linux-stable/include/sound/pcm.h

1426 lines
47 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#ifndef __SOUND_PCM_H
#define __SOUND_PCM_H
/*
* Digital Audio (PCM) abstract layer
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Abramo Bagnara <abramo@alsa-project.org>
*/
#include <sound/asound.h>
#include <sound/memalloc.h>
#include <sound/minors.h>
#include <linux/poll.h>
#include <linux/mm.h>
#include <linux/bitops.h>
#include <linux/pm_qos.h>
ALSA: pcm: More fine-grained PCM link locking We have currently two global locks, a rwlock and a rwsem, that are used for managing linking the PCM streams. Due to these global locks, once when a linked stream is used, the lock granularity suffers a lot. This patch attempts to eliminate the former global lock for atomic ops. The latter rwsem needs remaining because of the loosy way of the loop calls in snd_pcm_action_nonatomic(), as well as for avoiding the deadlock at linking. However, these are used far rarely, actually only by two actions (prepare and reset), where both are no timing critical ones. So this can be still seen as a good improvement. The basic strategy to eliminate the rwlock is to assure group->lock at adding or removing a stream to / from the group. Since we already takes the group lock whenever taking the all substream locks under the group, this shouldn't be a big problem. The reference to group pointer in snd_pcm_substream object is protected by the stream lock itself. However, there are still pitfalls: a race window at re-locking and the lifecycle of group object. The former is a small race window for dereferencing the substream group object opened while snd_pcm_action() performs re-locking to avoid ABBA deadlocks. This includes the unlink of group during that window, too. And the latter is the kfree performed after all streams are removed from the group while it's still dereferenced. For addressing these corner cases, two new tricks are introduced: - After re-locking, the group assigned to the stream is checked again; if the group is changed, we retry the whole procedure. - Introduce a refcount to snd_pcm_group object, so that it's freed only when it's empty and really no one refers to it. (Some readers might wonder why not RCU for the latter. RCU in this case would cost more than refcounting, unfortunately. We take the group lock sooner or later, hence the performance improvement by RCU would be negligible. Meanwhile, because we need to deal with schedulable context depending on the pcm->nonatomic flag, it'll become dynamic RCU/SRCU switch, and the grace period may become too long.) Along with these changes, there are a significant amount of code refactoring. The complex group re-lock & ref code is factored out to snd_pcm_stream_group_ref() function, for example. Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-01-13 08:50:33 +00:00
#include <linux/refcount.h>
#define snd_pcm_substream_chip(substream) ((substream)->private_data)
#define snd_pcm_chip(pcm) ((pcm)->private_data)
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
#include <sound/pcm_oss.h>
#endif
/*
* Hardware (lowlevel) section
*/
struct snd_pcm_hardware {
unsigned int info; /* SNDRV_PCM_INFO_* */
u64 formats; /* SNDRV_PCM_FMTBIT_* */
unsigned int rates; /* SNDRV_PCM_RATE_* */
unsigned int rate_min; /* min rate */
unsigned int rate_max; /* max rate */
unsigned int channels_min; /* min channels */
unsigned int channels_max; /* max channels */
size_t buffer_bytes_max; /* max buffer size */
size_t period_bytes_min; /* min period size */
size_t period_bytes_max; /* max period size */
unsigned int periods_min; /* min # of periods */
unsigned int periods_max; /* max # of periods */
size_t fifo_size; /* fifo size in bytes */
};
struct snd_pcm_substream;
struct snd_pcm_audio_tstamp_config; /* definitions further down */
struct snd_pcm_audio_tstamp_report;
struct snd_pcm_ops {
int (*open)(struct snd_pcm_substream *substream);
int (*close)(struct snd_pcm_substream *substream);
int (*ioctl)(struct snd_pcm_substream * substream,
unsigned int cmd, void *arg);
int (*hw_params)(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params);
int (*hw_free)(struct snd_pcm_substream *substream);
int (*prepare)(struct snd_pcm_substream *substream);
int (*trigger)(struct snd_pcm_substream *substream, int cmd);
int (*sync_stop)(struct snd_pcm_substream *substream);
snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream);
int (*get_time_info)(struct snd_pcm_substream *substream,
struct timespec *system_ts, struct timespec *audio_ts,
struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
struct snd_pcm_audio_tstamp_report *audio_tstamp_report);
int (*fill_silence)(struct snd_pcm_substream *substream, int channel,
unsigned long pos, unsigned long bytes);
int (*copy_user)(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void __user *buf,
unsigned long bytes);
int (*copy_kernel)(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void *buf, unsigned long bytes);
struct page *(*page)(struct snd_pcm_substream *substream,
unsigned long offset);
int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma);
int (*ack)(struct snd_pcm_substream *substream);
};
/*
*
*/
#if defined(CONFIG_SND_DYNAMIC_MINORS)
#define SNDRV_PCM_DEVICES (SNDRV_OS_MINORS-2)
#else
#define SNDRV_PCM_DEVICES 8
#endif
#define SNDRV_PCM_IOCTL1_RESET 0
/* 1 is absent slot. */
#define SNDRV_PCM_IOCTL1_CHANNEL_INFO 2
