linux-stable/fs/ntfs/super.c

2772 lines
86 KiB
C
Raw Normal View History

/*
* super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
*
* Copyright (c) 2001-2004 Anton Altaparmakov
* Copyright (c) 2001,2002 Richard Russon
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h> /* For bdev_hardsect_size(). */
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/moduleparam.h>
#include <linux/smp_lock.h>
#include "sysctl.h"
#include "logfile.h"
#include "quota.h"
#include "dir.h"
#include "debug.h"
#include "index.h"
#include "aops.h"
#include "malloc.h"
#include "ntfs.h"
/* Number of mounted file systems which have compression enabled. */
static unsigned long ntfs_nr_compression_users;
/* A global default upcase table and a corresponding reference count. */
static ntfschar *default_upcase = NULL;
static unsigned long ntfs_nr_upcase_users = 0;
/* Error constants/strings used in inode.c::ntfs_show_options(). */
typedef enum {
/* One of these must be present, default is ON_ERRORS_CONTINUE. */
ON_ERRORS_PANIC = 0x01,
ON_ERRORS_REMOUNT_RO = 0x02,
ON_ERRORS_CONTINUE = 0x04,
/* Optional, can be combined with any of the above. */
ON_ERRORS_RECOVER = 0x10,
} ON_ERRORS_ACTIONS;
const option_t on_errors_arr[] = {
{ ON_ERRORS_PANIC, "panic" },
{ ON_ERRORS_REMOUNT_RO, "remount-ro", },
{ ON_ERRORS_CONTINUE, "continue", },
{ ON_ERRORS_RECOVER, "recover" },
{ 0, NULL }
};
/**
* simple_getbool -
*
* Copied from old ntfs driver (which copied from vfat driver).
*/
static int simple_getbool(char *s, BOOL *setval)
{
if (s) {
if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
*setval = TRUE;
else if (!strcmp(s, "0") || !strcmp(s, "no") ||
!strcmp(s, "false"))
*setval = FALSE;
else
return 0;
} else
*setval = TRUE;
return 1;
}
/**
* parse_options - parse the (re)mount options
* @vol: ntfs volume
* @opt: string containing the (re)mount options
*
* Parse the recognized options in @opt for the ntfs volume described by @vol.
*/
static BOOL parse_options(ntfs_volume *vol, char *opt)
{
char *p, *v, *ov;
static char *utf8 = "utf8";
int errors = 0, sloppy = 0;
uid_t uid = (uid_t)-1;
gid_t gid = (gid_t)-1;
mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
int mft_zone_multiplier = -1, on_errors = -1;
int show_sys_files = -1, case_sensitive = -1;
struct nls_table *nls_map = NULL, *old_nls;
/* I am lazy... (-8 */
#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
variable = default_value; \
else { \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
} \
}
#define NTFS_GETOPT(option, variable) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
goto needs_arg; \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
}
#define NTFS_GETOPT_BOOL(option, variable) \
if (!strcmp(p, option)) { \
BOOL val; \
if (!simple_getbool(v, &val)) \
goto needs_bool; \
variable = val; \
}
#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
if (!strcmp(p, option)) { \
int _i; \
if (!v || !*v) \
goto needs_arg; \
ov = v; \
if (variable == -1) \
variable = 0; \
for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
if (!strcmp(opt_array[_i].str, v)) { \
variable |= opt_array[_i].val; \
break; \
} \
if (!opt_array[_i].str || !*opt_array[_i].str) \
goto needs_val; \
}
if (!opt || !*opt)
goto no_mount_options;
ntfs_debug("Entering with mount options string: %s", opt);
while ((p = strsep(&opt, ","))) {
if ((v = strchr(p, '=')))
*v++ = 0;
NTFS_GETOPT("uid", uid)
else NTFS_GETOPT("gid", gid)
else NTFS_GETOPT("umask", fmask = dmask)
else NTFS_GETOPT("fmask", fmask)
else NTFS_GETOPT("dmask", dmask)
else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE)
else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
on_errors_arr)
else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
p);
else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
if (!strcmp(p, "iocharset"))
ntfs_warning(vol->sb, "Option iocharset is "
"deprecated. Please use "
"option nls=<charsetname> in "
"the future.");
if (!v || !*v)
goto needs_arg;
use_utf8:
old_nls = nls_map;
nls_map = load_nls(v);
if (!nls_map) {
if (!old_nls) {
ntfs_error(vol->sb, "NLS character set "
"%s not found.", v);
return FALSE;
}
ntfs_error(vol->sb, "NLS character set %s not "
"found. Using previous one %s.",
v, old_nls->charset);
nls_map = old_nls;
} else /* nls_map */ {
if (old_nls)
unload_nls(old_nls);
}
} else if (!strcmp(p, "utf8")) {
BOOL val = FALSE;
ntfs_warning(vol->sb, "Option utf8 is no longer "
"supported, using option nls=utf8. Please "
"use option nls=utf8 in the future and "
"make sure utf8 is compiled either as a "
"module or into the kernel.");
if (!v || !*v)
val = TRUE;
else if (!simple_getbool(v, &val))
goto needs_bool;
if (val) {
v = utf8;
goto use_utf8;
}
} else {
ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
if (errors < INT_MAX)
errors++;
}
#undef NTFS_GETOPT_OPTIONS_ARRAY
#undef NTFS_GETOPT_BOOL
#undef NTFS_GETOPT
#undef NTFS_GETOPT_WITH_DEFAULT
}
no_mount_options:
if (errors && !sloppy)
return FALSE;
if (sloppy)
ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
"unrecognized mount option(s) and continuing.");
/* Keep this first! */
if (on_errors != -1) {
if (!on_errors) {
ntfs_error(vol->sb, "Invalid errors option argument "
"or bug in options parser.");
return FALSE;
}
}
if (nls_map) {
if (vol->nls_map && vol->nls_map != nls_map) {
ntfs_error(vol->sb, "Cannot change NLS character set "
"on remount.");
return FALSE;
} /* else (!vol->nls_map) */
ntfs_debug("Using NLS character set %s.", nls_map->charset);
vol->nls_map = nls_map;
} else /* (!nls_map) */ {
if (!vol->nls_map) {
vol->nls_map = load_nls_default();
if (!vol->nls_map) {
ntfs_error(vol->sb, "Failed to load default "
"NLS character set.");
return FALSE;
}
ntfs_debug("Using default NLS character set (%s).",
vol->nls_map->charset);
}
}
if (mft_zone_multiplier != -1) {
if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
mft_zone_multiplier) {
ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
"on remount.");
return FALSE;
}
if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
"Using default value, i.e. 1.");
mft_zone_multiplier = 1;
}
vol->mft_zone_multiplier = mft_zone_multiplier;
}
if (!vol->mft_zone_multiplier)
vol->mft_zone_multiplier = 1;
if (on_errors != -1)
vol->on_errors = on_errors;
if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
vol->on_errors |= ON_ERRORS_CONTINUE;
if (uid != (uid_t)-1)
vol->uid = uid;
if (gid != (gid_t)-1)
vol->gid = gid;
if (fmask != (mode_t)-1)
vol->fmask = fmask;
if (dmask != (mode_t)-1)
vol->dmask = dmask;
if (show_sys_files != -1) {
if (show_sys_files)
NVolSetShowSystemFiles(vol);
else
NVolClearShowSystemFiles(vol);
}
if (case_sensitive != -1) {
if (case_sensitive)
NVolSetCaseSensitive(vol);
else
NVolClearCaseSensitive(vol);
}
return TRUE;
needs_arg:
ntfs_error(vol->sb, "The %s option requires an argument.", p);
return FALSE;
needs_bool:
ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
return FALSE;
needs_val:
ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
return FALSE;
}
#ifdef NTFS_RW
/**
* ntfs_write_volume_flags - write new flags to the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: new flags value for the volume information flags
*
* Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
* instead (see below).
