3326 lines
87 KiB
C
Raw Normal View History

/*
* mac80211 configuration hooks for cfg80211
*
* Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
*
* This file is GPLv2 as found in COPYING.
*/
#include <linux/ieee80211.h>
#include <linux/nl80211.h>
#include <linux/rtnetlink.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
#include <net/net_namespace.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <net/cfg80211.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "cfg.h"
#include "rate.h"
#include "mesh.h"
static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy,
const char *name,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct wireless_dev *wdev;
struct ieee80211_sub_if_data *sdata;
int err;
err = ieee80211_if_add(local, name, &wdev, type, params);
if (err)
return ERR_PTR(err);
if (type == NL80211_IFTYPE_MONITOR && flags) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
sdata->u.mntr_flags = *flags;
}
return wdev;
}
static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
{
ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev));
return 0;
}
static int ieee80211_change_iface(struct wiphy *wiphy,
struct net_device *dev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int ret;
ret = ieee80211_if_change_type(sdata, type);
if (ret)
return ret;
if (type == NL80211_IFTYPE_AP_VLAN &&
params && params->use_4addr == 0)
RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
else if (type == NL80211_IFTYPE_STATION &&
params && params->use_4addr >= 0)
sdata->u.mgd.use_4addr = params->use_4addr;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR && flags) {
struct ieee80211_local *local = sdata->local;
if (ieee80211_sdata_running(sdata)) {
/*
* Prohibit MONITOR_FLAG_COOK_FRAMES to be
* changed while the interface is up.
* Else we would need to add a lot of cruft
* to update everything:
* cooked_mntrs, monitor and all fif_* counters
* reconfigure hardware
*/
if ((*flags & MONITOR_FLAG_COOK_FRAMES) !=
(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
return -EBUSY;
ieee80211_adjust_monitor_flags(sdata, -1);
sdata->u.mntr_flags = *flags;
ieee80211_adjust_monitor_flags(sdata, 1);
ieee80211_configure_filter(local);
} else {
/*
* Because the interface is down, ieee80211_do_stop
* and ieee80211_do_open take care of "everything"
* mentioned in the comment above.
*/
sdata->u.mntr_flags = *flags;
}
}
return 0;
}
static int ieee80211_start_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
return ieee80211_do_open(wdev, true);
}
static void ieee80211_stop_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev));
}
static int ieee80211_set_noack_map(struct wiphy *wiphy,
struct net_device *dev,
u16 noack_map)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata->noack_map = noack_map;
return 0;
}
static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct sta_info *sta = NULL;
struct ieee80211_key *key;
int err;
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
/* reject WEP and TKIP keys if WEP failed to initialize */
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_WEP104:
if (IS_ERR(sdata->local->wep_tx_tfm))
return -EINVAL;
break;
default:
break;
}
key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len,
params->key, params->seq_len, params->seq);
if (IS_ERR(key))
return PTR_ERR(key);
if (pairwise)
key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE;
mutex_lock(&sdata->local->sta_mtx);
if (mac_addr) {
if (ieee80211_vif_is_mesh(&sdata->vif))
sta = sta_info_get(sdata, mac_addr);
else
sta = sta_info_get_bss(sdata, mac_addr);
/*
* The ASSOC test makes sure the driver is ready to
* receive the key. When wpa_supplicant has roamed
* using FT, it attempts to set the key before
* association has completed, this rejects that attempt
* so it will set the key again after assocation.
*
* TODO: accept the key if we have a station entry and
* add it to the device after the station.
*/
if (!sta || !test_sta_flag(sta, WLAN_STA_ASSOC)) {
ieee80211_key_free(sdata->local, key);
err = -ENOENT;
goto out_unlock;
}
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
/* Keys without a station are used for TX only */
if (key->sta && test_sta_flag(key->sta, WLAN_STA_MFP))
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_ADHOC:
/* no MFP (yet) */
break;
case NL80211_IFTYPE_MESH_POINT:
#ifdef CONFIG_MAC80211_MESH
if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
#endif
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
/* shouldn't happen */
WARN_ON_ONCE(1);
break;
}
err = ieee80211_key_link(key, sdata, sta);
if (err)
ieee80211_key_free(sdata->local, key);
out_unlock:
mutex_unlock(&sdata->local->sta_mtx);
return err;
}
static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
struct ieee80211_key *key = NULL;
int ret;
mutex_lock(&local->sta_mtx);
mutex_lock(&local->key_mtx);
if (mac_addr) {
ret = -ENOENT;
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out_unlock;
if (pairwise)
key = key_mtx_dereference(local, sta->ptk);
else
key = key_mtx_dereference(local, sta->gtk[key_idx]);
} else
key = key_mtx_dereference(local, sdata->keys[key_idx]);
if (!key) {
ret = -ENOENT;
goto out_unlock;
}
__ieee80211_key_free(key);
ret = 0;
out_unlock:
mutex_unlock(&local->key_mtx);
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
void *cookie,
void (*callback)(void *cookie,
struct key_params *params))
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta = NULL;
u8 seq[6] = {0};
struct key_params params;
struct ieee80211_key *key = NULL;
u64 pn64;
u32 iv32;
u16 iv16;
int err = -ENOENT;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
if (mac_addr) {
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out;
if (pairwise)
key = rcu_dereference(sta->ptk);
else if (key_idx < NUM_DEFAULT_KEYS)
key = rcu_dereference(sta->gtk[key_idx]);
} else
key = rcu_dereference(sdata->keys[key_idx]);
if (!key)
goto out;
memset(&params, 0, sizeof(params));
params.cipher = key->conf.cipher;
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
iv32 = key->u.tkip.tx.iv32;
iv16 = key->u.tkip.tx.iv16;
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
drv_get_tkip_seq(sdata->local,
key->conf.hw_key_idx,
&iv32, &iv16);
seq[0] = iv16 & 0xff;
seq[1] = (iv16 >> 8) & 0xff;
seq[2] = iv32 & 0xff;
seq[3] = (iv32 >> 8) & 0xff;
seq[4] = (iv32 >> 16) & 0xff;
seq[5] = (iv32 >> 24) & 0xff;
params.seq = seq;
params.seq_len = 6;
break;
case WLAN_CIPHER_SUITE_CCMP:
pn64 = atomic64_read(&key->u.ccmp.tx_pn);
seq[0] = pn64;
seq[1] = pn64 >> 8;
seq[2] = pn64 >> 16;
seq[3] = pn64 >> 24;
seq[4] = pn64 >> 32;
seq[5] = pn64 >> 40;
params.seq = seq;
params.seq_len = 6;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
seq[0] = pn64;
seq[1] = pn64 >> 8;
seq[2] = pn64 >> 16;
seq[3] = pn64 >> 24;
seq[4] = pn64 >> 32;
seq[5] = pn64 >> 40;
params.seq = seq;
params.seq_len = 6;
break;
}
params.key = key->conf.key;
params.key_len = key->conf.keylen;
callback(cookie, &params);
err = 0;
out:
rcu_read_unlock();
return err;
}
static int ieee80211_config_default_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx, bool uni,
bool multi)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_key(sdata, key_idx, uni, multi);
return 0;
}
static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_mgmt_key(sdata, key_idx);
return 0;
}
void sta_set_rate_info_tx(struct sta_info *sta,
const struct ieee80211_tx_rate *rate,
struct rate_info *rinfo)
{
rinfo->flags = 0;
if (rate->flags & IEEE80211_TX_RC_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_MCS;
rinfo->mcs = rate->idx;
} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
rinfo->mcs = ieee80211_rate_get_vht_mcs(rate);
rinfo->nss = ieee80211_rate_get_vht_nss(rate);
} else {
struct ieee80211_supported_band *sband;
sband = sta->local->hw.wiphy->bands[
ieee80211_get_sdata_band(sta->sdata)];
rinfo->legacy = sband->bitrates[rate->idx].bitrate;
}
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
}
void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
{
rinfo->flags = 0;
if (sta->last_rx_rate_flag & RX_FLAG_HT) {
rinfo->flags |= RATE_INFO_FLAGS_MCS;
rinfo->mcs = sta->last_rx_rate_idx;
} else if (sta->last_rx_rate_flag & RX_FLAG_VHT) {
rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
rinfo->nss = sta->last_rx_rate_vht_nss;
rinfo->mcs = sta->last_rx_rate_idx;
} else {
struct ieee80211_supported_band *sband;
sband = sta->local->hw.wiphy->bands[
ieee80211_get_sdata_band(sta->sdata)];
rinfo->legacy =
sband->bitrates[sta->last_rx_rate_idx].bitrate;
}
if (sta->last_rx_rate_flag & RX_FLAG_40MHZ)
rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_SHORT_GI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
if (sta->last_rx_rate_flag & RX_FLAG_80MHZ)
rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_80P80MHZ)
rinfo->flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_160MHZ)
rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
}
static void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct timespec uptime;
sinfo->generation = sdata->local->sta_generation;
sinfo->filled = STATION_INFO_INACTIVE_TIME |
STATION_INFO_RX_BYTES |
STATION_INFO_TX_BYTES |
STATION_INFO_RX_PACKETS |
STATION_INFO_TX_PACKETS |
STATION_INFO_TX_RETRIES |
STATION_INFO_TX_FAILED |
STATION_INFO_TX_BITRATE |
STATION_INFO_RX_BITRATE |
STATION_INFO_RX_DROP_MISC |
STATION_INFO_BSS_PARAM |
STATION_INFO_CONNECTED_TIME |
STATION_INFO_STA_FLAGS |
STATION_INFO_BEACON_LOSS_COUNT;
do_posix_clock_monotonic_gettime(&uptime);
sinfo->connected_time = uptime.tv_sec - sta->last_connected;
sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
sinfo->rx_bytes = sta->rx_bytes;
sinfo->tx_bytes = sta->tx_bytes;
sinfo->rx_packets = sta->rx_packets;
sinfo->tx_packets = sta->tx_packets;
sinfo->tx_retries = sta->tx_retry_count;
sinfo->tx_failed = sta->tx_retry_failed;
sinfo->rx_dropped_misc = sta->rx_dropped;
sinfo->beacon_loss_count = sta->beacon_loss_count;
if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
(sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
if (!local->ops->get_rssi ||
drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
sinfo->signal = (s8)sta->last_signal;
sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
}
sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
sta_set_rate_info_rx(sta, &sinfo->rxrate);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
#ifdef CONFIG_MAC80211_MESH
sinfo->filled |= STATION_INFO_LLID |
STATION_INFO_PLID |
STATION_INFO_PLINK_STATE;
sinfo->llid = le16_to_cpu(sta->llid);
sinfo->plid = le16_to_cpu(sta->plid);
sinfo->plink_state = sta->plink_state;
if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
sinfo->filled |= STATION_INFO_T_OFFSET;
sinfo->t_offset = sta->t_offset;
}
#endif
}
sinfo->bss_param.flags = 0;
if (sdata->vif.bss_conf.use_cts_prot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
if (sdata->vif.bss_conf.use_short_preamble)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
if (sdata->vif.bss_conf.use_short_slot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period;
sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
sinfo->sta_flags.set = 0;
sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
BIT(NL80211_STA_FLAG_WME) |
BIT(NL80211_STA_FLAG_MFP) |
BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_ASSOCIATED) |
BIT(NL80211_STA_FLAG_TDLS_PEER);
if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
if (test_sta_flag(sta, WLAN_STA_WME))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
if (test_sta_flag(sta, WLAN_STA_MFP))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
if (test_sta_flag(sta, WLAN_STA_AUTH))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
if (test_sta_flag(sta, WLAN_STA_ASSOC))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
}
static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "rx_bytes", "wep_weak_iv_count",
"rx_duplicates", "rx_fragments", "rx_dropped",
"tx_packets", "tx_bytes", "tx_fragments",
"tx_filtered", "tx_retry_failed", "tx_retries",
"beacon_loss", "sta_state", "txrate", "rxrate", "signal",
"channel", "noise", "ch_time", "ch_time_busy",
"ch_time_ext_busy", "ch_time_rx", "ch_time_tx"
};
#define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats)
static int ieee80211_get_et_sset_count(struct wiphy *wiphy,
struct net_device *dev,
int sset)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int rv = 0;
if (sset == ETH_SS_STATS)
rv += STA_STATS_LEN;
rv += drv_get_et_sset_count(sdata, sset);
if (rv == 0)
return -EOPNOTSUPP;
return rv;
}
static void ieee80211_get_et_stats(struct wiphy *wiphy,
struct net_device *dev,
struct ethtool_stats *stats,
u64 *data)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
struct sta_info *sta;
struct ieee80211_local *local = sdata->local;
struct station_info sinfo;
struct survey_info survey;
int i, q;
#define STA_STATS_SURVEY_LEN 7
memset(data, 0, sizeof(u64) * STA_STATS_LEN);
#define ADD_STA_STATS(sta) \
do { \
data[i++] += sta->rx_packets; \
data[i++] += sta->rx_bytes; \
data[i++] += sta->wep_weak_iv_count; \
data[i++] += sta->num_duplicates; \
data[i++] += sta->rx_fragments; \
data[i++] += sta->rx_dropped; \
\
data[i++] += sta->tx_packets; \
data[i++] += sta->tx_bytes; \
data[i++] += sta->tx_fragments; \
data[i++] += sta->tx_filtered_count; \
data[i++] += sta->tx_retry_failed; \
data[i++] += sta->tx_retry_count; \
data[i++] += sta->beacon_loss_count; \
} while (0)
/* For Managed stations, find the single station based on BSSID
* and use that. For interface types, iterate through all available
* stations and add stats for any station that is assigned to this
* network device.
*/
mutex_lock(&local->sta_mtx);
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
sta = sta_info_get_bss(sdata, sdata->u.mgd.bssid);
if (!(sta && !WARN_ON(sta->sdata->dev != dev)))
goto do_survey;
i = 0;
ADD_STA_STATS(sta);
data[i++] = sta->sta_state;
sinfo.filled = 0;
sta_set_sinfo(sta, &sinfo);
if (sinfo.filled & STATION_INFO_TX_BITRATE)
data[i] = 100000 *
cfg80211_calculate_bitrate(&sinfo.txrate);
i++;
if (sinfo.filled & STATION_INFO_RX_BITRATE)
data[i] = 100000 *
cfg80211_calculate_bitrate(&sinfo.rxrate);
i++;
if (sinfo.filled & STATION_INFO_SIGNAL_AVG)
data[i] = (u8)sinfo.signal_avg;
i++;
} else {
list_for_each_entry(sta, &local->sta_list, list) {
/* Make sure this station belongs to the proper dev */
if (sta->sdata->dev != dev)
continue;
i = 0;
ADD_STA_STATS(sta);
}
}
do_survey:
i = STA_STATS_LEN - STA_STATS_SURVEY_LEN;
/* Get survey stats for current channel */
survey.filled = 0;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf)
channel = chanctx_conf->def.chan;
else
channel = NULL;
rcu_read_unlock();
if (channel) {
q = 0;
do {
survey.filled = 0;
if (drv_get_survey(local, q, &survey) != 0) {
survey.filled = 0;
break;
}
q++;
} while (channel != survey.channel);
}
if (survey.filled)
data[i++] = survey.channel->center_freq;
else
data[i++] = 0;
if (survey.filled & SURVEY_INFO_NOISE_DBM)
data[i++] = (u8)survey.noise;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME)
data[i++] = survey.channel_time;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_BUSY)
data[i++] = survey.channel_time_busy;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_EXT_BUSY)
data[i++] = survey.channel_time_ext_busy;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_RX)
data[i++] = survey.channel_time_rx;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_TX)
data[i++] = survey.channel_time_tx;
else
data[i++] = -1LL;
mutex_unlock(&local->sta_mtx);
if (WARN_ON(i != STA_STATS_LEN))
return;
drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN]));
}
static void ieee80211_get_et_strings(struct wiphy *wiphy,
struct net_device *dev,
u32 sset, u8 *data)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int sz_sta_stats = 0;
if (sset == ETH_SS_STATS) {
sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats);
memcpy(data, *ieee80211_gstrings_sta_stats, sz_sta_stats);
}
drv_get_et_strings(sdata, sset, &(data[sz_sta_stats]));
}
static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_by_idx(sdata, idx);
if (sta) {
ret = 0;
memcpy(mac, sta->sta.addr, ETH_ALEN);
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev,
int idx, struct survey_info *survey)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
return drv_get_survey(local, idx, survey);
}
static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (sta) {
ret = 0;
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_set_monitor_channel(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
int ret = 0;
if (cfg80211_chandef_identical(&local->monitor_chandef, chandef))
return 0;
mutex_lock(&local->iflist_mtx);
if (local->use_chanctx) {
sdata = rcu_dereference_protected(
local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx));
if (sdata) {
ieee80211_vif_release_channel(sdata);
ret = ieee80211_vif_use_channel(sdata, chandef,
IEEE80211_CHANCTX_EXCLUSIVE);
}
} else if (local->open_count == local->monitors) {
local->_oper_channel = chandef->chan;
local->_oper_channel_type = cfg80211_get_chandef_type(chandef);
ieee80211_hw_config(local, 0);
}
if (ret == 0)
local->monitor_chandef = *chandef;
mutex_unlock(&local->iflist_mtx);
return ret;
}
static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata,
const u8 *resp, size_t resp_len)
{
struct probe_resp *new, *old;
if (!resp || !resp_len)
return 1;
old = rtnl_dereference(sdata->u.ap.probe_resp);
new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL);
if (!new)
return -ENOMEM;
new->len = resp_len;
memcpy(new->data, resp, resp_len);
rcu_assign_pointer(sdata->u.ap.probe_resp, new);
if (old)
kfree_rcu(old, rcu_head);
return 0;
}
static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata,
struct cfg80211_beacon_data *params)
{
struct beacon_data *new, *old;
int new_head_len, new_tail_len;
int size, err;
u32 changed = BSS_CHANGED_BEACON;
old = rtnl_dereference(sdata->u.ap.beacon);
/* Need to have a beacon head if we don't have one yet */
if (!params->head && !old)
return -EINVAL;
/* new or old head? */
if (params->head)
new_head_len = params->head_len;
else
new_head_len = old->head_len;
/* new or old tail? */
if (params->tail || !old)
/* params->tail_len will be zero for !params->tail */
new_tail_len = params->tail_len;
else
new_tail_len = old->tail_len;
size = sizeof(*new) + new_head_len + new_tail_len;
new = kzalloc(size, GFP_KERNEL);
if (!new)
return -ENOMEM;
/* start filling the new info now */
/*
* pointers go into the block we allocated,
* memory is | beacon_data | head | tail |
*/
new->head = ((u8 *) new) + sizeof(*new);
new->tail = new->head + new_head_len;
new->head_len = new_head_len;
new->tail_len = new_tail_len;
/* copy in head */
if (params->head)
memcpy(new->head, params->head, new_head_len);
else
memcpy(new->head, old->head, new_head_len);
/* copy in optional tail */
if (params->tail)
memcpy(new->tail, params->tail, new_tail_len);
else
if (old)
memcpy(new->tail, old->tail, new_tail_len);
err = ieee80211_set_probe_resp(sdata, params->probe_resp,
params->probe_resp_len);
if (err < 0)
return err;
if (err == 0)
changed |= BSS_CHANGED_AP_PROBE_RESP;
rcu_assign_pointer(sdata->u.ap.beacon, new);
if (old)
kfree_rcu(old, rcu_head);
return changed;
}
static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct beacon_data *old;
struct ieee80211_sub_if_data *vlan;
u32 changed = BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BEACON_ENABLED |
BSS_CHANGED_BEACON |
BSS_CHANGED_SSID |
BSS_CHANGED_P2P_PS;
int err;
old = rtnl_dereference(sdata->u.ap.beacon);
if (old)
return -EALREADY;
/* TODO: make hostapd tell us what it wants */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = sdata->local->rx_chains;
err = ieee80211_vif_use_channel(sdata, &params->chandef,
IEEE80211_CHANCTX_SHARED);
if (err)
return err;
/*
* Apply control port protocol, this allows us to
* not encrypt dynamic WEP control frames.