/* 3 is absent slot. */
#define SNDRV_PCM_IOCTL1_FIFO_SIZE 4
#define SNDRV_PCM_TRIGGER_STOP 0
#define SNDRV_PCM_TRIGGER_START 1
#define SNDRV_PCM_TRIGGER_PAUSE_PUSH 3
#define SNDRV_PCM_TRIGGER_PAUSE_RELEASE 4
#define SNDRV_PCM_TRIGGER_SUSPEND 5
#define SNDRV_PCM_TRIGGER_RESUME 6
#define SNDRV_PCM_TRIGGER_DRAIN 7
#define SNDRV_PCM_POS_XRUN ((snd_pcm_uframes_t)-1)
/* If you change this don't forget to change rates[] table in pcm_native.c */
#define SNDRV_PCM_RATE_5512 (1<<0) /* 5512Hz */
#define SNDRV_PCM_RATE_8000 (1<<1) /* 8000Hz */
#define SNDRV_PCM_RATE_11025 (1<<2) /* 11025Hz */
#define SNDRV_PCM_RATE_16000 (1<<3) /* 16000Hz */
#define SNDRV_PCM_RATE_22050 (1<<4) /* 22050Hz */
#define SNDRV_PCM_RATE_32000 (1<<5) /* 32000Hz */
#define SNDRV_PCM_RATE_44100 (1<<6) /* 44100Hz */
#define SNDRV_PCM_RATE_48000 (1<<7) /* 48000Hz */
#define SNDRV_PCM_RATE_64000 (1<<8) /* 64000Hz */
#define SNDRV_PCM_RATE_88200 (1<<9) /* 88200Hz */
#define SNDRV_PCM_RATE_96000 (1<<10) /* 96000Hz */
#define SNDRV_PCM_RATE_176400 (1<<11) /* 176400Hz */
#define SNDRV_PCM_RATE_192000 (1<<12) /* 192000Hz */
#define SNDRV_PCM_RATE_352800 (1<<13) /* 352800Hz */
#define SNDRV_PCM_RATE_384000 (1<<14) /* 384000Hz */
#define SNDRV_PCM_RATE_CONTINUOUS (1<<30) /* continuous range */
#define SNDRV_PCM_RATE_KNOT (1<<31) /* supports more non-continuos rates */
#define SNDRV_PCM_RATE_8000_44100 (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_11025|\
SNDRV_PCM_RATE_16000|SNDRV_PCM_RATE_22050|\
SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_44100)
#define SNDRV_PCM_RATE_8000_48000 (SNDRV_PCM_RATE_8000_44100|SNDRV_PCM_RATE_48000)
#define SNDRV_PCM_RATE_8000_96000 (SNDRV_PCM_RATE_8000_48000|SNDRV_PCM_RATE_64000|\
SNDRV_PCM_RATE_88200|SNDRV_PCM_RATE_96000)
#define SNDRV_PCM_RATE_8000_192000 (SNDRV_PCM_RATE_8000_96000|SNDRV_PCM_RATE_176400|\
SNDRV_PCM_RATE_192000)
#define SNDRV_PCM_RATE_8000_384000 (SNDRV_PCM_RATE_8000_192000|\
SNDRV_PCM_RATE_352800|\
SNDRV_PCM_RATE_384000)
#define _SNDRV_PCM_FMTBIT(fmt) (1ULL << (__force int)SNDRV_PCM_FORMAT_##fmt)
#define SNDRV_PCM_FMTBIT_S8 _SNDRV_PCM_FMTBIT(S8)
#define SNDRV_PCM_FMTBIT_U8 _SNDRV_PCM_FMTBIT(U8)
#define SNDRV_PCM_FMTBIT_S16_LE _SNDRV_PCM_FMTBIT(S16_LE)
#define SNDRV_PCM_FMTBIT_S16_BE _SNDRV_PCM_FMTBIT(S16_BE)
#define SNDRV_PCM_FMTBIT_U16_LE _SNDRV_PCM_FMTBIT(U16_LE)
#define SNDRV_PCM_FMTBIT_U16_BE _SNDRV_PCM_FMTBIT(U16_BE)
#define SNDRV_PCM_FMTBIT_S24_LE _SNDRV_PCM_FMTBIT(S24_LE)
#define SNDRV_PCM_FMTBIT_S24_BE _SNDRV_PCM_FMTBIT(S24_BE)
#define SNDRV_PCM_FMTBIT_U24_LE _SNDRV_PCM_FMTBIT(U24_LE)
#define SNDRV_PCM_FMTBIT_U24_BE _SNDRV_PCM_FMTBIT(U24_BE)
#define SNDRV_PCM_FMTBIT_S32_LE _SNDRV_PCM_FMTBIT(S32_LE)
#define SNDRV_PCM_FMTBIT_S32_BE _SNDRV_PCM_FMTBIT(S32_BE)
#define SNDRV_PCM_FMTBIT_U32_LE _SNDRV_PCM_FMTBIT(U32_LE)
#define SNDRV_PCM_FMTBIT_U32_BE _SNDRV_PCM_FMTBIT(U32_BE)
#define SNDRV_PCM_FMTBIT_FLOAT_LE _SNDRV_PCM_FMTBIT(FLOAT_LE)
#define SNDRV_PCM_FMTBIT_FLOAT_BE _SNDRV_PCM_FMTBIT(FLOAT_BE)
#define SNDRV_PCM_FMTBIT_FLOAT64_LE _SNDRV_PCM_FMTBIT(FLOAT64_LE)
#define SNDRV_PCM_FMTBIT_FLOAT64_BE _SNDRV_PCM_FMTBIT(FLOAT64_BE)
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE _SNDRV_PCM_FMTBIT(IEC958_SUBFRAME_LE)
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE _SNDRV_PCM_FMTBIT(IEC958_SUBFRAME_BE)
#define SNDRV_PCM_FMTBIT_MU_LAW _SNDRV_PCM_FMTBIT(MU_LAW)
#define SNDRV_PCM_FMTBIT_A_LAW _SNDRV_PCM_FMTBIT(A_LAW)
#define SNDRV_PCM_FMTBIT_IMA_ADPCM _SNDRV_PCM_FMTBIT(IMA_ADPCM)
#define SNDRV_PCM_FMTBIT_MPEG _SNDRV_PCM_FMTBIT(MPEG)
#define SNDRV_PCM_FMTBIT_GSM _SNDRV_PCM_FMTBIT(GSM)
#define SNDRV_PCM_FMTBIT_S20_LE _SNDRV_PCM_FMTBIT(S20_LE)
#define SNDRV_PCM_FMTBIT_U20_LE _SNDRV_PCM_FMTBIT(U20_LE)
#define SNDRV_PCM_FMTBIT_S20_BE _SNDRV_PCM_FMTBIT(S20_BE)
#define SNDRV_PCM_FMTBIT_U20_BE _SNDRV_PCM_FMTBIT(U20_BE)
#define SNDRV_PCM_FMTBIT_SPECIAL _SNDRV_PCM_FMTBIT(SPECIAL)
#define SNDRV_PCM_FMTBIT_S24_3LE _SNDRV_PCM_FMTBIT(S24_3LE)
#define SNDRV_PCM_FMTBIT_U24_3LE _SNDRV_PCM_FMTBIT(U24_3LE)
#define SNDRV_PCM_FMTBIT_S24_3BE _SNDRV_PCM_FMTBIT(S24_3BE)
#define SNDRV_PCM_FMTBIT_U24_3BE _SNDRV_PCM_FMTBIT(U24_3BE)
#define SNDRV_PCM_FMTBIT_S20_3LE _SNDRV_PCM_FMTBIT(S20_3LE)
#define SNDRV_PCM_FMTBIT_U20_3LE _SNDRV_PCM_FMTBIT(U20_3LE)
#define SNDRV_PCM_FMTBIT_S20_3BE _SNDRV_PCM_FMTBIT(S20_3BE)
#define SNDRV_PCM_FMTBIT_U20_3BE _SNDRV_PCM_FMTBIT(U20_3BE)
#define SNDRV_PCM_FMTBIT_S18_3LE _SNDRV_PCM_FMTBIT(S18_3LE)
#define SNDRV_PCM_FMTBIT_U18_3LE _SNDRV_PCM_FMTBIT(U18_3LE)
#define SNDRV_PCM_FMTBIT_S18_3BE _SNDRV_PCM_FMTBIT(S18_3BE)
#define SNDRV_PCM_FMTBIT_U18_3BE _SNDRV_PCM_FMTBIT(U18_3BE)
#define SNDRV_PCM_FMTBIT_G723_24 _SNDRV_PCM_FMTBIT(G723_24)
#define SNDRV_PCM_FMTBIT_G723_24_1B _SNDRV_PCM_FMTBIT(G723_24_1B)
#define SNDRV_PCM_FMTBIT_G723_40 _SNDRV_PCM_FMTBIT(G723_40)
#define SNDRV_PCM_FMTBIT_G723_40_1B _SNDRV_PCM_FMTBIT(G723_40_1B)
#define SNDRV_PCM_FMTBIT_DSD_U8 _SNDRV_PCM_FMTBIT(DSD_U8)
#define SNDRV_PCM_FMTBIT_DSD_U16_LE _SNDRV_PCM_FMTBIT(DSD_U16_LE)
#define SNDRV_PCM_FMTBIT_DSD_U32_LE _SNDRV_PCM_FMTBIT(DSD_U32_LE)
#define SNDRV_PCM_FMTBIT_DSD_U16_BE _SNDRV_PCM_FMTBIT(DSD_U16_BE)
#define SNDRV_PCM_FMTBIT_DSD_U32_BE _SNDRV_PCM_FMTBIT(DSD_U32_BE)
#ifdef SNDRV_LITTLE_ENDIAN
#define SNDRV_PCM_FMTBIT_S16 SNDRV_PCM_FMTBIT_S16_LE
#define SNDRV_PCM_FMTBIT_U16 SNDRV_PCM_FMTBIT_U16_LE
#define SNDRV_PCM_FMTBIT_S24 SNDRV_PCM_FMTBIT_S24_LE
#define SNDRV_PCM_FMTBIT_U24 SNDRV_PCM_FMTBIT_U24_LE
#define SNDRV_PCM_FMTBIT_S32 SNDRV_PCM_FMTBIT_S32_LE