*
* Replace the volume information flags on the volume @vol with the value
* supplied in @flags. Note, this overwrites the volume information flags, so
* make sure to combine the flags you want to modify with the old flags and use
* the result when calling ntfs_write_volume_flags().
*
* Return 0 on success and -errno on error.
*/
static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
{
ntfs_inode *ni = NTFS_I(vol->vol_ino);
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
int err;
ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
if (vol->vol_flags == flags)
goto done;
BUG_ON(!ni);
m = map_mft_record(ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(ni, m);
if (!ctx) {
err = -ENOMEM;
goto put_unm_err_out;
}
err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx);
if (err)
goto put_unm_err_out;
vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
vol->vol_flags = vi->flags = flags;
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
done:
ntfs_debug("Done.");
return 0;
put_unm_err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
err_out:
ntfs_error(vol->sb, "Failed with error code %i.", -err);
return err;
}
/**
* ntfs_set_volume_flags - set bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to set on the volume
*
* Set the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
}
/**
* ntfs_clear_volume_flags - clear bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to clear on the volume
*
* Clear the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
return ntfs_write_volume_flags(vol, flags);
}
#endif /* NTFS_RW */
/**
* ntfs_remount - change the mount options of a mounted ntfs filesystem
* @sb: superblock of mounted ntfs filesystem
* @flags: remount flags
* @opt: remount options string
*
* Change the mount options of an already mounted ntfs filesystem.
*
* NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
* ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
* @sb->s_flags are not changed.
*/
static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering with remount options string: %s", opt);
#ifndef NTFS_RW
/* For read-only compiled driver, enforce all read-only flags. */
*flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
#else /* NTFS_RW */
/*
* For the read-write compiled driver, if we are remounting read-write,
* make sure there are no volume errors and that no unsupported volume
* flags are set. Also, empty the logfile journal as it would become
* stale as soon as something is written to the volume and mark the
* volume dirty so that chkdsk is run if the volume is not umounted
* cleanly. Finally, mark the quotas out of date so Windows rescans
* the volume on boot and updates them.
*
* When remounting read-only, mark the volume clean if no volume errors
* have occured.
*/
if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
static const char *es = ". Cannot remount read-write.";
/* Remounting read-write. */
if (NVolErrors(vol)) {
ntfs_error(sb, "Volume has errors and is read-only%s",
es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_IS_DIRTY) {
ntfs_error(sb, "Volume is dirty and read-only%s", es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
ntfs_error(sb, "Volume has unsupported flags set and "
"is read-only%s", es);
return -EROFS;
}
if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
ntfs_error(sb, "Failed to set dirty bit in volume "
"information flags%s", es);
return -EROFS;
}
#if 0
// TODO: Enable this code once we start modifying anything that
// is different between NTFS 1.2 and 3.x...
/* Set NT4 compatibility flag on newer NTFS version volumes. */
if ((vol->major_ver > 1)) {
if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
ntfs_error(sb, "Failed to set NT4 "
"compatibility flag%s", es);
NVolSetErrors(vol);
return -EROFS;
}
}
#endif
if (!ntfs_empty_logfile(vol->logfile_ino)) {
ntfs_error(sb, "Failed to empty journal $LogFile%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
if (!ntfs_mark_quotas_out_of_date(vol)) {
ntfs_error(sb, "Failed to mark quotas out of date%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
/* Remounting read-only. */
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
}
}
#endif /* NTFS_RW */
// TODO: Deal with *flags.
if (!parse_options(vol, opt))
return -EINVAL;
ntfs_debug("Done.");
return 0;
}
/**
* is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
* @sb: Super block of the device to which @b belongs.
* @b: Boot sector of device @sb to check.
* @silent: If TRUE, all output will be silenced.
*
* is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
* sector. Returns TRUE if it is valid and FALSE if not.
*
* @sb is only needed for warning/error output, i.e. it can be NULL when silent
* is TRUE.
*/
static BOOL is_boot_sector_ntfs(const struct super_block *sb,
const NTFS_BOOT_SECTOR *b, const BOOL silent)
{
/*
* Check that checksum == sum of u32 values from b to the checksum
* field. If checksum is zero, no checking is done.
*/
if ((void*)b < (void*)&b->checksum && b->checksum) {
le32 *u;
u32 i;
for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
i += le32_to_cpup(u);
if (le32_to_cpu(b->checksum) != i)
goto not_ntfs;
}
/* Check OEMidentifier is "NTFS " */
if (b->oem_id != magicNTFS)
goto not_ntfs;
/* Check bytes per sector value is between 256 and 4096. */
if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
goto not_ntfs;
/* Check sectors per cluster value is valid. */
switch (b->bpb.sectors_per_cluster) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
goto not_ntfs;
}
/* Check the cluster size is not above 65536 bytes. */
if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
b->bpb.sectors_per_cluster > 0x10000)
goto not_ntfs;
/* Check reserved/unused fields are really zero. */
if (le16_to_cpu(b->bpb.reserved_sectors) ||
le16_to_cpu(b->bpb.root_entries) ||
le16_to_cpu(b->bpb.sectors) ||
le16_to_cpu(b->bpb.sectors_per_fat) ||
le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
goto not_ntfs;
/* Check clusters per file mft record value is valid. */
if ((u8)b->clusters_per_mft_record < 0xe1 ||
(u8)b->clusters_per_mft_record > 0xf7)
switch (b->clusters_per_mft_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/* Check clusters per index block value is valid. */
if ((u8)b->clusters_per_index_record < 0xe1 ||
(u8)b->clusters_per_index_record > 0xf7)
switch (b->clusters_per_index_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/*
* Check for valid end of sector marker. We will work without it, but
* many BIOSes will refuse to boot from a bootsector if the magic is
* incorrect, so we emit a warning.
*/
if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
ntfs_warning(sb, "Invalid end of sector marker.");
return TRUE;
not_ntfs:
return FALSE;
}
/**
* read_ntfs_boot_sector - read the NTFS boot sector of a device
* @sb: super block of device to read the boot sector from
* @silent: if true, suppress all output
*
* Reads the boot sector from the device and validates it. If that fails, tries
* to read the backup boot sector, first from the end of the device a-la NT4 and
* later and then from the middle of the device a-la NT3.51 and before.