*/
sdata->control_port_protocol = params->crypto.control_port_ethertype;
sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt;
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
vlan->control_port_protocol =
params->crypto.control_port_ethertype;
vlan->control_port_no_encrypt =
params->crypto.control_port_no_encrypt;
}
sdata->vif.bss_conf.beacon_int = params->beacon_interval;
sdata->vif.bss_conf.dtim_period = params->dtim_period;
sdata->vif.bss_conf.enable_beacon = true;
sdata->vif.bss_conf.ssid_len = params->ssid_len;
if (params->ssid_len)
memcpy(sdata->vif.bss_conf.ssid, params->ssid,
params->ssid_len);
sdata->vif.bss_conf.hidden_ssid =
(params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE);
sdata->vif.bss_conf.p2p_ctwindow = params->p2p_ctwindow;
sdata->vif.bss_conf.p2p_oppps = params->p2p_opp_ps;
err = ieee80211_assign_beacon(sdata, &params->beacon);
if (err < 0)
return err;
changed |= err;
err = drv_start_ap(sdata->local, sdata);
if (err) {
old = rtnl_dereference(sdata->u.ap.beacon);
if (old)
kfree_rcu(old, rcu_head);
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
return err;
}
ieee80211_bss_info_change_notify(sdata, changed);
netif_carrier_on(dev);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_on(vlan->dev);
return 0;
}
static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_beacon_data *params)
{
struct ieee80211_sub_if_data *sdata;
struct beacon_data *old;
int err;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
old = rtnl_dereference(sdata->u.ap.beacon);
if (!old)
return -ENOENT;
err = ieee80211_assign_beacon(sdata, params);
if (err < 0)
return err;
ieee80211_bss_info_change_notify(sdata, err);
return 0;
}
static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sub_if_data *vlan;
struct ieee80211_local *local = sdata->local;
struct beacon_data *old_beacon;
struct probe_resp *old_probe_resp;
old_beacon = rtnl_dereference(sdata->u.ap.beacon);
if (!old_beacon)
return -ENOENT;
old_probe_resp = rtnl_dereference(sdata->u.ap.probe_resp);
/* turn off carrier for this interface and dependent VLANs */
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_off(vlan->dev);
netif_carrier_off(dev);
/* remove beacon and probe response */
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
RCU_INIT_POINTER(sdata->u.ap.probe_resp, NULL);
kfree_rcu(old_beacon, rcu_head);
if (old_probe_resp)
kfree_rcu(old_probe_resp, rcu_head);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
sta_info_flush_defer(vlan);
sta_info_flush_defer(sdata);
rcu_barrier();
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
sta_info_flush_cleanup(vlan);
sta_info_flush_cleanup(sdata);
sdata->vif.bss_conf.enable_beacon = false;
clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state);
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED);
drv_stop_ap(sdata->local, sdata);
/* free all potentially still buffered bcast frames */
local->total_ps_buffered -= skb_queue_len(&sdata->u.ap.ps.bc_buf);
skb_queue_purge(&sdata->u.ap.ps.bc_buf);
ieee80211_vif_release_channel(sdata);
return 0;
}
/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
struct iapp_layer2_update {
u8 da[ETH_ALEN]; /* broadcast */
u8 sa[ETH_ALEN]; /* STA addr */
__be16 len; /* 6 */
u8 dsap; /* 0 */
u8 ssap; /* 0 */
u8 control;
u8 xid_info[3];
} __packed;
static void ieee80211_send_layer2_update(struct sta_info *sta)
{
struct iapp_layer2_update *msg;
struct sk_buff *skb;
/* Send Level 2 Update Frame to update forwarding tables in layer 2
* bridge devices */
skb = dev_alloc_skb(sizeof(*msg));
if (!skb)
return;
msg = (struct iapp_layer2_update *)skb_put(skb, sizeof(*msg));
/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
* Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
eth_broadcast_addr(msg->da);
memcpy(msg->sa, sta->sta.addr, ETH_ALEN);
msg->len = htons(6);
msg->dsap = 0;
msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
msg->control = 0xaf; /* XID response lsb.1111F101.
* F=0 (no poll command; unsolicited frame) */
msg->xid_info[0] = 0x81; /* XID format identifier */
msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
skb->dev = sta->sdata->dev;
skb->protocol = eth_type_trans(skb, sta->sdata->dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx_ni(skb);
}
static int sta_apply_auth_flags(struct ieee80211_local *local,
struct sta_info *sta,
u32 mask, u32 set)
{
int ret;
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
set & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
!test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
set & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
!test_sta_flag(sta, WLAN_STA_ASSOC)) {
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
if (set & BIT(NL80211_STA_FLAG_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED);
else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
else
ret = 0;
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
!(set & BIT(NL80211_STA_FLAG_ASSOCIATED)) &&
test_sta_flag(sta, WLAN_STA_ASSOC)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
!(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) &&
test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_NONE);
if (ret)
return ret;
}
return 0;
}
static int sta_apply_parameters(struct ieee80211_local *local,
struct sta_info *sta,
struct station_parameters *params)
{
int ret = 0;
u32 rates;
int i, j;
struct ieee80211_supported_band *sband;
struct ieee80211_sub_if_data *sdata = sta->sdata;
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
u32 mask, set;
sband = local->hw.wiphy->bands[band];
mask = params->sta_flags_mask;
set = params->sta_flags_set;
if (ieee80211_vif_is_mesh(&sdata->vif)) {
/*
* In mesh mode, ASSOCIATED isn't part of the nl80211
* API but must follow AUTHENTICATED for driver state.
*/
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED))
mask |= BIT(NL80211_STA_FLAG_ASSOCIATED);
if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED))
set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
}
ret = sta_apply_auth_flags(local, sta, mask, set);
if (ret)
return ret;
if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) {
if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE))
set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
else
clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
}
if (mask & BIT(NL80211_STA_FLAG_WME)) {
if (set & BIT(NL80211_STA_FLAG_WME)) {
set_sta_flag(sta, WLAN_STA_WME);
sta->sta.wme = true;
} else {
clear_sta_flag(sta, WLAN_STA_WME);
sta->sta.wme = false;
}
}
if (mask & BIT(NL80211_STA_FLAG_MFP)) {
if (set & BIT(NL80211_STA_FLAG_MFP))
set_sta_flag(sta, WLAN_STA_MFP);
else
clear_sta_flag(sta, WLAN_STA_MFP);
}
if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) {
if (set & BIT(NL80211_STA_FLAG_TDLS_PEER))
set_sta_flag(sta, WLAN_STA_TDLS_PEER);
else
clear_sta_flag(sta, WLAN_STA_TDLS_PEER);
}
if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) {
sta->sta.uapsd_queues = params->uapsd_queues;
sta->sta.max_sp = params->max_sp;
}
/*
* cfg80211 validates this (1-2007) and allows setting the AID
* only when creating a new station entry
*/
if (params->aid)
sta->sta.aid = params->aid;
/*
* Some of the following updates would be racy if called on an
* existing station, via ieee80211_change_station(). However,
* all such changes are rejected by cfg80211 except for updates
* changing the supported rates on an existing but not yet used
* TDLS peer.