#define SNDRV_PCM_FMTBIT_U32 SNDRV_PCM_FMTBIT_U32_LE
#define SNDRV_PCM_FMTBIT_FLOAT SNDRV_PCM_FMTBIT_FLOAT_LE
#define SNDRV_PCM_FMTBIT_FLOAT64 SNDRV_PCM_FMTBIT_FLOAT64_LE
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
#define SNDRV_PCM_FMTBIT_S20 SNDRV_PCM_FMTBIT_S20_LE
#define SNDRV_PCM_FMTBIT_U20 SNDRV_PCM_FMTBIT_U20_LE
#endif
#ifdef SNDRV_BIG_ENDIAN
#define SNDRV_PCM_FMTBIT_S16 SNDRV_PCM_FMTBIT_S16_BE
#define SNDRV_PCM_FMTBIT_U16 SNDRV_PCM_FMTBIT_U16_BE
#define SNDRV_PCM_FMTBIT_S24 SNDRV_PCM_FMTBIT_S24_BE
#define SNDRV_PCM_FMTBIT_U24 SNDRV_PCM_FMTBIT_U24_BE
#define SNDRV_PCM_FMTBIT_S32 SNDRV_PCM_FMTBIT_S32_BE
#define SNDRV_PCM_FMTBIT_U32 SNDRV_PCM_FMTBIT_U32_BE
#define SNDRV_PCM_FMTBIT_FLOAT SNDRV_PCM_FMTBIT_FLOAT_BE
#define SNDRV_PCM_FMTBIT_FLOAT64 SNDRV_PCM_FMTBIT_FLOAT64_BE
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE
#define SNDRV_PCM_FMTBIT_S20 SNDRV_PCM_FMTBIT_S20_BE
#define SNDRV_PCM_FMTBIT_U20 SNDRV_PCM_FMTBIT_U20_BE
#endif
struct snd_pcm_file {
struct snd_pcm_substream *substream;
int no_compat_mmap;
unsigned int user_pversion; /* supported protocol version */
};
struct snd_pcm_hw_rule;
typedef int (*snd_pcm_hw_rule_func_t)(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule);
struct snd_pcm_hw_rule {
unsigned int cond;
int var;
int deps[4];
snd_pcm_hw_rule_func_t func;
void *private;
};
struct snd_pcm_hw_constraints {
struct snd_mask masks[SNDRV_PCM_HW_PARAM_LAST_MASK -
SNDRV_PCM_HW_PARAM_FIRST_MASK + 1];
struct snd_interval intervals[SNDRV_PCM_HW_PARAM_LAST_INTERVAL -
SNDRV_PCM_HW_PARAM_FIRST_INTERVAL + 1];
unsigned int rules_num;
unsigned int rules_all;
struct snd_pcm_hw_rule *rules;
};
static inline struct snd_mask *constrs_mask(struct snd_pcm_hw_constraints *constrs,
snd_pcm_hw_param_t var)
{
return &constrs->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline struct snd_interval *constrs_interval(struct snd_pcm_hw_constraints *constrs,
snd_pcm_hw_param_t var)
{
return &constrs->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
struct snd_ratnum {
unsigned int num;
unsigned int den_min, den_max, den_step;
};
struct snd_ratden {
unsigned int num_min, num_max, num_step;
unsigned int den;
};
struct snd_pcm_hw_constraint_ratnums {
int nrats;
const struct snd_ratnum *rats;
};
struct snd_pcm_hw_constraint_ratdens {
int nrats;
const struct snd_ratden *rats;
};
struct snd_pcm_hw_constraint_list {
const unsigned int *list;
unsigned int count;
unsigned int mask;
};
struct snd_pcm_hw_constraint_ranges {
unsigned int count;
const struct snd_interval *ranges;
unsigned int mask;
};
/*
* userspace-provided audio timestamp config to kernel,
* structure is for internal use only and filled with dedicated unpack routine
*/
struct snd_pcm_audio_tstamp_config {
/* 5 of max 16 bits used */
u32 type_requested:4;
u32 report_delay:1; /* add total delay to A/D or D/A */
};
static inline void snd_pcm_unpack_audio_tstamp_config(__u32 data,
struct snd_pcm_audio_tstamp_config *config)
{
config->type_requested = data & 0xF;
config->report_delay = (data >> 4) & 1;
}
/*
* kernel-provided audio timestamp report to user-space
* structure is for internal use only and read by dedicated pack routine
*/
struct snd_pcm_audio_tstamp_report {
/* 6 of max 16 bits used for bit-fields */
/* for backwards compatibility */
u32 valid:1;
/* actual type if hardware could not support requested timestamp */
u32 actual_type:4;
/* accuracy represented in ns units */
u32 accuracy_report:1; /* 0 if accuracy unknown, 1 if accuracy field is valid */
u32 accuracy; /* up to 4.29s, will be packed in separate field */
};
static inline void snd_pcm_pack_audio_tstamp_report(__u32 *data, __u32 *accuracy,
const struct snd_pcm_audio_tstamp_report *report)
{
u32 tmp;
tmp = report->accuracy_report;
tmp <<= 4;
tmp |= report->actual_type;
tmp <<= 1;
tmp |= report->valid;
*data &= 0xffff; /* zero-clear MSBs */
*data |= (tmp << 16);
*accuracy = report->accuracy;
}
struct snd_pcm_runtime {
/* -- Status -- */
struct snd_pcm_substream *trigger_master;
struct timespec trigger_tstamp; /* trigger timestamp */
bool trigger_tstamp_latched; /* trigger timestamp latched in low-level driver/hardware */
int overrange;
snd_pcm_uframes_t avail_max;
snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time */
unsigned long hw_ptr_jiffies; /* Time when hw_ptr is updated */
unsigned long hw_ptr_buffer_jiffies; /* buffer time in jiffies */
snd_pcm_sframes_t delay; /* extra delay; typically FIFO size */
u64 hw_ptr_wrap; /* offset for hw_ptr due to boundary wrap-around */
/* -- HW params -- */
snd_pcm_access_t access; /* access mode */
snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
snd_pcm_subformat_t subformat; /* subformat */
unsigned int rate; /* rate in Hz */
unsigned int channels; /* channels */
snd_pcm_uframes_t period_size; /* period size */
unsigned int periods; /* periods */
snd_pcm_uframes_t buffer_size; /* buffer size */
snd_pcm_uframes_t min_align; /* Min alignment for the format */
size_t byte_align;
unsigned int frame_bits;
unsigned int sample_bits;
unsigned int info;
unsigned int rate_num;
unsigned int rate_den;
unsigned int no_period_wakeup: 1;
/* -- SW params -- */
int tstamp_mode; /* mmap timestamp is updated */
unsigned int period_step;
snd_pcm_uframes_t start_threshold;
snd_pcm_uframes_t stop_threshold;
snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
noise is nearest than this */