*
* If a valid boot sector is found but it is not the primary boot sector, we
* repair the primary boot sector silently (unless the device is read-only or
* the primary boot sector is not accessible).
*
* NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
* block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
* to their respective values.
*
* Return the unlocked buffer head containing the boot sector or NULL on error.
*/
static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
const int silent)
{
const char *read_err_str = "Unable to read %s boot sector.";
struct buffer_head *bh_primary, *bh_backup;
long nr_blocks = NTFS_SB(sb)->nr_blocks;
/* Try to read primary boot sector. */
if ((bh_primary = sb_bread(sb, 0))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_primary->b_data, silent))
return bh_primary;
if (!silent)
ntfs_error(sb, "Primary boot sector is invalid.");
} else if (!silent)
ntfs_error(sb, read_err_str, "primary");
if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
if (bh_primary)
brelse(bh_primary);
if (!silent)
ntfs_error(sb, "Mount option errors=recover not used. "
"Aborting without trying to recover.");
return NULL;
}
/* Try to read NT4+ backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* Try to read NT3.51- backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
if (!silent)
ntfs_error(sb, "Could not find a valid backup boot "
"sector.");
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* We failed. Cleanup and return. */
if (bh_primary)
brelse(bh_primary);
return NULL;
hotfix_primary_boot_sector:
if (bh_primary) {
/*
* If we managed to read sector zero and the volume is not
* read-only, copy the found, valid backup boot sector to the
* primary boot sector.
*/
if (!(sb->s_flags & MS_RDONLY)) {
ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
"boot sector from backup copy.");
memcpy(bh_primary->b_data, bh_backup->b_data,
sb->s_blocksize);
mark_buffer_dirty(bh_primary);
sync_dirty_buffer(bh_primary);
if (buffer_uptodate(bh_primary)) {
brelse(bh_backup);
return bh_primary;
}
ntfs_error(sb, "Hot-fix: Device write error while "
"recovering primary boot sector.");
} else {
ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
"sector failed: Read-only mount.");
}
brelse(bh_primary);
}
ntfs_warning(sb, "Using backup boot sector.");
return bh_backup;
}
/**
* parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
* @vol: volume structure to initialise with data from boot sector
* @b: boot sector to parse
*
* Parse the ntfs boot sector @b and store all imporant information therein in
* the ntfs super block @vol. Return TRUE on success and FALSE on error.
*/
static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
{
unsigned int sectors_per_cluster_bits, nr_hidden_sects;
int clusters_per_mft_record, clusters_per_index_record;
s64 ll;
vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
vol->sector_size_bits = ffs(vol->sector_size) - 1;
ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
vol->sector_size);
ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
vol->sector_size_bits);
if (vol->sector_size != vol->sb->s_blocksize)
ntfs_warning(vol->sb, "The boot sector indicates a sector size "
"different from the device sector size.");
ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
ntfs_debug("sectors_per_cluster_bits = 0x%x",
sectors_per_cluster_bits);
nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
vol->cluster_size_mask = vol->cluster_size - 1;
vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
vol->cluster_size);
ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
ntfs_debug("vol->cluster_size_bits = %i (0x%x)",
vol->cluster_size_bits, vol->cluster_size_bits);
if (vol->sector_size > vol->cluster_size) {
ntfs_error(vol->sb, "Sector sizes above the cluster size are "
"not supported. Sorry.");
return FALSE;
}
if (vol->sb->s_blocksize > vol->cluster_size) {
ntfs_error(vol->sb, "Cluster sizes smaller than the device "
"sector size are not supported. Sorry.");
return FALSE;
}
clusters_per_mft_record = b->clusters_per_mft_record;
ntfs_debug("clusters_per_mft_record = %i (0x%x)",
clusters_per_mft_record, clusters_per_mft_record);
if (clusters_per_mft_record > 0)
vol->mft_record_size = vol->cluster_size <<
(ffs(clusters_per_mft_record) - 1);
else
/*
* When mft_record_size < cluster_size, clusters_per_mft_record
* = -log2(mft_record_size) bytes. mft_record_size normaly is
* 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
*/
vol->mft_record_size = 1 << -clusters_per_mft_record;
vol->mft_record_size_mask = vol->mft_record_size - 1;
vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
vol->mft_record_size);
ntfs_debug("vol->mft_record_size_mask = 0x%x",
vol->mft_record_size_mask);
ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
vol->mft_record_size_bits, vol->mft_record_size_bits);
/*
* We cannot support mft record sizes above the PAGE_CACHE_SIZE since
* we store $MFT/$DATA, the table of mft records in the page cache.
*/
if (vol->mft_record_size > PAGE_CACHE_SIZE) {
ntfs_error(vol->sb, "Mft record size %i (0x%x) exceeds the "
"page cache size on your system %lu (0x%lx). "
"This is not supported. Sorry.",
vol->mft_record_size, vol->mft_record_size,
PAGE_CACHE_SIZE, PAGE_CACHE_SIZE);
return FALSE;
}
clusters_per_index_record = b->clusters_per_index_record;
ntfs_debug("clusters_per_index_record = %i (0x%x)",
clusters_per_index_record, clusters_per_index_record);
if (clusters_per_index_record > 0)
vol->index_record_size = vol->cluster_size <<
(ffs(clusters_per_index_record) - 1);
else
/*
* When index_record_size < cluster_size,
* clusters_per_index_record = -log2(index_record_size) bytes.
* index_record_size normaly equals 4096 bytes, which is
* encoded as 0xF4 (-12 in decimal).
*/
vol->index_record_size = 1 << -clusters_per_index_record;
vol->index_record_size_mask = vol->index_record_size - 1;
vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
ntfs_debug("vol->index_record_size = %i (0x%x)",
vol->index_record_size, vol->index_record_size);
ntfs_debug("vol->index_record_size_mask = 0x%x",
vol->index_record_size_mask);
ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
vol->index_record_size_bits,
vol->index_record_size_bits);
/*
* Get the size of the volume in clusters and check for 64-bit-ness.
* Windows currently only uses 32 bits to save the clusters so we do
* the same as it is much faster on 32-bit CPUs.
*/
ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
if ((u64)ll >= 1ULL << 32) {
ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
return FALSE;
}
vol->nr_clusters = ll;
ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
/*
* On an architecture where unsigned long is 32-bits, we restrict the
* volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
* will hopefully optimize the whole check away.
*/
if (sizeof(unsigned long) < 8) {
if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
"large for this architecture. "
"Maximum supported is 2TiB. Sorry.",
(unsigned long long)ll >> (40 -
vol->cluster_size_bits));
return FALSE;
}
}
ll = sle64_to_cpu(b->mft_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFT LCN is beyond end of volume. Weird.");
return FALSE;
}
vol->mft_lcn = ll;
ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
ll = sle64_to_cpu(b->mftmirr_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFTMirr LCN is beyond end of volume. "
"Weird.");
return FALSE;
}
vol->mftmirr_lcn = ll;
ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
#ifdef NTFS_RW
/*
* Work out the size of the mft mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
* records, the mft mirror stores the first four mft records. If the
* cluster size is bigger than the size taken by four mft records, the
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size >>
vol->mft_record_size_bits;
ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
#endif /* NTFS_RW */
vol->serial_no = le64_to_cpu(b->volume_serial_number);
ntfs_debug("vol->serial_no = 0x%llx",
(unsigned long long)vol->serial_no);
return TRUE;
}
/**
* ntfs_setup_allocators - initialize the cluster and mft allocators
* @vol: volume structure for which to setup the allocators
*
* Setup the cluster (lcn) and mft allocators to the starting values.