*/
if (params->listen_interval >= 0)
sta->listen_interval = params->listen_interval;
if (params->supported_rates) {
rates = 0;
for (i = 0; i < params->supported_rates_len; i++) {
int rate = (params->supported_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
}
}
sta->sta.supp_rates[band] = rates;
}
if (params->ht_capa)
ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband,
params->ht_capa,
&sta->sta.ht_cap);
if (params->vht_capa)
ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband,
params->vht_capa,
&sta->sta.vht_cap);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
#ifdef CONFIG_MAC80211_MESH
if (sdata->u.mesh.security & IEEE80211_MESH_SEC_SECURED) {
u32 changed = 0;
switch (params->plink_state) {
case NL80211_PLINK_ESTAB:
if (sta->plink_state != NL80211_PLINK_ESTAB)
changed = mesh_plink_inc_estab_count(
sdata);
sta->plink_state = params->plink_state;
break;
case NL80211_PLINK_LISTEN:
case NL80211_PLINK_BLOCKED:
case NL80211_PLINK_OPN_SNT:
case NL80211_PLINK_OPN_RCVD:
case NL80211_PLINK_CNF_RCVD:
case NL80211_PLINK_HOLDING:
if (sta->plink_state == NL80211_PLINK_ESTAB)
changed = mesh_plink_dec_estab_count(
sdata);
sta->plink_state = params->plink_state;
break;
default:
/* nothing */
break;
}
ieee80211_bss_info_change_notify(sdata, changed);
} else {
switch (params->plink_action) {
case PLINK_ACTION_OPEN:
mesh_plink_open(sta);
break;
case PLINK_ACTION_BLOCK:
mesh_plink_block(sta);
break;
}
}
#endif
}
return 0;
}
static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_parameters *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata;
int err;
int layer2_update;
if (params->vlan) {
sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP)
return -EINVAL;
} else
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (ether_addr_equal(mac, sdata->vif.addr))
return -EINVAL;
if (is_multicast_ether_addr(mac))
return -EINVAL;
sta = sta_info_alloc(sdata, mac, GFP_KERNEL);
if (!sta)
return -ENOMEM;
/*
* defaults -- if userspace wants something else we'll
* change it accordingly in sta_apply_parameters()
*/
sta_info_pre_move_state(sta, IEEE80211_STA_AUTH);
sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC);
err = sta_apply_parameters(local, sta, params);
if (err) {
sta_info_free(local, sta);
return err;
}
/*
* for TDLS, rate control should be initialized only when supported
* rates are known.
*/
if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER))
rate_control_rate_init(sta);
layer2_update = sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
sdata->vif.type == NL80211_IFTYPE_AP;
err = sta_info_insert_rcu(sta);
if (err) {
rcu_read_unlock();
return err;
}
if (layer2_update)
ieee80211_send_layer2_update(sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (mac)
return sta_info_destroy_addr_bss(sdata, mac);
sta_info_flush(sdata);
return 0;
}
static int ieee80211_change_station(struct wiphy *wiphy,
struct net_device *dev,
u8 *mac,
struct station_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *vlansdata;
int err;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (!sta) {
mutex_unlock(&local->sta_mtx);
return -ENOENT;
}
/* in station mode, supported rates are only valid with TDLS */
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
params->supported_rates &&
!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
mutex_unlock(&local->sta_mtx);
return -EINVAL;
}
if (params->vlan && params->vlan != sta->sdata->dev) {
bool prev_4addr = false;
bool new_4addr = false;
vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (vlansdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
vlansdata->vif.type != NL80211_IFTYPE_AP) {
mutex_unlock(&local->sta_mtx);
return -EINVAL;
}
if (params->vlan->ieee80211_ptr->use_4addr) {
if (vlansdata->u.vlan.sta) {
mutex_unlock(&local->sta_mtx);
return -EBUSY;
}
rcu_assign_pointer(vlansdata->u.vlan.sta, sta);
new_4addr = true;
}
if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
sta->sdata->u.vlan.sta) {
rcu_assign_pointer(sta->sdata->u.vlan.sta, NULL);
prev_4addr = true;
}
sta->sdata = vlansdata;
if (sta->sta_state == IEEE80211_STA_AUTHORIZED &&
prev_4addr != new_4addr) {
if (new_4addr)
atomic_dec(&sta->sdata->bss->num_mcast_sta);
else
atomic_inc(&sta->sdata->bss->num_mcast_sta);
}
ieee80211_send_layer2_update(sta);
}
err = sta_apply_parameters(local, sta, params);
if (err) {
mutex_unlock(&local->sta_mtx);
return err;
}
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && params->supported_rates)
rate_control_rate_init(sta);
mutex_unlock(&local->sta_mtx);
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
ieee80211_recalc_ps(local, -1);
ieee80211_recalc_ps_vif(sdata);
}
return 0;
}
#ifdef CONFIG_MAC80211_MESH
static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
int err;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
err = mesh_path_add(dst, sdata);
if (err) {
rcu_read_unlock();
return err;
}
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENXIO;
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (dst)
return mesh_path_del(dst, sdata);
mesh_path_flush_by_iface(sdata);
return 0;
}
static int ieee80211_change_mpath(struct wiphy *wiphy,
struct net_device *dev,
u8 *dst, u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop,
struct mpath_info *pinfo)
{
struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop);
if (next_hop_sta)
memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN);
else
memset(next_hop, 0, ETH_ALEN);
memset(pinfo, 0, sizeof(*pinfo));
pinfo->generation = mesh_paths_generation;
pinfo->filled = MPATH_INFO_FRAME_QLEN |
MPATH_INFO_SN |
MPATH_INFO_METRIC |
MPATH_INFO_EXPTIME |
MPATH_INFO_DISCOVERY_TIMEOUT |
MPATH_INFO_DISCOVERY_RETRIES |
MPATH_INFO_FLAGS;
pinfo->frame_qlen = mpath->frame_queue.qlen;
pinfo->sn = mpath->sn;
pinfo->metric = mpath->metric;
if (time_before(jiffies, mpath->exp_time))
pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies);
pinfo->discovery_timeout =
jiffies_to_msecs(mpath->discovery_timeout);
pinfo->discovery_retries = mpath->discovery_retries;
if (mpath->flags & MESH_PATH_ACTIVE)
pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE;
if (mpath->flags & MESH_PATH_RESOLVING)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING;
if (mpath->flags & MESH_PATH_SN_VALID)
pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID;
if (mpath->flags & MESH_PATH_FIXED)
pinfo->flags |= NL80211_MPATH_FLAG_FIXED;
if (mpath->flags & MESH_PATH_RESOLVED)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED;
}
static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *next_hop,
struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup_by_idx(idx, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_get_mesh_config(struct wiphy *wiphy,
struct net_device *dev,
struct mesh_config *conf)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config));
return 0;
}
static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask)
{
return (mask >> (parm-1)) & 0x1;
}
static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh,
const struct mesh_setup *setup)
{
u8 *new_ie;
const u8 *old_ie;
struct ieee80211_sub_if_data *sdata = container_of(ifmsh,
struct ieee80211_sub_if_data, u.mesh);
/* allocate information elements */
new_ie = NULL;
old_ie = ifmsh->ie;
if (setup->ie_len) {
new_ie = kmemdup(setup->ie, setup->ie_len,
GFP_KERNEL);
if (!new_ie)
return -ENOMEM;
}
ifmsh->ie_len = setup->ie_len;
ifmsh->ie = new_ie;
kfree(old_ie);
/* now copy the rest of the setup parameters */
ifmsh->mesh_id_len = setup->mesh_id_len;
memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len);
ifmsh->mesh_sp_id = setup->sync_method;
ifmsh->mesh_pp_id = setup->path_sel_proto;
ifmsh->mesh_pm_id = setup->path_metric;
ifmsh->security = IEEE80211_MESH_SEC_NONE;
if (setup->is_authenticated)
ifmsh->security |= IEEE80211_MESH_SEC_AUTHED;
if (setup->is_secure)
ifmsh->security |= IEEE80211_MESH_SEC_SECURED;
/* mcast rate setting in Mesh Node */
memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate,
sizeof(setup->mcast_rate));
sdata->vif.bss_conf.beacon_int = setup->beacon_interval;
sdata->vif.bss_conf.dtim_period = setup->dtim_period;
return 0;
}
static int ieee80211_update_mesh_config(struct wiphy *wiphy,
struct net_device *dev, u32 mask,
const struct mesh_config *nconf)
{
struct mesh_config *conf;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_mesh *ifmsh;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifmsh = &sdata->u.mesh;
/* Set the config options which we are interested in setting */
conf = &(sdata->u.mesh.mshcfg);
if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask))
conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask))
conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask))
conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask))
conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask))
conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries;
if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask))
conf->dot11MeshTTL = nconf->dot11MeshTTL;
if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask))
conf->element_ttl = nconf->element_ttl;
if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask))
conf->auto_open_plinks = nconf->auto_open_plinks;
if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask))
conf->dot11MeshNbrOffsetMaxNeighbor =
nconf->dot11MeshNbrOffsetMaxNeighbor;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask))
conf->dot11MeshHWMPmaxPREQretries =
nconf->dot11MeshHWMPmaxPREQretries;
if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask))
conf->path_refresh_time = nconf->path_refresh_time;
if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask))
conf->min_discovery_timeout = nconf->min_discovery_timeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathTimeout =
nconf->dot11MeshHWMPactivePathTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask))
conf->dot11MeshHWMPpreqMinInterval =
nconf->dot11MeshHWMPpreqMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask))
conf->dot11MeshHWMPperrMinInterval =
nconf->dot11MeshHWMPperrMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
mask))
conf->dot11MeshHWMPnetDiameterTraversalTime =
nconf->dot11MeshHWMPnetDiameterTraversalTime;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) {
conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode;
ieee80211_mesh_root_setup(ifmsh);
}
if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) {
/* our current gate announcement implementation rides on root
* announcements, so require this ifmsh to also be a root node
* */
if (nconf->dot11MeshGateAnnouncementProtocol &&
!(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) {
conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN;
ieee80211_mesh_root_setup(ifmsh);
}
conf->dot11MeshGateAnnouncementProtocol =
nconf->dot11MeshGateAnnouncementProtocol;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask))
conf->dot11MeshHWMPRannInterval =
nconf->dot11MeshHWMPRannInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask))
conf->dot11MeshForwarding = nconf->dot11MeshForwarding;
if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) {
/* our RSSI threshold implementation is supported only for
* devices that report signal in dBm.