snd_pcm_uframes_t silence_size; /* Silence filling size */
snd_pcm_uframes_t boundary; /* pointers wrap point */
snd_pcm_uframes_t silence_start; /* starting pointer to silence area */
snd_pcm_uframes_t silence_filled; /* size filled with silence */
union snd_pcm_sync_id sync; /* hardware synchronization ID */
/* -- mmap -- */
struct snd_pcm_mmap_status *status;
struct snd_pcm_mmap_control *control;
/* -- locking / scheduling -- */
snd_pcm_uframes_t twake; /* do transfer (!poll) wakeup if non-zero */
wait_queue_head_t sleep; /* poll sleep */
wait_queue_head_t tsleep; /* transfer sleep */
struct fasync_struct *fasync;
bool stop_operating; /* sync_stop will be called */
/* -- private section -- */
void *private_data;
void (*private_free)(struct snd_pcm_runtime *runtime);
/* -- hardware description -- */
struct snd_pcm_hardware hw;
struct snd_pcm_hw_constraints hw_constraints;
/* -- timer -- */
unsigned int timer_resolution; /* timer resolution */
int tstamp_type; /* timestamp type */
/* -- DMA -- */
unsigned char *dma_area; /* DMA area */
dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
size_t dma_bytes; /* size of DMA area */
struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
unsigned int buffer_changed:1; /* buffer allocation changed; set only in managed mode */
/* -- audio timestamp config -- */
struct snd_pcm_audio_tstamp_config audio_tstamp_config;
struct snd_pcm_audio_tstamp_report audio_tstamp_report;
struct timespec driver_tstamp;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_runtime oss;
#endif
};
struct snd_pcm_group { /* keep linked substreams */
spinlock_t lock;
struct mutex mutex;
struct list_head substreams;
ALSA: pcm: More fine-grained PCM link locking We have currently two global locks, a rwlock and a rwsem, that are used for managing linking the PCM streams. Due to these global locks, once when a linked stream is used, the lock granularity suffers a lot. This patch attempts to eliminate the former global lock for atomic ops. The latter rwsem needs remaining because of the loosy way of the loop calls in snd_pcm_action_nonatomic(), as well as for avoiding the deadlock at linking. However, these are used far rarely, actually only by two actions (prepare and reset), where both are no timing critical ones. So this can be still seen as a good improvement. The basic strategy to eliminate the rwlock is to assure group->lock at adding or removing a stream to / from the group. Since we already takes the group lock whenever taking the all substream locks under the group, this shouldn't be a big problem. The reference to group pointer in snd_pcm_substream object is protected by the stream lock itself. However, there are still pitfalls: a race window at re-locking and the lifecycle of group object. The former is a small race window for dereferencing the substream group object opened while snd_pcm_action() performs re-locking to avoid ABBA deadlocks. This includes the unlink of group during that window, too. And the latter is the kfree performed after all streams are removed from the group while it's still dereferenced. For addressing these corner cases, two new tricks are introduced: - After re-locking, the group assigned to the stream is checked again; if the group is changed, we retry the whole procedure. - Introduce a refcount to snd_pcm_group object, so that it's freed only when it's empty and really no one refers to it. (Some readers might wonder why not RCU for the latter. RCU in this case would cost more than refcounting, unfortunately. We take the group lock sooner or later, hence the performance improvement by RCU would be negligible. Meanwhile, because we need to deal with schedulable context depending on the pcm->nonatomic flag, it'll become dynamic RCU/SRCU switch, and the grace period may become too long.) Along with these changes, there are a significant amount of code refactoring. The complex group re-lock & ref code is factored out to snd_pcm_stream_group_ref() function, for example. Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-01-13 08:50:33 +00:00
refcount_t refs;
};
struct pid;
struct snd_pcm_substream {
struct snd_pcm *pcm;
struct snd_pcm_str *pstr;
void *private_data; /* copied from pcm->private_data */
int number;
char name[32]; /* substream name */
int stream; /* stream (direction) */
struct pm_qos_request latency_pm_qos_req; /* pm_qos request */
size_t buffer_bytes_max; /* limit ring buffer size */
struct snd_dma_buffer dma_buffer;
size_t dma_max;
/* -- hardware operations -- */
const struct snd_pcm_ops *ops;
/* -- runtime information -- */
struct snd_pcm_runtime *runtime;
/* -- timer section -- */
struct snd_timer *timer; /* timer */
unsigned timer_running: 1; /* time is running */
long wait_time; /* time in ms for R/W to wait for avail */
/* -- next substream -- */
struct snd_pcm_substream *next;
/* -- linked substreams -- */
struct list_head link_list; /* linked list member */
struct snd_pcm_group self_group; /* fake group for non linked substream (with substream lock inside) */
struct snd_pcm_group *group; /* pointer to current group */
/* -- assigned files -- */
int ref_count;
atomic_t mmap_count;
unsigned int f_flags;
void (*pcm_release)(struct snd_pcm_substream *);
struct pid *pid;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_substream oss;
#endif
#ifdef CONFIG_SND_VERBOSE_PROCFS
struct snd_info_entry *proc_root;
#endif /* CONFIG_SND_VERBOSE_PROCFS */
/* misc flags */