*/
static void ntfs_setup_allocators(ntfs_volume *vol)
{
#ifdef NTFS_RW
LCN mft_zone_size, mft_lcn;
#endif /* NTFS_RW */
ntfs_debug("vol->mft_zone_multiplier = 0x%x",
vol->mft_zone_multiplier);
#ifdef NTFS_RW
/* Determine the size of the MFT zone. */
mft_zone_size = vol->nr_clusters;
switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
case 4:
mft_zone_size >>= 1; /* 50% */
break;
case 3:
mft_zone_size = (mft_zone_size +
(mft_zone_size >> 1)) >> 2; /* 37.5% */
break;
case 2:
mft_zone_size >>= 2; /* 25% */
break;
/* case 1: */
default:
mft_zone_size >>= 3; /* 12.5% */
break;
}
/* Setup the mft zone. */
vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
ntfs_debug("vol->mft_zone_pos = 0x%llx",
(unsigned long long)vol->mft_zone_pos);
/*
* Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
* source) and if the actual mft_lcn is in the expected place or even
* further to the front of the volume, extend the mft_zone to cover the
* beginning of the volume as well. This is in order to protect the
* area reserved for the mft bitmap as well within the mft_zone itself.
* On non-standard volumes we do not protect it as the overhead would
* be higher than the speed increase we would get by doing it.
*/
mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
if (mft_lcn * vol->cluster_size < 16 * 1024)
mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
vol->cluster_size;
if (vol->mft_zone_start <= mft_lcn)
vol->mft_zone_start = 0;
ntfs_debug("vol->mft_zone_start = 0x%llx",
(unsigned long long)vol->mft_zone_start);
/*
* Need to cap the mft zone on non-standard volumes so that it does
* not point outside the boundaries of the volume. We do this by
* halving the zone size until we are inside the volume.
*/
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
while (vol->mft_zone_end >= vol->nr_clusters) {
mft_zone_size >>= 1;
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
}
ntfs_debug("vol->mft_zone_end = 0x%llx",
(unsigned long long)vol->mft_zone_end);
/*
* Set the current position within each data zone to the start of the
* respective zone.
*/
vol->data1_zone_pos = vol->mft_zone_end;
ntfs_debug("vol->data1_zone_pos = 0x%llx",
(unsigned long long)vol->data1_zone_pos);
vol->data2_zone_pos = 0;
ntfs_debug("vol->data2_zone_pos = 0x%llx",
(unsigned long long)vol->data2_zone_pos);
/* Set the mft data allocation position to mft record 24. */
vol->mft_data_pos = 24;
ntfs_debug("vol->mft_data_pos = 0x%llx",
(unsigned long long)vol->mft_data_pos);
#endif /* NTFS_RW */
}
#ifdef NTFS_RW
/**
* load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
* @vol: ntfs super block describing device whose mft mirror to load
*
* Return TRUE on success or FALSE on error.
*/
static BOOL load_and_init_mft_mirror(ntfs_volume *vol)
{
struct inode *tmp_ino;
ntfs_inode *tmp_ni;
ntfs_debug("Entering.");
/* Get mft mirror inode. */
tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return FALSE;
}
/*
* Re-initialize some specifics about $MFTMirr's inode as
* ntfs_read_inode() will have set up the default ones.
*/
/* Set uid and gid to root. */
tmp_ino->i_uid = tmp_ino->i_gid = 0;
/* Regular file. No access for anyone. */
tmp_ino->i_mode = S_IFREG;
/* No VFS initiated operations allowed for $MFTMirr. */
tmp_ino->i_op = &ntfs_empty_inode_ops;
tmp_ino->i_fop = &ntfs_empty_file_ops;
/* Put in our special address space operations. */
tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
tmp_ni = NTFS_I(tmp_ino);
/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
NInoSetMstProtected(tmp_ni);
/*
* Set up our little cheat allowing us to reuse the async read io
* completion handler for directories.
*/
tmp_ni->itype.index.block_size = vol->mft_record_size;
tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
vol->mftmirr_ino = tmp_ino;
ntfs_debug("Done.");
return TRUE;
}
/**
* check_mft_mirror - compare contents of the mft mirror with the mft
* @vol: ntfs super block describing device whose mft mirror to check
*
* Return TRUE on success or FALSE on error.
*
* Note, this function also results in the mft mirror runlist being completely
* mapped into memory. The mft mirror write code requires this and will BUG()
* should it find an unmapped runlist element.
*/
static BOOL check_mft_mirror(ntfs_volume *vol)
{
unsigned long index;
struct super_block *sb = vol->sb;
ntfs_inode *mirr_ni;
struct page *mft_page, *mirr_page;
u8 *kmft, *kmirr;
runlist_element *rl, rl2[2];
int mrecs_per_page, i;
ntfs_debug("Entering.");
/* Compare contents of $MFT and $MFTMirr. */
mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
BUG_ON(!mrecs_per_page);
BUG_ON(!vol->mftmirr_size);
mft_page = mirr_page = NULL;
kmft = kmirr = NULL;
index = i = 0;
do {
u32 bytes;
/* Switch pages if necessary. */
if (!(i % mrecs_per_page)) {
if (index) {
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
}
/* Get the $MFT page. */
mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
index);
if (IS_ERR(mft_page)) {
ntfs_error(sb, "Failed to read $MFT.");
return FALSE;
}
kmft = page_address(mft_page);
/* Get the $MFTMirr page. */
mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
index);
if (IS_ERR(mirr_page)) {
ntfs_error(sb, "Failed to read $MFTMirr.");
goto mft_unmap_out;
}
kmirr = page_address(mirr_page);
++index;
}
/* Make sure the record is ok. */
if (ntfs_is_baad_recordp((le32*)kmft)) {
ntfs_error(sb, "Incomplete multi sector transfer "
"detected in mft record %i.", i);
mm_unmap_out:
ntfs_unmap_page(mirr_page);
mft_unmap_out:
ntfs_unmap_page(mft_page);
return FALSE;
}
if (ntfs_is_baad_recordp((le32*)kmirr)) {
ntfs_error(sb, "Incomplete multi sector transfer "
"detected in mft mirror record %i.", i);
goto mm_unmap_out;
}
/* Get the amount of data in the current record. */
bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
if (!bytes || bytes > vol->mft_record_size) {
bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
if (!bytes || bytes > vol->mft_record_size)
bytes = vol->mft_record_size;
}
/* Compare the two records. */
if (memcmp(kmft, kmirr, bytes)) {
ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
"match. Run ntfsfix or chkdsk.", i);
goto mm_unmap_out;
}
kmft += vol->mft_record_size;
kmirr += vol->mft_record_size;
} while (++i < vol->mftmirr_size);
/* Release the last pages. */
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
/* Construct the mft mirror runlist by hand. */
rl2[0].vcn = 0;
rl2[0].lcn = vol->mftmirr_lcn;
rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
vol->cluster_size - 1) / vol->cluster_size;
rl2[1].vcn = rl2[0].length;
rl2[1].lcn = LCN_ENOENT;
rl2[1].length = 0;
/*
* Because we have just read all of the mft mirror, we know we have
* mapped the full runlist for it.
