_read(&c->gc_lock);
if (!bch2_btree_iter_relock(iter)) {
ret = -EINTR;
goto err;
}
}
/* check PTR_HASH() after @b is locked by btree_iter_traverse(): */
if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) {
/* bch2_btree_reserve_get will unlock */
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
if (ret) {
ret = -EINTR;
bch2_btree_iter_unlock(iter);
up_read(&c->gc_lock);
closure_sync(&cl);
down_read(&c->gc_lock);
if (!bch2_btree_iter_relock(iter))
goto err;
}
new_hash = bch2_btree_node_mem_alloc(c);
}
as = bch2_btree_update_start(c, iter->btree_id,
parent ? btree_update_reserve_required(c, parent) : 0,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_USE_ALLOC_RESERVE,
&cl);
if (IS_ERR(as)) {
ret = PTR_ERR(as);
if (ret == -EAGAIN)
ret = -EINTR;
if (ret != -EINTR)
goto err;
bch2_btree_iter_unlock(iter);
up_read(&c->gc_lock);
closure_sync(&cl);
down_read(&c->gc_lock);
if (!bch2_btree_iter_relock(iter))
goto err;
}
ret = bch2_mark_bkey_replicas(c, BKEY_TYPE_BTREE,
extent_i_to_s_c(new_key).s_c);
if (ret)
goto err_free_update;
__bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
bch2_btree_iter_downgrade(iter);
err:
if (new_hash) {
mutex_lock(&c->btree_cache.lock);
list_move(&new_hash->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
six_unlock_write(&new_hash->lock);
six_unlock_intent(&new_hash->lock);
}
up_read(&c->gc_lock);
closure_sync(&cl);
return ret;
err_free_update:
bch2_btree_update_free(as);
goto err;
}
/* Init code: */
/*
* Only for filesystem bringup, when first reading the btree roots or allocating
* btree roots when initializing a new filesystem:
*/
void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
{
BUG_ON(btree_node_root(c, b));
__bch2_btree_set_root_inmem(c, b);
bch2_btree_set_root_ondisk(c, b, READ);
}
void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
{
struct closure cl;
struct btree *b;
int ret;
closure_init_stack(&cl);
do {
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
b = bch2_btree_node_mem_alloc(c);
bch2_btree_cache_cannibalize_unlock(c);
set_btree_node_fake(b);
b->level = 0;
b->btree_id = id;
bkey_extent_init(&b->key);
b->key.k.p = POS_MAX;
bkey_i_to_extent(&b->key)->v._data[0] = U64_MAX - id;
bch2_bset_init_first(b, &b->data->keys);
bch2_btree_build_aux_trees(b);
b->data->min_key = POS_MIN;
b->data->max_key = POS_MAX;
b->data->format = bch2_btree_calc_format(b);
btree_node_set_format(b, b->data->format);
ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->level, b->btree_id);
BUG_ON(ret);
__bch2_btree_set_root_inmem(c, b);
six_unlock_write(&b->lock);
six_unlock_intent(&b->lock);
}
ssize_t bch2_btree_updates_print(struct bch_fs *c, char *buf)
{
struct printbuf out = _PBUF(buf, PAGE_SIZE);
struct btree_update *as;
mutex_lock(&c->btree_interior_update_lock);
list_for_each_entry(as, &c->btree_interior_update_list, list)
pr_buf(&out, "%p m %u w %u r %u j %llu\n",
as,
as->mode,
as->nodes_written,
atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
as->journal.seq);
mutex_unlock(&c->btree_interior_update_lock);
return out.pos - buf;
}
size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
{
size_t ret = 0;
struct list_head *i;
mutex_lock(&c->btree_interior_update_lock);
list_for_each(i, &c->btree_interior_update_list)
ret++;
mutex_unlock(&c->btree_interior_update_lock);
return ret;
}