unsigned int hw_opened: 1;
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
unsigned int managed_buffer_alloc:1;
};
#define SUBSTREAM_BUSY(substream) ((substream)->ref_count > 0)
struct snd_pcm_str {
int stream; /* stream (direction) */
struct snd_pcm *pcm;
/* -- substreams -- */
unsigned int substream_count;
unsigned int substream_opened;
struct snd_pcm_substream *substream;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_stream oss;
#endif
#ifdef CONFIG_SND_VERBOSE_PROCFS
struct snd_info_entry *proc_root;
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
unsigned int xrun_debug; /* 0 = disabled, 1 = verbose, 2 = stacktrace */
#endif
#endif
struct snd_kcontrol *chmap_kctl; /* channel-mapping controls */
struct device dev;
};
struct snd_pcm {
struct snd_card *card;
struct list_head list;
int device; /* device number */
unsigned int info_flags;
unsigned short dev_class;
unsigned short dev_subclass;
char id[64];
char name[80];
struct snd_pcm_str streams[2];
struct mutex open_mutex;
wait_queue_head_t open_wait;
void *private_data;
void (*private_free) (struct snd_pcm *pcm);
bool internal; /* pcm is for internal use only */
bool nonatomic; /* whole PCM operations are in non-atomic context */
bool no_device_suspend; /* don't invoke device PM suspend */
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
struct snd_pcm_oss oss;
#endif
};
/*
* Registering
*/
extern const struct file_operations snd_pcm_f_ops[2];
int snd_pcm_new(struct snd_card *card, const char *id, int device,
int playback_count, int capture_count,
struct snd_pcm **rpcm);
int snd_pcm_new_internal(struct snd_card *card, const char *id, int device,
int playback_count, int capture_count,
struct snd_pcm **rpcm);
int snd_pcm_new_stream(struct snd_pcm *pcm, int stream, int substream_count);
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
struct snd_pcm_notify {
int (*n_register) (struct snd_pcm * pcm);
int (*n_disconnect) (struct snd_pcm * pcm);
int (*n_unregister) (struct snd_pcm * pcm);
struct list_head list;
};
int snd_pcm_notify(struct snd_pcm_notify *notify, int nfree);
#endif
/*
* Native I/O
*/
int snd_pcm_info(struct snd_pcm_substream *substream, struct snd_pcm_info *info);
int snd_pcm_info_user(struct snd_pcm_substream *substream,
struct snd_pcm_info __user *info);
int snd_pcm_status(struct snd_pcm_substream *substream,
struct snd_pcm_status *status);
int snd_pcm_start(struct snd_pcm_substream *substream);
int snd_pcm_stop(struct snd_pcm_substream *substream, snd_pcm_state_t status);
int snd_pcm_drain_done(struct snd_pcm_substream *substream);
int snd_pcm_stop_xrun(struct snd_pcm_substream *substream);
#ifdef CONFIG_PM
int snd_pcm_suspend_all(struct snd_pcm *pcm);
#else
static inline int snd_pcm_suspend_all(struct snd_pcm *pcm)
{
return 0;
}
#endif
int snd_pcm_kernel_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg);
int snd_pcm_open_substream(struct snd_pcm *pcm, int stream, struct file *file,
struct snd_pcm_substream **rsubstream);
void snd_pcm_release_substream(struct snd_pcm_substream *substream);
int snd_pcm_attach_substream(struct snd_pcm *pcm, int stream, struct file *file,
struct snd_pcm_substream **rsubstream);
void snd_pcm_detach_substream(struct snd_pcm_substream *substream);
int snd_pcm_mmap_data(struct snd_pcm_substream *substream, struct file *file, struct vm_area_struct *area);
#ifdef CONFIG_SND_DEBUG
void snd_pcm_debug_name(struct snd_pcm_substream *substream,
char *name, size_t len);
#else
static inline void
snd_pcm_debug_name(struct snd_pcm_substream *substream, char *buf, size_t size)
{
*buf = 0;
}
#endif
/*
* PCM library
*/
/**
* snd_pcm_stream_linked - Check whether the substream is linked with others
* @substream: substream to check
*
* Returns true if the given substream is being linked with others.
*/
static inline int snd_pcm_stream_linked(struct snd_pcm_substream *substream)
{
return substream->group != &substream->self_group;
}
void snd_pcm_stream_lock(struct snd_pcm_substream *substream);
void snd_pcm_stream_unlock(struct snd_pcm_substream *substream);
void snd_pcm_stream_lock_irq(struct snd_pcm_substream *substream);
void snd_pcm_stream_unlock_irq(struct snd_pcm_substream *substream);
unsigned long _snd_pcm_stream_lock_irqsave(struct snd_pcm_substream *substream);
/**
* snd_pcm_stream_lock_irqsave - Lock the PCM stream
* @substream: PCM substream
* @flags: irq flags
*
* This locks the PCM stream like snd_pcm_stream_lock() but with the local
* IRQ (only when nonatomic is false). In nonatomic case, this is identical
* as snd_pcm_stream_lock().
*/
#define snd_pcm_stream_lock_irqsave(substream, flags) \
do { \
typecheck(unsigned long, flags); \
flags = _snd_pcm_stream_lock_irqsave(substream); \
} while (0)
void snd_pcm_stream_unlock_irqrestore(struct snd_pcm_substream *substream,
unsigned long flags);
/**
* snd_pcm_group_for_each_entry - iterate over the linked substreams
* @s: the iterator
* @substream: the substream
*
* Iterate over the all linked substreams to the given @substream.
* When @substream isn't linked with any others, this gives returns @substream
* itself once.
*/
#define snd_pcm_group_for_each_entry(s, substream) \
list_for_each_entry(s, &substream->group->substreams, link_list)
/**
* snd_pcm_running - Check whether the substream is in a running state
* @substream: substream to check
*
* Returns true if the given substream is in the state RUNNING, or in the
* state DRAINING for playback.