*/
mirr_ni = NTFS_I(vol->mftmirr_ino);
down_read(&mirr_ni->runlist.lock);
rl = mirr_ni->runlist.rl;
/* Compare the two runlists. They must be identical. */
i = 0;
do {
if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
rl2[i].length != rl[i].length) {
ntfs_error(sb, "$MFTMirr location mismatch. "
"Run chkdsk.");
up_read(&mirr_ni->runlist.lock);
return FALSE;
}
} while (rl2[i++].length);
up_read(&mirr_ni->runlist.lock);
ntfs_debug("Done.");
return TRUE;
}
/**
* load_and_check_logfile - load and check the logfile inode for a volume
* @vol: ntfs super block describing device whose logfile to load
*
* Return TRUE on success or FALSE on error.
*/
static BOOL load_and_check_logfile(ntfs_volume *vol)
{
struct inode *tmp_ino;
ntfs_debug("Entering.");
tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return FALSE;
}
if (!ntfs_check_logfile(tmp_ino)) {
iput(tmp_ino);
/* ntfs_check_logfile() will have displayed error output. */
return FALSE;
}
vol->logfile_ino = tmp_ino;
ntfs_debug("Done.");
return TRUE;
}
/**
* load_and_init_quota - load and setup the quota file for a volume if present
* @vol: ntfs super block describing device whose quota file to load
*
* Return TRUE on success or FALSE on error. If $Quota is not present, we
* leave vol->quota_ino as NULL and return success.
*/
static BOOL load_and_init_quota(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *tmp_ino;
ntfs_name *name = NULL;
static const ntfschar Quota[7] = { const_cpu_to_le16('$'),
const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
const_cpu_to_le16('o'), const_cpu_to_le16('t'),
const_cpu_to_le16('a'), 0 };
static ntfschar Q[3] = { const_cpu_to_le16('$'),
const_cpu_to_le16('Q'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the quota file by looking up the filename
* $Quota in the extended system files directory $Extend.
*/
down(&vol->extend_ino->i_sem);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
&name);
up(&vol->extend_ino->i_sem);
if (IS_ERR_MREF(mref)) {
/*
* If the file does not exist, quotas are disabled and have
* never been enabled on this volume, just return success.
*/
if (MREF_ERR(mref) == -ENOENT) {
ntfs_debug("$Quota not present. Volume does not have "
"quotas enabled.");
/*
* No need to try to set quotas out of date if they are
* not enabled.
*/
NVolSetQuotaOutOfDate(vol);
return TRUE;
}
/* A real error occured. */
ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
return FALSE;
}
/* We do not care for the type of match that was found. */
if (name)
kfree(name);
/* Get the inode. */
tmp_ino = ntfs_iget(vol->sb, MREF(mref));
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
ntfs_error(vol->sb, "Failed to load $Quota.");
return FALSE;
}
vol->quota_ino = tmp_ino;
/* Get the $Q index allocation attribute. */
tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
return FALSE;
}
vol->quota_q_ino = tmp_ino;
ntfs_debug("Done.");
return TRUE;
}
/**
* load_and_init_attrdef - load the attribute definitions table for a volume
* @vol: ntfs super block describing device whose attrdef to load
*
* Return TRUE on success or FALSE on error.
*/
static BOOL load_and_init_attrdef(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
unsigned long index, max_index;
unsigned int size;
ntfs_debug("Entering.");
/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
ino = ntfs_iget(sb, FILE_AttrDef);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto failed;
}
/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
if (!ino->i_size || ino->i_size > 0x7fffffff)
goto iput_failed;
vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(ino->i_size);
if (!vol->attrdef)
goto iput_failed;
index = 0;
max_index = ino->i_size >> PAGE_CACHE_SHIFT;
size = PAGE_CACHE_SIZE;
while (index < max_index) {
/* Read the attrdef table and copy it into the linear buffer. */
read_partial_attrdef_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto free_iput_failed;
memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_CACHE_SIZE) {
size = ino->i_size & ~PAGE_CACHE_MASK;
if (size)
goto read_partial_attrdef_page;
}
vol->attrdef_size = ino->i_size;
ntfs_debug("Read %llu bytes from $AttrDef.", ino->i_size);
iput(ino);
return TRUE;
free_iput_failed:
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
iput_failed:
iput(ino);
failed:
ntfs_error(sb, "Failed to initialize attribute definition table.");
return FALSE;
}
#endif /* NTFS_RW */
/**
* load_and_init_upcase - load the upcase table for an ntfs volume
* @vol: ntfs super block describing device whose upcase to load
*
* Return TRUE on success or FALSE on error.
*/
static BOOL load_and_init_upcase(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
unsigned long index, max_index;
unsigned int size;
int i, max;
ntfs_debug("Entering.");
/* Read upcase table and setup vol->upcase and vol->upcase_len. */
ino = ntfs_iget(sb, FILE_UpCase);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto upcase_failed;
}
/*
* The upcase size must not be above 64k Unicode characters, must not
* be zero and must be a multiple of sizeof(ntfschar).
*/
if (!ino->i_size || ino->i_size & (sizeof(ntfschar) - 1) ||
ino->i_size > 64ULL * 1024 * sizeof(ntfschar))
goto iput_upcase_failed;
vol->upcase = (ntfschar*)ntfs_malloc_nofs(ino->i_size);
if (!vol->upcase)
goto iput_upcase_failed;
index = 0;
max_index = ino->i_size >> PAGE_CACHE_SHIFT;
size = PAGE_CACHE_SIZE;
while (index < max_index) {
/* Read the upcase table and copy it into the linear buffer. */
read_partial_upcase_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto iput_upcase_failed;
memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_CACHE_SIZE) {
size = ino->i_size & ~PAGE_CACHE_MASK;
if (size)
goto read_partial_upcase_page;
}
vol->upcase_len = ino->i_size >> UCHAR_T_SIZE_BITS;
ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
ino->i_size, 64 * 1024 * sizeof(ntfschar));
iput(ino);
down(&ntfs_lock);
if (!default_upcase) {
ntfs_debug("Using volume specified $UpCase since default is "
"not present.");
up(&ntfs_lock);
return TRUE;
}
max = default_upcase_len;
if (max > vol->upcase_len)
max = vol->upcase_len;
for (i = 0; i < max; i++)
if (vol->upcase[i] != default_upcase[i])
break;
if (i == max) {
ntfs_free(vol->upcase);
vol->upcase = default_upcase;
vol->upcase_len = max;
ntfs_nr_upcase_users++;
up(&ntfs_lock);
ntfs_debug("Volume specified $UpCase matches default. Using "
"default.");
return TRUE;
}
up(&ntfs_lock);
ntfs_debug("Using volume specified $UpCase since it does not match "
"the default.");
return TRUE;
iput_upcase_failed:
iput(ino);
ntfs_free(vol->upcase);
vol->upcase = NULL;
upcase_failed:
down(&ntfs_lock);
if (default_upcase) {
vol->upcase = default_upcase;
vol->upcase_len = default_upcase_len;
ntfs_nr_upcase_users++;
up(&ntfs_lock);
ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
"default.");
return TRUE;
}
up(&ntfs_lock);
ntfs_error(sb, "Failed to initialize upcase table.");
return FALSE;
}
/**
* load_system_files - open the system files using normal functions
* @vol: ntfs super block describing device whose system files to load
*
* Open the system files with normal access functions and complete setting up
* the ntfs super block @vol.