*/
if (!(sdata->local->hw.flags & IEEE80211_HW_SIGNAL_DBM))
return -ENOTSUPP;
conf->rssi_threshold = nconf->rssi_threshold;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) {
conf->ht_opmode = nconf->ht_opmode;
sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode;
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_HT);
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathToRootTimeout =
nconf->dot11MeshHWMPactivePathToRootTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask))
conf->dot11MeshHWMProotInterval =
nconf->dot11MeshHWMProotInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask))
conf->dot11MeshHWMPconfirmationInterval =
nconf->dot11MeshHWMPconfirmationInterval;
return 0;
}
static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev,
const struct mesh_config *conf,
const struct mesh_setup *setup)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
int err;
memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config));
err = copy_mesh_setup(ifmsh, setup);
if (err)
return err;
/* can mesh use other SMPS modes? */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = sdata->local->rx_chains;
err = ieee80211_vif_use_channel(sdata, &setup->chandef,
IEEE80211_CHANCTX_SHARED);
if (err)
return err;
ieee80211_start_mesh(sdata);
return 0;
}
static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_stop_mesh(sdata);
ieee80211_vif_release_channel(sdata);
return 0;
}
#endif
static int ieee80211_change_bss(struct wiphy *wiphy,
struct net_device *dev,
struct bss_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band;
u32 changed = 0;
if (!rtnl_dereference(sdata->u.ap.beacon))
return -ENOENT;
band = ieee80211_get_sdata_band(sdata);
if (params->use_cts_prot >= 0) {
sdata->vif.bss_conf.use_cts_prot = params->use_cts_prot;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (params->use_short_preamble >= 0) {
sdata->vif.bss_conf.use_short_preamble =
params->use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
if (!sdata->vif.bss_conf.use_short_slot &&
band == IEEE80211_BAND_5GHZ) {
sdata->vif.bss_conf.use_short_slot = true;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->use_short_slot_time >= 0) {
sdata->vif.bss_conf.use_short_slot =
params->use_short_slot_time;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->basic_rates) {
int i, j;
u32 rates = 0;
struct ieee80211_supported_band *sband = wiphy->bands[band];
for (i = 0; i < params->basic_rates_len; i++) {
int rate = (params->basic_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
}
}
sdata->vif.bss_conf.basic_rates = rates;
changed |= BSS_CHANGED_BASIC_RATES;
}
if (params->ap_isolate >= 0) {
if (params->ap_isolate)
sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
else
sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
}
if (params->ht_opmode >= 0) {
sdata->vif.bss_conf.ht_operation_mode =
(u16) params->ht_opmode;
changed |= BSS_CHANGED_HT;
}
if (params->p2p_ctwindow >= 0) {
sdata->vif.bss_conf.p2p_ctwindow = params->p2p_ctwindow;
changed |= BSS_CHANGED_P2P_PS;
}
if (params->p2p_opp_ps >= 0) {
sdata->vif.bss_conf.p2p_oppps = params->p2p_opp_ps;
changed |= BSS_CHANGED_P2P_PS;
}
ieee80211_bss_info_change_notify(sdata, changed);
return 0;
}
static int ieee80211_set_txq_params(struct wiphy *wiphy,
struct net_device *dev,
struct ieee80211_txq_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_tx_queue_params p;
if (!local->ops->conf_tx)
return -EOPNOTSUPP;
if (local->hw.queues < IEEE80211_NUM_ACS)
return -EOPNOTSUPP;
memset(&p, 0, sizeof(p));
p.aifs = params->aifs;
p.cw_max = params->cwmax;
p.cw_min = params->cwmin;
p.txop = params->txop;
/*
* Setting tx queue params disables u-apsd because it's only
* called in master mode.
*/
p.uapsd = false;
sdata->tx_conf[params->ac] = p;
if (drv_conf_tx(local, sdata, params->ac, &p)) {
wiphy_debug(local->hw.wiphy,
"failed to set TX queue parameters for AC %d\n",
params->ac);
return -EINVAL;
}
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS);
return 0;
}
#ifdef CONFIG_PM
static int ieee80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wowlan)
{
return __ieee80211_suspend(wiphy_priv(wiphy), wowlan);
}
static int ieee80211_resume(struct wiphy *wiphy)
{
return __ieee80211_resume(wiphy_priv(wiphy));
}
#else
#define ieee80211_suspend NULL
#define ieee80211_resume NULL
#endif
static int ieee80211_scan(struct wiphy *wiphy,
struct cfg80211_scan_request *req)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev);
switch (ieee80211_vif_type_p2p(&sdata->vif)) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_DEVICE:
break;
case NL80211_IFTYPE_P2P_GO:
if (sdata->local->ops->hw_scan)
break;
/*
* FIXME: implement NoA while scanning in software,
* for now fall through to allow scanning only when
* beaconing hasn't been configured yet
*/
case NL80211_IFTYPE_AP:
/*
* If the scan has been forced (and the driver supports
* forcing), don't care about being beaconing already.
* This will create problems to the attached stations (e.g. all
* the frames sent while scanning on other channel will be
* lost)
*/
if (sdata->u.ap.beacon &&
(!(wiphy->features & NL80211_FEATURE_AP_SCAN) ||
!(req->flags & NL80211_SCAN_FLAG_AP)))
return -EOPNOTSUPP;
break;
default:
return -EOPNOTSUPP;
}
return ieee80211_request_scan(sdata, req);
}
static int
ieee80211_sched_scan_start(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *req)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->local->ops->sched_scan_start)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_start(sdata, req);
}
static int
ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->local->ops->sched_scan_stop)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_stop(sdata);
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_auth_request *req)
{
return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
}
static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_assoc_request *req)
{
return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
}
static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_deauth_request *req)
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
{
return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
}
static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_disassoc_request *req)
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
{
return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
}
static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params);
}
static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev));
}
static int ieee80211_set_mcast_rate(struct wiphy *wiphy, struct net_device *dev,
int rate[IEEE80211_NUM_BANDS])
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(sdata->vif.bss_conf.mcast_rate, rate, sizeof(rate));
return 0;
}
static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
int err;
if (changed & WIPHY_PARAM_FRAG_THRESHOLD) {
err = drv_set_frag_threshold(local, wiphy->frag_threshold);
if (err)
return err;
}
if (changed & WIPHY_PARAM_COVERAGE_CLASS) {
err = drv_set_coverage_class(local, wiphy->coverage_class);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
err = drv_set_rts_threshold(local, wiphy->rts_threshold);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RETRY_SHORT) {
if (wiphy->retry_short > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.short_frame_max_tx_count = wiphy->retry_short;
}
if (changed & WIPHY_PARAM_RETRY_LONG) {
if (wiphy->retry_long > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.long_frame_max_tx_count = wiphy->retry_long;
}
if (changed &
(WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG))
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS);
return 0;
}
static int ieee80211_set_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_tx_power_setting type, int mbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
if (wdev) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
sdata->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
sdata->user_power_level = MBM_TO_DBM(mbm);
break;
}
ieee80211_recalc_txpower(sdata);
return 0;
}
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
local->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
local->user_power_level = MBM_TO_DBM(mbm);
break;
}
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list)
sdata->user_power_level = local->user_power_level;
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_recalc_txpower(sdata);
mutex_unlock(&local->iflist_mtx);
return 0;
}
static int ieee80211_get_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
int *dbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (!local->use_chanctx)
*dbm = local->hw.conf.power_level;
else
*dbm = sdata->vif.bss_conf.txpower;
return 0;
}
static int ieee80211_set_wds_peer(struct wiphy *wiphy, struct net_device *dev,
const u8 *addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(&sdata->u.wds.remote_addr, addr, ETH_ALEN);
return 0;
}
static void ieee80211_rfkill_poll(struct wiphy *wiphy)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
drv_rfkill_poll(local);
}
#ifdef CONFIG_NL80211_TESTMODE
static int ieee80211_testmode_cmd(struct wiphy *wiphy, void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->testmode_cmd)
return -EOPNOTSUPP;
return local->ops->testmode_cmd(&local->hw, data, len);
}
static int ieee80211_testmode_dump(struct wiphy *wiphy,
struct sk_buff *skb,
struct netlink_callback *cb,
void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->testmode_dump)
return -EOPNOTSUPP;
return local->ops->testmode_dump(&local->hw, skb, cb, data, len);
}
#endif
int __ieee80211_request_smps(struct ieee80211_sub_if_data *sdata,
enum ieee80211_smps_mode smps_mode)
{
const u8 *ap;
enum ieee80211_smps_mode old_req;
int err;
lockdep_assert_held(&sdata->u.mgd.mtx);
old_req = sdata->u.mgd.req_smps;
sdata->u.mgd.req_smps = smps_mode;
if (old_req == smps_mode &&
smps_mode != IEEE80211_SMPS_AUTOMATIC)
return 0;
/*
* If not associated, or current association is not an HT
* association, there's no need to do anything, just store
* the new value until we associate.