*/
static inline int snd_pcm_running(struct snd_pcm_substream *substream)
{
return (substream->runtime->status->state == SNDRV_PCM_STATE_RUNNING ||
(substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING &&
substream->stream == SNDRV_PCM_STREAM_PLAYBACK));
}
/**
* bytes_to_samples - Unit conversion of the size from bytes to samples
* @runtime: PCM runtime instance
* @size: size in bytes
*/
static inline ssize_t bytes_to_samples(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * 8 / runtime->sample_bits;
}
/**
* bytes_to_frames - Unit conversion of the size from bytes to frames
* @runtime: PCM runtime instance
* @size: size in bytes
*/
static inline snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * 8 / runtime->frame_bits;
}
/**
* samples_to_bytes - Unit conversion of the size from samples to bytes
* @runtime: PCM runtime instance
* @size: size in samples
*/
static inline ssize_t samples_to_bytes(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * runtime->sample_bits / 8;
}
/**
* frames_to_bytes - Unit conversion of the size from frames to bytes
* @runtime: PCM runtime instance
* @size: size in frames
*/
static inline ssize_t frames_to_bytes(struct snd_pcm_runtime *runtime, snd_pcm_sframes_t size)
{
return size * runtime->frame_bits / 8;
}
/**
* frame_aligned - Check whether the byte size is aligned to frames
* @runtime: PCM runtime instance
* @bytes: size in bytes
*/
static inline int frame_aligned(struct snd_pcm_runtime *runtime, ssize_t bytes)
{
return bytes % runtime->byte_align == 0;
}
/**
* snd_pcm_lib_buffer_bytes - Get the buffer size of the current PCM in bytes
* @substream: PCM substream
*/
static inline size_t snd_pcm_lib_buffer_bytes(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return frames_to_bytes(runtime, runtime->buffer_size);
}
/**
* snd_pcm_lib_period_bytes - Get the period size of the current PCM in bytes
* @substream: PCM substream
*/
static inline size_t snd_pcm_lib_period_bytes(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return frames_to_bytes(runtime, runtime->period_size);
}
/**
* snd_pcm_playback_avail - Get the available (writable) space for playback
* @runtime: PCM runtime instance
*
* Result is between 0 ... (boundary - 1)
*/
static inline snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime *runtime)
{
snd_pcm_sframes_t avail = runtime->status->hw_ptr + runtime->buffer_size - runtime->control->appl_ptr;
if (avail < 0)
avail += runtime->boundary;
else if ((snd_pcm_uframes_t) avail >= runtime->boundary)
avail -= runtime->boundary;
return avail;
}
/**
* snd_pcm_capture_avail - Get the available (readable) space for capture
* @runtime: PCM runtime instance
*
* Result is between 0 ... (boundary - 1)
*/
static inline snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime *runtime)
{
snd_pcm_sframes_t avail = runtime->status->hw_ptr - runtime->control->appl_ptr;
if (avail < 0)
avail += runtime->boundary;
return avail;
}
/**
* snd_pcm_playback_hw_avail - Get the queued space for playback
* @runtime: PCM runtime instance
*/
static inline snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime *runtime)
{
return runtime->buffer_size - snd_pcm_playback_avail(runtime);
}
/**
* snd_pcm_capture_hw_avail - Get the free space for capture
* @runtime: PCM runtime instance
*/
static inline snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime *runtime)
{
return runtime->buffer_size - snd_pcm_capture_avail(runtime);
}
/**
* snd_pcm_playback_ready - check whether the playback buffer is available
* @substream: the pcm substream instance
*
* Checks whether enough free space is available on the playback buffer.
*
* Return: Non-zero if available, or zero if not.
*/
static inline int snd_pcm_playback_ready(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_playback_avail(runtime) >= runtime->control->avail_min;
}
/**
* snd_pcm_capture_ready - check whether the capture buffer is available
* @substream: the pcm substream instance
*
* Checks whether enough capture data is available on the capture buffer.
*
* Return: Non-zero if available, or zero if not.
*/
static inline int snd_pcm_capture_ready(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_capture_avail(runtime) >= runtime->control->avail_min;
}
/**
* snd_pcm_playback_data - check whether any data exists on the playback buffer
* @substream: the pcm substream instance
*
* Checks whether any data exists on the playback buffer.
*
* Return: Non-zero if any data exists, or zero if not. If stop_threshold
* is bigger or equal to boundary, then this function returns always non-zero.
*/
static inline int snd_pcm_playback_data(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (runtime->stop_threshold >= runtime->boundary)
return 1;
return snd_pcm_playback_avail(runtime) < runtime->buffer_size;
}
/**
* snd_pcm_playback_empty - check whether the playback buffer is empty
* @substream: the pcm substream instance
*
* Checks whether the playback buffer is empty.
*
* Return: Non-zero if empty, or zero if not.
*/
static inline int snd_pcm_playback_empty(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_playback_avail(runtime) >= runtime->buffer_size;
}
/**
* snd_pcm_capture_empty - check whether the capture buffer is empty
* @substream: the pcm substream instance
*
* Checks whether the capture buffer is empty.
*
* Return: Non-zero if empty, or zero if not.
*/
static inline int snd_pcm_capture_empty(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_capture_avail(runtime) == 0;
}
/**
* snd_pcm_trigger_done - Mark the master substream
* @substream: the pcm substream instance
* @master: the linked master substream
*
* When multiple substreams of the same card are linked and the hardware
* supports the single-shot operation, the driver calls this in the loop
* in snd_pcm_group_for_each_entry() for marking the substream as "done".
* Then most of trigger operations are performed only to the given master
* substream.
*
* The trigger_master mark is cleared at timestamp updates at the end
* of trigger operations.
*/
static inline void snd_pcm_trigger_done(struct snd_pcm_substream *substream,
struct snd_pcm_substream *master)
{
substream->runtime->trigger_master = master;
}
static inline int hw_is_mask(int var)
{
return var >= SNDRV_PCM_HW_PARAM_FIRST_MASK &&
var <= SNDRV_PCM_HW_PARAM_LAST_MASK;
}
static inline int hw_is_interval(int var)
{
return var >= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL &&
var <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL;
}
static inline struct snd_mask *hw_param_mask(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline struct snd_interval *hw_param_interval(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
static inline const struct snd_mask *hw_param_mask_c(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline const struct snd_interval *hw_param_interval_c(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
/**
* params_channels - Get the number of channels from the hw params
* @p: hw params
*/
static inline unsigned int params_channels(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_CHANNELS)->min;
}
/**
* params_rate - Get the sample rate from the hw params
* @p: hw params
*/
static inline unsigned int params_rate(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_RATE)->min;
}
/**
* params_period_size - Get the period size (in frames) from the hw params
* @p: hw params
*/
static inline unsigned int params_period_size(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_PERIOD_SIZE)->min;
}
/**
* params_periods - Get the number of periods from the hw params
* @p: hw params
*/
static inline unsigned int params_periods(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_PERIODS)->min;
}
/**
* params_buffer_size - Get the buffer size (in frames) from the hw params
* @p: hw params
*/
static inline unsigned int params_buffer_size(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_BUFFER_SIZE)->min;
}
/**
* params_buffer_bytes - Get the buffer size (in bytes) from the hw params
* @p: hw params
*/
static inline unsigned int params_buffer_bytes(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_BUFFER_BYTES)->min;
}
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v);
int snd_interval_list(struct snd_interval *i, unsigned int count,
const unsigned int *list, unsigned int mask);
int snd_interval_ranges(struct snd_interval *i, unsigned int count,
const struct snd_interval *list, unsigned int mask);
int snd_interval_ratnum(struct snd_interval *i,
unsigned int rats_count, const struct snd_ratnum *rats,
unsigned int *nump, unsigned int *denp);
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params);
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, snd_pcm_hw_param_t var);
int snd_pcm_hw_refine(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params);
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int64_t mask);
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int min, unsigned int max);
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var);
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_list *l);
int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ranges *r);
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratnums *r);
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratdens *r);
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
unsigned int cond,
unsigned int width,
unsigned int msbits);
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
unsigned long step);
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var);
int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
unsigned int base_rate);
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime,
unsigned int cond,
int var,
snd_pcm_hw_rule_func_t func, void *private,
int dep, ...);
/**
* snd_pcm_hw_constraint_single() - Constrain parameter to a single value
* @runtime: PCM runtime instance
* @var: The hw_params variable to constrain
* @val: The value to constrain to
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
static inline int snd_pcm_hw_constraint_single(
struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int val)
{
return snd_pcm_hw_constraint_minmax(runtime, var, val, val);
}
int snd_pcm_format_signed(snd_pcm_format_t format);
int snd_pcm_format_unsigned(snd_pcm_format_t format);
int snd_pcm_format_linear(snd_pcm_format_t format);
int snd_pcm_format_little_endian(snd_pcm_format_t format);
int snd_pcm_format_big_endian(snd_pcm_format_t format);
#if 0 /* just for kernel-doc */
/**
* snd_pcm_format_cpu_endian - Check the PCM format is CPU-endian
* @format: the format to check
*
* Return: 1 if the given PCM format is CPU-endian, 0 if
* opposite, or a negative error code if endian not specified.