*
* Return TRUE on success or FALSE on error.
*/
static BOOL load_system_files(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
ntfs_debug("Entering.");
#ifdef NTFS_RW
/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
static const char *es1 = "Failed to load $MFTMirr";
static const char *es2 = "$MFTMirr does not match $MFT";
static const char *es3 = ". Run ntfsfix and/or chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
!vol->mftmirr_ino ? es1 : es2,
es3);
goto iput_mirr_err_out;
}
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
ntfs_error(sb, "%s. Mounting read-only%s",
!vol->mftmirr_ino ? es1 : es2, es3);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s",
!vol->mftmirr_ino ? es1 : es2, es3);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* Get mft bitmap attribute inode. */
vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
if (IS_ERR(vol->mftbmp_ino)) {
ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
goto iput_mirr_err_out;
}
/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
if (!load_and_init_upcase(vol))
goto iput_mftbmp_err_out;
#ifdef NTFS_RW
/*
* Read attribute definitions table and setup @vol->attrdef and
* @vol->attrdef_size.
*/
if (!load_and_init_attrdef(vol))
goto iput_upcase_err_out;
#endif /* NTFS_RW */
/*
* Get the cluster allocation bitmap inode and verify the size, no
* need for any locking at this stage as we are already running
* exclusively as we are mount in progress task.
*/
vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
if (!IS_ERR(vol->lcnbmp_ino))
iput(vol->lcnbmp_ino);
goto bitmap_failed;
}
if ((vol->nr_clusters + 7) >> 3 > vol->lcnbmp_ino->i_size) {
iput(vol->lcnbmp_ino);
bitmap_failed:
ntfs_error(sb, "Failed to load $Bitmap.");
goto iput_attrdef_err_out;
}
/*
* Get the volume inode and setup our cache of the volume flags and
* version.
*/
vol->vol_ino = ntfs_iget(sb, FILE_Volume);
if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
if (!IS_ERR(vol->vol_ino))
iput(vol->vol_ino);
volume_failed:
ntfs_error(sb, "Failed to load $Volume.");
goto iput_lcnbmp_err_out;
}
m = map_mft_record(NTFS_I(vol->vol_ino));
if (IS_ERR(m)) {
iput_volume_failed:
iput(vol->vol_ino);
goto volume_failed;
}
if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
ntfs_error(sb, "Failed to get attribute search context.");
goto get_ctx_vol_failed;
}
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx) || ctx->attr->non_resident || ctx->attr->flags) {
err_put_vol:
ntfs_attr_put_search_ctx(ctx);
get_ctx_vol_failed:
unmap_mft_record(NTFS_I(vol->vol_ino));
goto iput_volume_failed;
}
vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
/* Some bounds checks. */
if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
le32_to_cpu(ctx->attr->data.resident.value_length) >
(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
goto err_put_vol;
/* Copy the volume flags and version to the ntfs_volume structure. */
vol->vol_flags = vi->flags;
vol->major_ver = vi->major_ver;
vol->minor_ver = vi->minor_ver;
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(NTFS_I(vol->vol_ino));
printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
vol->minor_ver);
#ifdef NTFS_RW
/* Make sure that no unsupported volume flags are set. */
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
static const char *es1a = "Volume is dirty";
static const char *es1b = "Volume has unsupported flags set";
static const char *es2 = ". Run chkdsk and mount in Windows.";
const char *es1;
es1 = vol->vol_flags & VOLUME_IS_DIRTY ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_vol_err_out;
}
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/*
* Do not set NVolErrors() because ntfs_remount() re-checks the
* flags which we need to do in case any flags have changed.
*/
}
/*
* Get the inode for the logfile, check it and determine if the volume
* was shutdown cleanly.
*/
if (!load_and_check_logfile(vol) ||
!ntfs_is_logfile_clean(vol->logfile_ino)) {
static const char *es1a = "Failed to load $LogFile";
static const char *es1b = "$LogFile is not clean";
static const char *es2 = ". Mount in Windows.";
const char *es1;
es1 = !vol->logfile_ino ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_logfile_err_out;
}
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the volume dirty. */
if (!(sb->s_flags & MS_RDONLY) &&
ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
static const char *es1 = "Failed to set dirty bit in volume "
"information flags";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_logfile_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
/*
* Do not set NVolErrors() because ntfs_remount() might manage
* to set the dirty flag in which case all would be well.
*/
}
#if 0
// TODO: Enable this code once we start modifying anything that is
// different between NTFS 1.2 and 3.x...
/*
* If (still) a read-write mount, set the NT4 compatibility flag on
* newer NTFS version volumes.
*/
if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
static const char *es1 = "Failed to set NT4 compatibility flag";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_logfile_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
NVolSetErrors(vol);
}
#endif
/* If (still) a read-write mount, empty the logfile. */
if (!(sb->s_flags & MS_RDONLY) &&
!ntfs_empty_logfile(vol->logfile_ino)) {
static const char *es1 = "Failed to empty $LogFile";
static const char *es2 = ". Mount in Windows.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_logfile_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* Get the root directory inode. */
vol->root_ino = ntfs_iget(sb, FILE_root);
if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
if (!IS_ERR(vol->root_ino))
iput(vol->root_ino);
ntfs_error(sb, "Failed to load root directory.");
goto iput_logfile_err_out;
}
/* If on NTFS versions before 3.0, we are done. */
if (vol->major_ver < 3)
return TRUE;
/* NTFS 3.0+ specific initialization. */
/* Get the security descriptors inode. */
vol->secure_ino = ntfs_iget(sb, FILE_Secure);
if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
if (!IS_ERR(vol->secure_ino))
iput(vol->secure_ino);
ntfs_error(sb, "Failed to load $Secure.");
goto iput_root_err_out;
}
// FIXME: Initialize security.