*/
if (!sdata->u.mgd.associated ||
sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT)
return 0;
ap = sdata->u.mgd.associated->bssid;
if (smps_mode == IEEE80211_SMPS_AUTOMATIC) {
if (sdata->u.mgd.powersave)
smps_mode = IEEE80211_SMPS_DYNAMIC;
else
smps_mode = IEEE80211_SMPS_OFF;
}
/* send SM PS frame to AP */
err = ieee80211_send_smps_action(sdata, smps_mode,
ap, ap);
if (err)
sdata->u.mgd.req_smps = old_req;
return err;
}
static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
return -EOPNOTSUPP;
if (enabled == sdata->u.mgd.powersave &&
timeout == local->dynamic_ps_forced_timeout)
return 0;
sdata->u.mgd.powersave = enabled;
local->dynamic_ps_forced_timeout = timeout;
/* no change, but if automatic follow powersave */
mutex_lock(&sdata->u.mgd.mtx);
__ieee80211_request_smps(sdata, sdata->u.mgd.req_smps);
mutex_unlock(&sdata->u.mgd.mtx);
if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
ieee80211_recalc_ps(local, -1);
ieee80211_recalc_ps_vif(sdata);
return 0;
}
static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy,
struct net_device *dev,
s32 rssi_thold, u32 rssi_hyst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_vif *vif = &sdata->vif;
struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
if (rssi_thold == bss_conf->cqm_rssi_thold &&
rssi_hyst == bss_conf->cqm_rssi_hyst)
return 0;
bss_conf->cqm_rssi_thold = rssi_thold;
bss_conf->cqm_rssi_hyst = rssi_hyst;
/* tell the driver upon association, unless already associated */
if (sdata->u.mgd.associated &&
sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_CQM);
return 0;
}
static int ieee80211_set_bitrate_mask(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int i, ret;
mac80211: check sdata_running on ieee80211_set_bitrate_mask Otherwise, we might call the driver callback before the interface was uploaded. Solves the following warning: WARNING: at net/mac80211/driver-ops.h:12 ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]() wlan0: Failed check-sdata-in-driver check, flags: 0x0 Modules linked in: wlcore_sdio wl12xx wl18xx wlcore mac80211 cfg80211 [last unloaded: cfg80211] [<c001b964>] (unwind_backtrace+0x0/0x12c) from [<c0495550>] (dump_stack+0x20/0x24) [<c0495550>] (dump_stack+0x20/0x24) from [<c003ee28>] (warn_slowpath_common+0x5c/0x74) [<c003ee28>] (warn_slowpath_common+0x5c/0x74) from [<c003eefc>] (warn_slowpath_fmt+0x40/0x48) [<c003eefc>] (warn_slowpath_fmt+0x40/0x48) from [<bf5c1ad0>] (ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]) [<bf5c1ad0>] (ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]) from [<bf575960>] (nl80211_set_tx_bitrate_mask+0x350/0x358 [cfg80211]) [<bf575960>] (nl80211_set_tx_bitrate_mask+0x350/0x358 [cfg80211]) from [<c03e9e94>] (genl_rcv_msg+0x1a8/0x1e8) [<c03e9e94>] (genl_rcv_msg+0x1a8/0x1e8) from [<c03e9164>] (netlink_rcv_skb+0x5c/0xc0) [<c03e9164>] (netlink_rcv_skb+0x5c/0xc0) from [<c03e9ce0>] (genl_rcv+0x28/0x34) [<c03e9ce0>] (genl_rcv+0x28/0x34) from [<c03e8e74>] (netlink_unicast+0x158/0x234) [<c03e8e74>] (netlink_unicast+0x158/0x234) from [<c03e93e0>] (netlink_sendmsg+0x218/0x298) [<c03e93e0>] (netlink_sendmsg+0x218/0x298) from [<c03b4e5c>] (sock_sendmsg+0xa4/0xc0) [<c03b4e5c>] (sock_sendmsg+0xa4/0xc0) from [<c03b5af4>] (__sys_sendmsg+0x1d8/0x254) [<c03b5af4>] (__sys_sendmsg+0x1d8/0x254) from [<c03b5ca8>] (sys_sendmsg+0x4c/0x70) [<c03b5ca8>] (sys_sendmsg+0x4c/0x70) from [<c0013980>] (ret_fast_syscall+0x0/0x3c) Note that calling the driver can also result in undefined behaviour since it doesn't have to deal with calls while down. Signed-off-by: Eliad Peller <eliad@wizery.com> [removed timestamps, added note - Johannes] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2012-06-12 12:41:15 +03:00
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) {
ret = drv_set_bitrate_mask(local, sdata, mask);
if (ret)
return ret;
}
for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
sdata->rc_rateidx_mask[i] = mask->control[i].legacy;
memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].mcs,
sizeof(mask->control[i].mcs));
}
return 0;
}
static int ieee80211_start_roc_work(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
unsigned int duration, u64 *cookie,
struct sk_buff *txskb)
{
struct ieee80211_roc_work *roc, *tmp;
bool queued = false;
int ret;
lockdep_assert_held(&local->mtx);
if (local->use_chanctx && !local->ops->remain_on_channel)
return -EOPNOTSUPP;
roc = kzalloc(sizeof(*roc), GFP_KERNEL);
if (!roc)
return -ENOMEM;
roc->chan = channel;
roc->duration = duration;
roc->req_duration = duration;
roc->frame = txskb;
roc->mgmt_tx_cookie = (unsigned long)txskb;
roc->sdata = sdata;
INIT_DELAYED_WORK(&roc->work, ieee80211_sw_roc_work);
INIT_LIST_HEAD(&roc->dependents);
/* if there's one pending or we're scanning, queue this one */
if (!list_empty(&local->roc_list) || local->scanning)
goto out_check_combine;
/* if not HW assist, just queue & schedule work */
if (!local->ops->remain_on_channel) {
ieee80211_queue_delayed_work(&local->hw, &roc->work, 0);
goto out_queue;
}
/* otherwise actually kick it off here (for error handling) */
/*
* If the duration is zero, then the driver
* wouldn't actually do anything. Set it to
* 10 for now.
*
* TODO: cancel the off-channel operation
* when we get the SKB's TX status and
* the wait time was zero before.
*/
if (!duration)
duration = 10;
ret = drv_remain_on_channel(local, sdata, channel, duration);
if (ret) {
kfree(roc);
return ret;
}
roc->started = true;
goto out_queue;
out_check_combine:
list_for_each_entry(tmp, &local->roc_list, list) {
if (tmp->chan != channel || tmp->sdata != sdata)
continue;
/*
* Extend this ROC if possible:
*
* If it hasn't started yet, just increase the duration
* and add the new one to the list of dependents.
*/
if (!tmp->started) {
list_add_tail(&roc->list, &tmp->dependents);
tmp->duration = max(tmp->duration, roc->duration);
queued = true;
break;
}
/* If it has already started, it's more difficult ... */
if (local->ops->remain_on_channel) {
unsigned long j = jiffies;
/*
* In the offloaded ROC case, if it hasn't begun, add
* this new one to the dependent list to be handled
* when the the master one begins. If it has begun,
* check that there's still a minimum time left and
* if so, start this one, transmitting the frame, but
* add it to the list directly after this one with a
* a reduced time so we'll ask the driver to execute
* it right after finishing the previous one, in the
* hope that it'll also be executed right afterwards,
* effectively extending the old one.
* If there's no minimum time left, just add it to the
* normal list.
*/
if (!tmp->hw_begun) {
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
break;
}
if (time_before(j + IEEE80211_ROC_MIN_LEFT,
tmp->hw_start_time +
msecs_to_jiffies(tmp->duration))) {
int new_dur;
ieee80211_handle_roc_started(roc);
new_dur = roc->duration -
jiffies_to_msecs(tmp->hw_start_time +
msecs_to_jiffies(
tmp->duration) -
j);
if (new_dur > 0) {
/* add right after tmp */
list_add(&roc->list, &tmp->list);
} else {
list_add_tail(&roc->list,
&tmp->dependents);
}
queued = true;
}
} else if (del_timer_sync(&tmp->work.timer)) {
unsigned long new_end;
/*
* In the software ROC case, cancel the timer, if
* that fails then the finish work is already
* queued/pending and thus we queue the new ROC
* normally, if that succeeds then we can extend
* the timer duration and TX the frame (if any.)