*/
int snd_pcm_format_cpu_endian(snd_pcm_format_t format);
#endif /* DocBook */
#ifdef SNDRV_LITTLE_ENDIAN
#define snd_pcm_format_cpu_endian(format) snd_pcm_format_little_endian(format)
#else
#define snd_pcm_format_cpu_endian(format) snd_pcm_format_big_endian(format)
#endif
int snd_pcm_format_width(snd_pcm_format_t format); /* in bits */
int snd_pcm_format_physical_width(snd_pcm_format_t format); /* in bits */
ssize_t snd_pcm_format_size(snd_pcm_format_t format, size_t samples);
const unsigned char *snd_pcm_format_silence_64(snd_pcm_format_t format);
int snd_pcm_format_set_silence(snd_pcm_format_t format, void *buf, unsigned int frames);
void snd_pcm_set_ops(struct snd_pcm * pcm, int direction,
const struct snd_pcm_ops *ops);
void snd_pcm_set_sync(struct snd_pcm_substream *substream);
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg);
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream);
snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
void *buf, bool interleaved,
snd_pcm_uframes_t frames, bool in_kernel);
static inline snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream *substream,
const void __user *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void __force *)buf, true, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream *substream,
void __user *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void __force *)buf, true, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream *substream,
void __user **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)bufs, false, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream *substream,
void __user **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)bufs, false, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_write(struct snd_pcm_substream *substream,
const void *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)buf, true, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_read(struct snd_pcm_substream *substream,
void *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, buf, true, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_writev(struct snd_pcm_substream *substream,
void **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, bufs, false, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_readv(struct snd_pcm_substream *substream,
void **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, bufs, false, frames, true);
}
int snd_pcm_limit_hw_rates(struct snd_pcm_runtime *runtime);
unsigned int snd_pcm_rate_to_rate_bit(unsigned int rate);
unsigned int snd_pcm_rate_bit_to_rate(unsigned int rate_bit);
unsigned int snd_pcm_rate_mask_intersect(unsigned int rates_a,
unsigned int rates_b);
unsigned int snd_pcm_rate_range_to_bits(unsigned int rate_min,
unsigned int rate_max);
/**
* snd_pcm_set_runtime_buffer - Set the PCM runtime buffer
* @substream: PCM substream to set
* @bufp: the buffer information, NULL to clear
*
* Copy the buffer information to runtime->dma_buffer when @bufp is non-NULL.
* Otherwise it clears the current buffer information.
*/
static inline void snd_pcm_set_runtime_buffer(struct snd_pcm_substream *substream,
struct snd_dma_buffer *bufp)
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (bufp) {
runtime->dma_buffer_p = bufp;
runtime->dma_area = bufp->area;
runtime->dma_addr = bufp->addr;
runtime->dma_bytes = bufp->bytes;
} else {
runtime->dma_buffer_p = NULL;
runtime->dma_area = NULL;
runtime->dma_addr = 0;
runtime->dma_bytes = 0;
}
}
/**
* snd_pcm_gettime - Fill the timespec depending on the timestamp mode
* @runtime: PCM runtime instance
* @tv: timespec to fill
*/
static inline void snd_pcm_gettime(struct snd_pcm_runtime *runtime,
struct timespec *tv)
{
switch (runtime->tstamp_type) {
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
ktime_get_ts(tv);
break;
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
getrawmonotonic(tv);
break;
default:
getnstimeofday(tv);
break;
}
}
/*
* Memory
*/
void snd_pcm_lib_preallocate_free(struct snd_pcm_substream *substream);
void snd_pcm_lib_preallocate_free_for_all(struct snd_pcm *pcm);
void snd_pcm_lib_preallocate_pages(struct snd_pcm_substream *substream,
int type, struct device *data,
size_t size, size_t max);
void snd_pcm_lib_preallocate_pages_for_all(struct snd_pcm *pcm,
int type, void *data,
size_t size, size_t max);
int snd_pcm_lib_malloc_pages(struct snd_pcm_substream *substream, size_t size);
int snd_pcm_lib_free_pages(struct snd_pcm_substream *substream);
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
void snd_pcm_set_managed_buffer(struct snd_pcm_substream *substream, int type,
struct device *data, size_t size, size_t max);
void snd_pcm_set_managed_buffer_all(struct snd_pcm *pcm, int type,
struct device *data,
size_t size, size_t max);
int _snd_pcm_lib_alloc_vmalloc_buffer(struct snd_pcm_substream *substream,
size_t size, gfp_t gfp_flags);
int snd_pcm_lib_free_vmalloc_buffer(struct snd_pcm_substream *substream);
struct page *snd_pcm_lib_get_vmalloc_page(struct snd_pcm_substream *substream,
unsigned long offset);
/**
* snd_pcm_lib_alloc_vmalloc_buffer - allocate virtual DMA buffer
* @substream: the substream to allocate the buffer to
* @size: the requested buffer size, in bytes
*
* Allocates the PCM substream buffer using vmalloc(), i.e., the memory is
* contiguous in kernel virtual space, but not in physical memory. Use this
* if the buffer is accessed by kernel code but not by device DMA.
*
* Return: 1 if the buffer was changed, 0 if not changed, or a negative error
* code.
*/
static inline int snd_pcm_lib_alloc_vmalloc_buffer
(struct snd_pcm_substream *substream, size_t size)
{
return _snd_pcm_lib_alloc_vmalloc_buffer(substream, size,
GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
/**
* snd_pcm_lib_alloc_vmalloc_32_buffer - allocate 32-bit-addressable buffer
* @substream: the substream to allocate the buffer to
* @size: the requested buffer size, in bytes
*
* This function works like snd_pcm_lib_alloc_vmalloc_buffer(), but uses
* vmalloc_32(), i.e., the pages are allocated from 32-bit-addressable memory.