/* Get the extended system files' directory inode. */
vol->extend_ino = ntfs_iget(sb, FILE_Extend);
if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
if (!IS_ERR(vol->extend_ino))
iput(vol->extend_ino);
ntfs_error(sb, "Failed to load $Extend.");
goto iput_sec_err_out;
}
#ifdef NTFS_RW
/* Find the quota file, load it if present, and set it up. */
if (!load_and_init_quota(vol)) {
static const char *es1 = "Failed to load $Quota";
static const char *es2 = ". Run chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the quotas out of date. */
if (!(sb->s_flags & MS_RDONLY) &&
!ntfs_mark_quotas_out_of_date(vol)) {
static const char *es1 = "Failed to mark quotas out of date";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
NVolSetErrors(vol);
}
// TODO: Delete or checkpoint the $UsnJrnl if it exists.
#endif /* NTFS_RW */
return TRUE;
#ifdef NTFS_RW
iput_quota_err_out:
if (vol->quota_q_ino)
iput(vol->quota_q_ino);
if (vol->quota_ino)
iput(vol->quota_ino);
iput(vol->extend_ino);
#endif /* NTFS_RW */
iput_sec_err_out:
iput(vol->secure_ino);
iput_root_err_out:
iput(vol->root_ino);
iput_logfile_err_out:
#ifdef NTFS_RW
if (vol->logfile_ino)
iput(vol->logfile_ino);
iput_vol_err_out:
#endif /* NTFS_RW */
iput(vol->vol_ino);
iput_lcnbmp_err_out:
iput(vol->lcnbmp_ino);
iput_attrdef_err_out:
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
#ifdef NTFS_RW
iput_upcase_err_out:
#endif /* NTFS_RW */
vol->upcase_len = 0;
down(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
up(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
iput_mftbmp_err_out:
iput(vol->mftbmp_ino);
iput_mirr_err_out:
#ifdef NTFS_RW
if (vol->mftmirr_ino)
iput(vol->mftmirr_ino);
#endif /* NTFS_RW */
return FALSE;
}
/**
* ntfs_put_super - called by the vfs to unmount a volume
* @sb: vfs superblock of volume to unmount
*
* ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
* the volume is being unmounted (umount system call has been invoked) and it
* releases all inodes and memory belonging to the NTFS specific part of the
* super block.
*/
static void ntfs_put_super(struct super_block *sb)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering.");
#ifdef NTFS_RW
/*
* Commit all inodes while they are still open in case some of them
* cause others to be dirtied.
*/
ntfs_commit_inode(vol->vol_ino);
/* NTFS 3.0+ specific. */
if (vol->major_ver >= 3) {
if (vol->quota_q_ino)
ntfs_commit_inode(vol->quota_q_ino);
if (vol->quota_ino)
ntfs_commit_inode(vol->quota_ino);
if (vol->extend_ino)
ntfs_commit_inode(vol->extend_ino);
if (vol->secure_ino)
ntfs_commit_inode(vol->secure_ino);
}
ntfs_commit_inode(vol->root_ino);
down_write(&vol->lcnbmp_lock);
ntfs_commit_inode(vol->lcnbmp_ino);
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
ntfs_commit_inode(vol->mftbmp_ino);
up_write(&vol->mftbmp_lock);
if (vol->logfile_ino)
ntfs_commit_inode(vol->logfile_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
/*
* If a read-write mount and no volume errors have occured, mark the
* volume clean. Also, re-commit all affected inodes.
*/
if (!(sb->s_flags & MS_RDONLY)) {
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
ntfs_commit_inode(vol->vol_ino);
ntfs_commit_inode(vol->root_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
} else {
ntfs_warning(sb, "Volume has errors. Leaving volume "
"marked dirty. Run chkdsk.");
}
}
#endif /* NTFS_RW */
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
down_write(&vol->lcnbmp_lock);
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
up_write(&vol->mftbmp_lock);
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
/* Re-commit the mft mirror and mft just in case. */
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
/*
* If any dirty inodes are left, throw away all mft data page cache
* pages to allow a clean umount. This should never happen any more
* due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
* the underlying mft records are written out and cleaned. If it does,
* happen anyway, we want to know...
*/
ntfs_commit_inode(vol->mft_ino);
write_inode_now(vol->mft_ino, 1);
if (!list_empty(&sb->s_dirty)) {
const char *s1, *s2;
down(&vol->mft_ino->i_sem);
truncate_inode_pages(vol->mft_ino->i_mapping, 0);
up(&vol->mft_ino->i_sem);
write_inode_now(vol->mft_ino, 1);
if (!list_empty(&sb->s_dirty)) {
static const char *_s1 = "inodes";
static const char *_s2 = "";
s1 = _s1;
s2 = _s2;
} else {
static const char *_s1 = "mft pages";
static const char *_s2 = "They have been thrown "
"away. ";
s1 = _s1;
s2 = _s2;
}
ntfs_error(sb, "Dirty %s found at umount time. %sYou should "
"run chkdsk. Please email "
"linux-ntfs-dev@lists.sourceforge.net and say "
"that you saw this message. Thank you.", s1,
s2);
}
#endif /* NTFS_RW */
iput(vol->mft_ino);
vol->mft_ino = NULL;
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
/*
* Destroy the global default upcase table if necessary. Also decrease
* the number of upcase users if we are a user.
*/
down(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
if (!ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
up(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
if (vol->nls_map) {
unload_nls(vol->nls_map);
vol->nls_map = NULL;
}
sb->s_fs_info = NULL;
kfree(vol);
return;
}
/**
* get_nr_free_clusters - return the number of free clusters on a volume
* @vol: ntfs volume for which to obtain free cluster count
*
* Calculate the number of free clusters on the mounted NTFS volume @vol. We
* actually calculate the number of clusters in use instead because this
* allows us to not care about partial pages as these will be just zero filled
* and hence not be counted as allocated clusters.
*
* The only particularity is that clusters beyond the end of the logical ntfs
* volume will be marked as allocated to prevent errors which means we have to
* discount those at the end. This is important as the cluster bitmap always
* has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
* the logical volume and marked in use when they are not as they do not exist.
*
* If any pages cannot be read we assume all clusters in the erroring pages are
* in use. This means we return an underestimate on errors which is better than
* an overestimate.
*/
static s64 get_nr_free_clusters(ntfs_volume *vol)
{
s64 nr_free = vol->nr_clusters;
u32 *kaddr;
struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
struct page *page;
unsigned long index, max_index;
unsigned int max_size;
ntfs_debug("Entering.");
/* Serialize accesses to the cluster bitmap. */
down_read(&vol->lcnbmp_lock);
/*
* Convert the number of bits into bytes rounded up, then convert into
* multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
* full and one partial page max_index = 2.
*/
max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
/* Use multiples of 4 bytes. */
max_size = PAGE_CACHE_SIZE >> 2;
ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%x.",
max_index, max_size);
for (index = 0UL; index < max_index; index++) {
unsigned int i;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_cache_page(mapping, index, (filler_t*)readpage,
NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("Sync read_cache_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
wait_on_page_locked(page);
/* Ignore pages which errored asynchronously. */
if (!PageUptodate(page)) {
ntfs_debug("Async read_cache_page() error. Skipping "
"page (index 0x%lx).", index);
page_cache_release(page);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
kaddr = (u32*)kmap_atomic(page, KM_USER0);
/*
* For each 4 bytes, subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
for (i = 0; i < max_size; i++)
nr_free -= (s64)hweight32(kaddr[i]);
kunmap_atomic(kaddr, KM_USER0);
page_cache_release(page);
}
ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
/*
* Fixup for eventual bits outside logical ntfs volume (see function
* description above).