*/
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
new_end = jiffies + msecs_to_jiffies(roc->duration);
/* ok, it was started & we canceled timer */
if (time_after(new_end, tmp->work.timer.expires))
mod_timer(&tmp->work.timer, new_end);
else
add_timer(&tmp->work.timer);
ieee80211_handle_roc_started(roc);
}
break;
}
out_queue:
if (!queued)
list_add_tail(&roc->list, &local->roc_list);
/*
* cookie is either the roc cookie (for normal roc)
* or the SKB (for mgmt TX)
*/
if (!txskb) {
/* local->mtx protects this */
local->roc_cookie_counter++;
roc->cookie = local->roc_cookie_counter;
/* wow, you wrapped 64 bits ... more likely a bug */
if (WARN_ON(roc->cookie == 0)) {
roc->cookie = 1;
local->roc_cookie_counter++;
}
*cookie = roc->cookie;
} else {
*cookie = (unsigned long)txskb;
}
return 0;
}
static int ieee80211_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration,
u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
int ret;
mutex_lock(&local->mtx);
ret = ieee80211_start_roc_work(local, sdata, chan,
duration, cookie, NULL);
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_cancel_roc(struct ieee80211_local *local,
u64 cookie, bool mgmt_tx)
{
struct ieee80211_roc_work *roc, *tmp, *found = NULL;
int ret;
mutex_lock(&local->mtx);
list_for_each_entry_safe(roc, tmp, &local->roc_list, list) {
struct ieee80211_roc_work *dep, *tmp2;
list_for_each_entry_safe(dep, tmp2, &roc->dependents, list) {
if (!mgmt_tx && dep->cookie != cookie)
continue;
else if (mgmt_tx && dep->mgmt_tx_cookie != cookie)
continue;
/* found dependent item -- just remove it */
list_del(&dep->list);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(dep);
return 0;
}
if (!mgmt_tx && roc->cookie != cookie)
continue;
else if (mgmt_tx && roc->mgmt_tx_cookie != cookie)
continue;
found = roc;
break;
}
if (!found) {
mutex_unlock(&local->mtx);
return -ENOENT;
}
/*
* We found the item to cancel, so do that. Note that it
* may have dependents, which we also cancel (and send
* the expired signal for.) Not doing so would be quite
* tricky here, but we may need to fix it later.
*/
if (local->ops->remain_on_channel) {
if (found->started) {
ret = drv_cancel_remain_on_channel(local);
if (WARN_ON_ONCE(ret)) {
mutex_unlock(&local->mtx);
return ret;
}
}
list_del(&found->list);
if (found->started)
ieee80211_start_next_roc(local);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(found);
} else {
/* work may be pending so use it all the time */
found->abort = true;
ieee80211_queue_delayed_work(&local->hw, &found->work, 0);
mutex_unlock(&local->mtx);
/* work will clean up etc */
flush_delayed_work(&found->work);
}
return 0;
}
static int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
return ieee80211_cancel_roc(local, cookie, false);
}
static int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
struct ieee80211_channel *chan, bool offchan,
unsigned int wait, const u8 *buf, size_t len,
bool no_cck, bool dont_wait_for_ack, u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct sta_info *sta;
const struct ieee80211_mgmt *mgmt = (void *)buf;
bool need_offchan = false;
u32 flags;
int ret;
if (dont_wait_for_ack)
flags = IEEE80211_TX_CTL_NO_ACK;
else
flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX |
IEEE80211_TX_CTL_REQ_TX_STATUS;
if (no_cck)
flags |= IEEE80211_TX_CTL_NO_CCK_RATE;
switch (sdata->vif.type) {
case NL80211_IFTYPE_ADHOC:
if (!sdata->vif.bss_conf.ibss_joined)
need_offchan = true;
/* fall through */
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
if (ieee80211_vif_is_mesh(&sdata->vif) &&
!sdata->u.mesh.mesh_id_len)
need_offchan = true;
/* fall through */
#endif
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
!ieee80211_vif_is_mesh(&sdata->vif) &&
!rcu_access_pointer(sdata->bss->beacon))
need_offchan = true;
if (!ieee80211_is_action(mgmt->frame_control) ||
mgmt->u.action.category == WLAN_CATEGORY_PUBLIC)
break;
rcu_read_lock();
sta = sta_info_get(sdata, mgmt->da);
rcu_read_unlock();
if (!sta)
return -ENOLINK;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (!sdata->u.mgd.associated)
need_offchan = true;
break;
case NL80211_IFTYPE_P2P_DEVICE:
need_offchan = true;
break;
default:
return -EOPNOTSUPP;
}
mutex_lock(&local->mtx);
/* Check if the operating channel is the requested channel */
if (!need_offchan) {
struct ieee80211_chanctx_conf *chanctx_conf;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf)
need_offchan = chan != chanctx_conf->def.chan;
else
need_offchan = true;
rcu_read_unlock();
}
if (need_offchan && !offchan) {
ret = -EBUSY;
goto out_unlock;
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + len);
if (!skb) {
ret = -ENOMEM;
goto out_unlock;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
memcpy(skb_put(skb, len), buf, len);
IEEE80211_SKB_CB(skb)->flags = flags;
skb->dev = sdata->dev;
if (!need_offchan) {
*cookie = (unsigned long) skb;
ieee80211_tx_skb(sdata, skb);
ret = 0;
goto out_unlock;
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN;
if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
IEEE80211_SKB_CB(skb)->hw_queue =
local->hw.offchannel_tx_hw_queue;
/* This will handle all kinds of coalescing and immediate TX */
ret = ieee80211_start_roc_work(local, sdata, chan,
wait, cookie, skb);
if (ret)
kfree_skb(skb);
out_unlock:
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return ieee80211_cancel_roc(local, cookie, true);
}
static void ieee80211_mgmt_frame_register(struct wiphy *wiphy,
struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (frame_type) {
case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH:
if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
if (reg)
ifibss->auth_frame_registrations++;
else
ifibss->auth_frame_registrations--;
}
break;
case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ:
if (reg)
local->probe_req_reg++;
else
local->probe_req_reg--;
if (!local->open_count)
break;
ieee80211_queue_work(&local->hw, &local->reconfig_filter);
break;
default:
break;
}
}
static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (local->started)
return -EOPNOTSUPP;
return drv_set_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return drv_get_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_set_ringparam(struct wiphy *wiphy, u32 tx, u32 rx)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return drv_set_ringparam(local, tx, rx);
}
static void ieee80211_get_ringparam(struct wiphy *wiphy,
u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
drv_get_ringparam(local, tx, tx_max, rx, rx_max);
}
static int ieee80211_set_rekey_data(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_gtk_rekey_data *data)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!local->ops->set_rekey_data)
return -EOPNOTSUPP;
drv_set_rekey_data(local, sdata, data);
return 0;
}
static void ieee80211_tdls_add_ext_capab(struct sk_buff *skb)
{
u8 *pos = (void *)skb_put(skb, 7);
*pos++ = WLAN_EID_EXT_CAPABILITY;
*pos++ = 5; /* len */
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = WLAN_EXT_CAPA5_TDLS_ENABLED;
}
static u16 ieee80211_get_tdls_sta_capab(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
u16 capab;
capab = 0;
if (ieee80211_get_sdata_band(sdata) != IEEE80211_BAND_2GHZ)
return capab;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
return capab;
}
static void ieee80211_tdls_add_link_ie(struct sk_buff *skb, u8 *src_addr,
u8 *peer, u8 *bssid)
{
struct ieee80211_tdls_lnkie *lnkid;
lnkid = (void *)skb_put(skb, sizeof(struct ieee80211_tdls_lnkie));
lnkid->ie_type = WLAN_EID_LINK_ID;
lnkid->ie_len = sizeof(struct ieee80211_tdls_lnkie) - 2;
memcpy(lnkid->bssid, bssid, ETH_ALEN);
memcpy(lnkid->init_sta, src_addr, ETH_ALEN);
memcpy(lnkid->resp_sta, peer, ETH_ALEN);
}
static int
ieee80211_prep_tdls_encap_data(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, struct sk_buff *skb)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
struct ieee80211_tdls_data *tf;
tf = (void *)skb_put(skb, offsetof(struct ieee80211_tdls_data, u));
memcpy(tf->da, peer, ETH_ALEN);
memcpy(tf->sa, sdata->vif.addr, ETH_ALEN);
tf->ether_type = cpu_to_be16(ETH_P_TDLS);
tf->payload_type = WLAN_TDLS_SNAP_RFTYPE;
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_REQUEST;
skb_put(skb, sizeof(tf->u.setup_req));
tf->u.setup_req.dialog_token = dialog_token;
tf->u.setup_req.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
case WLAN_TDLS_SETUP_RESPONSE:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_RESPONSE;
skb_put(skb, sizeof(tf->u.setup_resp));
tf->u.setup_resp.status_code = cpu_to_le16(status_code);
tf->u.setup_resp.dialog_token = dialog_token;
tf->u.setup_resp.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
case WLAN_TDLS_SETUP_CONFIRM:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_CONFIRM;
skb_put(skb, sizeof(tf->u.setup_cfm));
tf->u.setup_cfm.status_code = cpu_to_le16(status_code);
tf->u.setup_cfm.dialog_token = dialog_token;
break;
case WLAN_TDLS_TEARDOWN:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_TEARDOWN;
skb_put(skb, sizeof(tf->u.teardown));
tf->u.teardown.reason_code = cpu_to_le16(status_code);
break;
case WLAN_TDLS_DISCOVERY_REQUEST:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_DISCOVERY_REQUEST;
skb_put(skb, sizeof(tf->u.discover_req));
tf->u.discover_req.dialog_token = dialog_token;
break;
default:
return -EINVAL;
}
return 0;
}
static int
ieee80211_prep_tdls_direct(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, struct sk_buff *skb)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
struct ieee80211_mgmt *mgmt;
mgmt = (void *)skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, peer, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
switch (action_code) {
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
skb_put(skb, 1 + sizeof(mgmt->u.action.u.tdls_discover_resp));
mgmt->u.action.category = WLAN_CATEGORY_PUBLIC;
mgmt->u.action.u.tdls_discover_resp.action_code =
WLAN_PUB_ACTION_TDLS_DISCOVER_RES;
mgmt->u.action.u.tdls_discover_resp.dialog_token =
dialog_token;
mgmt->u.action.u.tdls_discover_resp.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
default:
return -EINVAL;
}
return 0;
}
static int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, const u8 *extra_ies,
size_t extra_ies_len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb = NULL;
bool send_direct;
int ret;
if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
return -ENOTSUPP;
/* make sure we are in managed mode, and associated */
if (sdata->vif.type != NL80211_IFTYPE_STATION ||
!sdata->u.mgd.associated)
return -EINVAL;
tdls_dbg(sdata, "TDLS mgmt action %d peer %pM\n",
action_code, peer);
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
max(sizeof(struct ieee80211_mgmt),
sizeof(struct ieee80211_tdls_data)) +
50 + /* supported rates */
7 + /* ext capab */
extra_ies_len +
sizeof(struct ieee80211_tdls_lnkie));
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->hw.extra_tx_headroom);
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_RESPONSE:
case WLAN_TDLS_SETUP_CONFIRM:
case WLAN_TDLS_TEARDOWN:
case WLAN_TDLS_DISCOVERY_REQUEST:
ret = ieee80211_prep_tdls_encap_data(wiphy, dev, peer,
action_code, dialog_token,
status_code, skb);
send_direct = false;
break;
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
ret = ieee80211_prep_tdls_direct(wiphy, dev, peer, action_code,
dialog_token, status_code,
skb);
send_direct = true;
break;
default:
ret = -ENOTSUPP;
break;
}
if (ret < 0)
goto fail;
if (extra_ies_len)
memcpy(skb_put(skb, extra_ies_len), extra_ies, extra_ies_len);
/* the TDLS link IE is always added last */
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_CONFIRM:
case WLAN_TDLS_TEARDOWN:
case WLAN_TDLS_DISCOVERY_REQUEST:
/* we are the initiator */
ieee80211_tdls_add_link_ie(skb, sdata->vif.addr, peer,
sdata->u.mgd.bssid);
break;
case WLAN_TDLS_SETUP_RESPONSE:
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
/* we are the responder */
ieee80211_tdls_add_link_ie(skb, peer, sdata->vif.addr,
sdata->u.mgd.bssid);
break;
default:
ret = -ENOTSUPP;
goto fail;
}
if (send_direct) {
ieee80211_tx_skb(sdata, skb);
return 0;
}
/*
* According to 802.11z: Setup req/resp are sent in AC_BK, otherwise
* we should default to AC_VI.