*
* Return: 1 if the buffer was changed, 0 if not changed, or a negative error
* code.
*/
static inline int snd_pcm_lib_alloc_vmalloc_32_buffer
(struct snd_pcm_substream *substream, size_t size)
{
return _snd_pcm_lib_alloc_vmalloc_buffer(substream, size,
GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
}
#define snd_pcm_get_dma_buf(substream) ((substream)->runtime->dma_buffer_p)
#ifdef CONFIG_SND_DMA_SGBUF
/*
* SG-buffer handling
*/
#define snd_pcm_substream_sgbuf(substream) \
snd_pcm_get_dma_buf(substream)->private_data
#endif /* SND_DMA_SGBUF */
/**
* snd_pcm_sgbuf_get_addr - Get the DMA address at the corresponding offset
* @substream: PCM substream
* @ofs: byte offset
*/
static inline dma_addr_t
snd_pcm_sgbuf_get_addr(struct snd_pcm_substream *substream, unsigned int ofs)
{
return snd_sgbuf_get_addr(snd_pcm_get_dma_buf(substream), ofs);
}
/**
* snd_pcm_sgbuf_get_ptr - Get the virtual address at the corresponding offset
* @substream: PCM substream
* @ofs: byte offset
*/
static inline void *
snd_pcm_sgbuf_get_ptr(struct snd_pcm_substream *substream, unsigned int ofs)
{
return snd_sgbuf_get_ptr(snd_pcm_get_dma_buf(substream), ofs);
}
/**
* snd_pcm_sgbuf_chunk_size - Compute the max size that fits within the contig.
* page from the given size
* @substream: PCM substream
* @ofs: byte offset
* @size: byte size to examine
*/
static inline unsigned int
snd_pcm_sgbuf_get_chunk_size(struct snd_pcm_substream *substream,
unsigned int ofs, unsigned int size)
{
return snd_sgbuf_get_chunk_size(snd_pcm_get_dma_buf(substream), ofs, size);
}
/**
* snd_pcm_mmap_data_open - increase the mmap counter
* @area: VMA
*
* PCM mmap callback should handle this counter properly
*/
static inline void snd_pcm_mmap_data_open(struct vm_area_struct *area)
{
struct snd_pcm_substream *substream = (struct snd_pcm_substream *)area->vm_private_data;
atomic_inc(&substream->mmap_count);
}
/**
* snd_pcm_mmap_data_close - decrease the mmap counter
* @area: VMA
*
* PCM mmap callback should handle this counter properly
*/
static inline void snd_pcm_mmap_data_close(struct vm_area_struct *area)
{
struct snd_pcm_substream *substream = (struct snd_pcm_substream *)area->vm_private_data;
atomic_dec(&substream->mmap_count);
}
int snd_pcm_lib_default_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *area);
/* mmap for io-memory area */
#if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_ALPHA)
#define SNDRV_PCM_INFO_MMAP_IOMEM SNDRV_PCM_INFO_MMAP
int snd_pcm_lib_mmap_iomem(struct snd_pcm_substream *substream, struct vm_area_struct *area);
#else
#define SNDRV_PCM_INFO_MMAP_IOMEM 0
#define snd_pcm_lib_mmap_iomem NULL
#endif
/**
* snd_pcm_limit_isa_dma_size - Get the max size fitting with ISA DMA transfer
* @dma: DMA number
* @max: pointer to store the max size
*/
static inline void snd_pcm_limit_isa_dma_size(int dma, size_t *max)
{
*max = dma < 4 ? 64 * 1024 : 128 * 1024;
}
/*
* Misc
*/
#define SNDRV_PCM_DEFAULT_CON_SPDIF (IEC958_AES0_CON_EMPHASIS_NONE|\
(IEC958_AES1_CON_ORIGINAL<<8)|\
(IEC958_AES1_CON_PCM_CODER<<8)|\
(IEC958_AES3_CON_FS_48000<<24))
const char *snd_pcm_format_name(snd_pcm_format_t format);
/**
* snd_pcm_stream_str - Get a string naming the direction of a stream
* @substream: the pcm substream instance
*
* Return: A string naming the direction of the stream.
*/
static inline const char *snd_pcm_stream_str(struct snd_pcm_substream *substream)
{
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
return "Playback";
else
return "Capture";
}
/*
* PCM channel-mapping control API
*/
/* array element of channel maps */
struct snd_pcm_chmap_elem {
unsigned char channels;
unsigned char map[15];
};
/* channel map information; retrieved via snd_kcontrol_chip() */
struct snd_pcm_chmap {
struct snd_pcm *pcm; /* assigned PCM instance */
int stream; /* PLAYBACK or CAPTURE */
struct snd_kcontrol *kctl;
const struct snd_pcm_chmap_elem *chmap;
unsigned int max_channels;
unsigned int channel_mask; /* optional: active channels bitmask */
void *private_data; /* optional: private data pointer */
};
/**
* snd_pcm_chmap_substream - get the PCM substream assigned to the given chmap info
* @info: chmap information
* @idx: the substream number index
*/
static inline struct snd_pcm_substream *
snd_pcm_chmap_substream(struct snd_pcm_chmap *info, unsigned int idx)
{
struct snd_pcm_substream *s;
for (s = info->pcm->streams[info->stream].substream; s; s = s->next)
if (s->number == idx)
return s;
return NULL;
}
/* ALSA-standard channel maps (RL/RR prior to C/LFE) */
extern const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[];
/* Other world's standard channel maps (C/LFE prior to RL/RR) */
extern const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[];
/* bit masks to be passed to snd_pcm_chmap.channel_mask field */
#define SND_PCM_CHMAP_MASK_24 ((1U << 2) | (1U << 4))
#define SND_PCM_CHMAP_MASK_246 (SND_PCM_CHMAP_MASK_24 | (1U << 6))
#define SND_PCM_CHMAP_MASK_2468 (SND_PCM_CHMAP_MASK_246 | (1U << 8))
int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
const struct snd_pcm_chmap_elem *chmap,
int max_channels,
unsigned long private_value,
struct snd_pcm_chmap **info_ret);
/**
* pcm_format_to_bits - Strong-typed conversion of pcm_format to bitwise
* @pcm_format: PCM format
*/
static inline u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)
{
return 1ULL << (__force int) pcm_format;
}
/* printk helpers */
#define pcm_err(pcm, fmt, args...) \
dev_err((pcm)->card->dev, fmt, ##args)
#define pcm_warn(pcm, fmt, args...) \
dev_warn((pcm)->card->dev, fmt, ##args)
#define pcm_dbg(pcm, fmt, args...) \
dev_dbg((pcm)->card->dev, fmt, ##args)
#endif /* __SOUND_PCM_H */