*/
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_RESPONSE:
skb_set_queue_mapping(skb, IEEE80211_AC_BK);
skb->priority = 2;
break;
default:
skb_set_queue_mapping(skb, IEEE80211_AC_VI);
skb->priority = 5;
break;
}
/* disable bottom halves when entering the Tx path */
local_bh_disable();
ret = ieee80211_subif_start_xmit(skb, dev);
local_bh_enable();
return ret;
fail:
dev_kfree_skb(skb);
return ret;
}
static int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, enum nl80211_tdls_operation oper)
{
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
return -ENOTSUPP;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return -EINVAL;
tdls_dbg(sdata, "TDLS oper %d peer %pM\n", oper, peer);
switch (oper) {
case NL80211_TDLS_ENABLE_LINK:
rcu_read_lock();
sta = sta_info_get(sdata, peer);
if (!sta) {
rcu_read_unlock();
return -ENOLINK;
}
set_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH);
rcu_read_unlock();
break;
case NL80211_TDLS_DISABLE_LINK:
return sta_info_destroy_addr(sdata, peer);
case NL80211_TDLS_TEARDOWN:
case NL80211_TDLS_SETUP:
case NL80211_TDLS_DISCOVERY_REQ:
/* We don't support in-driver setup/teardown/discovery */
return -ENOTSUPP;
default:
return -ENOTSUPP;
}
return 0;
}
static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_qos_hdr *nullfunc;
struct sk_buff *skb;
int size = sizeof(*nullfunc);
__le16 fc;
bool qos;
struct ieee80211_tx_info *info;
struct sta_info *sta;
struct ieee80211_chanctx_conf *chanctx_conf;
enum ieee80211_band band;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (WARN_ON(!chanctx_conf)) {
rcu_read_unlock();
return -EINVAL;
}
band = chanctx_conf->def.chan->band;
sta = sta_info_get(sdata, peer);
if (sta) {
qos = test_sta_flag(sta, WLAN_STA_WME);
} else {
rcu_read_unlock();
return -ENOLINK;
}
if (qos) {
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_QOS_NULLFUNC |
IEEE80211_FCTL_FROMDS);
} else {
size -= 2;
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_FROMDS);
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
if (!skb) {
rcu_read_unlock();
return -ENOMEM;
}
skb->dev = dev;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (void *) skb_put(skb, size);
nullfunc->frame_control = fc;
nullfunc->duration_id = 0;
memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
nullfunc->seq_ctrl = 0;
info = IEEE80211_SKB_CB(skb);
info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_NL80211_FRAME_TX;
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
skb->priority = 7;
if (qos)
nullfunc->qos_ctrl = cpu_to_le16(7);
local_bh_disable();
ieee80211_xmit(sdata, skb, band);
local_bh_enable();
rcu_read_unlock();
*cookie = (unsigned long) skb;
return 0;
}
static int ieee80211_cfg_get_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_chanctx_conf *chanctx_conf;
int ret = -ENODATA;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf) {
*chandef = chanctx_conf->def;
ret = 0;
}
rcu_read_unlock();
return ret;
}
#ifdef CONFIG_PM
static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled)
{
drv_set_wakeup(wiphy_priv(wiphy), enabled);
}
#endif
struct cfg80211_ops mac80211_config_ops = {
.add_virtual_intf = ieee80211_add_iface,
.del_virtual_intf = ieee80211_del_iface,
.change_virtual_intf = ieee80211_change_iface,
.start_p2p_device = ieee80211_start_p2p_device,
.stop_p2p_device = ieee80211_stop_p2p_device,
.add_key = ieee80211_add_key,
.del_key = ieee80211_del_key,
.get_key = ieee80211_get_key,
.set_default_key = ieee80211_config_default_key,
.set_default_mgmt_key = ieee80211_config_default_mgmt_key,
.start_ap = ieee80211_start_ap,
.change_beacon = ieee80211_change_beacon,
.stop_ap = ieee80211_stop_ap,
.add_station = ieee80211_add_station,
.del_station = ieee80211_del_station,
.change_station = ieee80211_change_station,
.get_station = ieee80211_get_station,
.dump_station = ieee80211_dump_station,
.dump_survey = ieee80211_dump_survey,
#ifdef CONFIG_MAC80211_MESH
.add_mpath = ieee80211_add_mpath,
.del_mpath = ieee80211_del_mpath,
.change_mpath = ieee80211_change_mpath,
.get_mpath = ieee80211_get_mpath,
.dump_mpath = ieee80211_dump_mpath,
.update_mesh_config = ieee80211_update_mesh_config,
.get_mesh_config = ieee80211_get_mesh_config,
.join_mesh = ieee80211_join_mesh,
.leave_mesh = ieee80211_leave_mesh,
#endif
.change_bss = ieee80211_change_bss,
.set_txq_params = ieee80211_set_txq_params,
.set_monitor_channel = ieee80211_set_monitor_channel,
.suspend = ieee80211_suspend,
.resume = ieee80211_resume,
.scan = ieee80211_scan,
.sched_scan_start = ieee80211_sched_scan_start,
.sched_scan_stop = ieee80211_sched_scan_stop,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 13:39:22 +02:00
.auth = ieee80211_auth,
.assoc = ieee80211_assoc,
.deauth = ieee80211_deauth,
.disassoc = ieee80211_disassoc,
.join_ibss = ieee80211_join_ibss,
.leave_ibss = ieee80211_leave_ibss,
.set_mcast_rate = ieee80211_set_mcast_rate,
.set_wiphy_params = ieee80211_set_wiphy_params,
.set_tx_power = ieee80211_set_tx_power,
.get_tx_power = ieee80211_get_tx_power,
.set_wds_peer = ieee80211_set_wds_peer,
.rfkill_poll = ieee80211_rfkill_poll,
CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd)
CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump)
.set_power_mgmt = ieee80211_set_power_mgmt,
.set_bitrate_mask = ieee80211_set_bitrate_mask,
.remain_on_channel = ieee80211_remain_on_channel,
.cancel_remain_on_channel = ieee80211_cancel_remain_on_channel,
.mgmt_tx = ieee80211_mgmt_tx,
.mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait,
.set_cqm_rssi_config = ieee80211_set_cqm_rssi_config,
.mgmt_frame_register = ieee80211_mgmt_frame_register,
.set_antenna = ieee80211_set_antenna,
.get_antenna = ieee80211_get_antenna,
.set_ringparam = ieee80211_set_ringparam,
.get_ringparam = ieee80211_get_ringparam,
.set_rekey_data = ieee80211_set_rekey_data,
.tdls_oper = ieee80211_tdls_oper,
.tdls_mgmt = ieee80211_tdls_mgmt,
.probe_client = ieee80211_probe_client,
.set_noack_map = ieee80211_set_noack_map,
#ifdef CONFIG_PM
.set_wakeup = ieee80211_set_wakeup,
#endif
.get_et_sset_count = ieee80211_get_et_sset_count,
.get_et_stats = ieee80211_get_et_stats,
.get_et_strings = ieee80211_get_et_strings,
.get_channel = ieee80211_cfg_get_channel,
};