*/
if (vol->nr_clusters & 63)
nr_free += 64 - (vol->nr_clusters & 63);
up_read(&vol->lcnbmp_lock);
/* If errors occured we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* __get_nr_free_mft_records - return the number of free inodes on a volume
* @vol: ntfs volume for which to obtain free inode count
*
* Calculate the number of free mft records (inodes) on the mounted NTFS
* volume @vol. We actually calculate the number of mft records in use instead
* because this allows us to not care about partial pages as these will be just
* zero filled and hence not be counted as allocated mft record.
*
* If any pages cannot be read we assume all mft records in the erroring pages
* are in use. This means we return an underestimate on errors which is better
* than an overestimate.
*
* NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
*/
static unsigned long __get_nr_free_mft_records(ntfs_volume *vol)
{
s64 nr_free;
u32 *kaddr;
struct address_space *mapping = vol->mftbmp_ino->i_mapping;
filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
struct page *page;
unsigned long index, max_index;
unsigned int max_size;
ntfs_debug("Entering.");
/* Number of mft records in file system (at this point in time). */
nr_free = vol->mft_ino->i_size >> vol->mft_record_size_bits;
/*
* Convert the maximum number of set bits into bytes rounded up, then
* convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
* have one full and one partial page max_index = 2.
*/
max_index = ((((NTFS_I(vol->mft_ino)->initialized_size >>
vol->mft_record_size_bits) + 7) >> 3) +
PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
/* Use multiples of 4 bytes. */
max_size = PAGE_CACHE_SIZE >> 2;
ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
"0x%x.", max_index, max_size);
for (index = 0UL; index < max_index; index++) {
unsigned int i;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_cache_page(mapping, index, (filler_t*)readpage,
NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("Sync read_cache_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
wait_on_page_locked(page);
/* Ignore pages which errored asynchronously. */
if (!PageUptodate(page)) {
ntfs_debug("Async read_cache_page() error. Skipping "
"page (index 0x%lx).", index);
page_cache_release(page);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
kaddr = (u32*)kmap_atomic(page, KM_USER0);
/*
* For each 4 bytes, subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
for (i = 0; i < max_size; i++)
nr_free -= (s64)hweight32(kaddr[i]);
kunmap_atomic(kaddr, KM_USER0);
page_cache_release(page);
}
ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
index - 1);
/* If errors occured we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* ntfs_statfs - return information about mounted NTFS volume
* @sb: super block of mounted volume
* @sfs: statfs structure in which to return the information
*
* Return information about the mounted NTFS volume @sb in the statfs structure
* pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
* called). We interpret the values to be correct of the moment in time at
* which we are called. Most values are variable otherwise and this isn't just
* the free values but the totals as well. For example we can increase the
* total number of file nodes if we run out and we can keep doing this until
* there is no more space on the volume left at all.
*
* Called from vfs_statfs which is used to handle the statfs, fstatfs, and
* ustat system calls.
*
* Return 0 on success or -errno on error.
*/
static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs)
{
ntfs_volume *vol = NTFS_SB(sb);
s64 size;
ntfs_debug("Entering.");
/* Type of filesystem. */
sfs->f_type = NTFS_SB_MAGIC;
/* Optimal transfer block size. */
sfs->f_bsize = PAGE_CACHE_SIZE;
/*
* Total data blocks in file system in units of f_bsize and since
* inodes are also stored in data blocs ($MFT is a file) this is just
* the total clusters.
*/
sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
PAGE_CACHE_SHIFT;
/* Free data blocks in file system in units of f_bsize. */
size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
PAGE_CACHE_SHIFT;
if (size < 0LL)
size = 0LL;
/* Free blocks avail to non-superuser, same as above on NTFS. */
sfs->f_bavail = sfs->f_bfree = size;
/* Serialize accesses to the inode bitmap. */
down_read(&vol->mftbmp_lock);
/* Number of inodes in file system (at this point in time). */
sfs->f_files = vol->mft_ino->i_size >> vol->mft_record_size_bits;
/* Free inodes in fs (based on current total count). */
sfs->f_ffree = __get_nr_free_mft_records(vol);
up_read(&vol->mftbmp_lock);
/*
* File system id. This is extremely *nix flavour dependent and even
* within Linux itself all fs do their own thing. I interpret this to
* mean a unique id associated with the mounted fs and not the id
* associated with the file system driver, the latter is already given
* by the file system type in sfs->f_type. Thus we use the 64-bit
* volume serial number splitting it into two 32-bit parts. We enter
* the least significant 32-bits in f_fsid[0] and the most significant
* 32-bits in f_fsid[1].
*/
sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
/* Maximum length of filenames. */
sfs->f_namelen = NTFS_MAX_NAME_LEN;
return 0;
}
/**
* The complete super operations.
*/
static struct super_operations ntfs_sops = {
.alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
.destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
.put_inode = ntfs_put_inode, /* VFS: Called just before
the inode reference count
is decreased. */
#ifdef NTFS_RW
//.dirty_inode = NULL, /* VFS: Called from
// __mark_inode_dirty(). */
.write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
disk. */
//.drop_inode = NULL, /* VFS: Called just after the
// inode reference count has
// been decreased to zero.
// NOTE: The inode lock is
// held. See fs/inode.c::
// generic_drop_inode(). */
//.delete_inode = NULL, /* VFS: Delete inode from disk.
// Called when i_count becomes
// 0 and i_nlink is also 0. */
//.write_super = NULL, /* Flush dirty super block to
// disk. */
//.sync_fs = NULL, /* ? */
//.write_super_lockfs = NULL, /* ? */
//.unlockfs = NULL, /* ? */
#endif /* NTFS_RW */
.put_super = ntfs_put_super, /* Syscall: umount. */
.statfs = ntfs_statfs, /* Syscall: statfs */
.remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
.clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is
removed from memory. */
//.umount_begin = NULL, /* Forced umount. */
.show_options = ntfs_show_options, /* Show mount options in
proc. */
};
/**
* Declarations for NTFS specific export operations (fs/ntfs/namei.c).
*/
extern struct dentry *ntfs_get_parent(struct dentry *child_dent);
extern struct dentry *ntfs_get_dentry(struct super_block *sb, void *fh);
/**
* Export operations allowing NFS exporting of mounted NTFS partitions.
*
* We use the default ->decode_fh() and ->encode_fh() for now. Note that they
* use 32 bits to store the inode number which is an unsigned long so on 64-bit
* architectures is usually 64 bits so it would all fail horribly on huge
* volumes. I guess we need to define our own encode and decode fh functions
* that store 64-bit inode numbers at some point but for now we will ignore the
* problem...
*
* We also use the default ->get_name() helper (used by ->decode_fh() via
* fs/exportfs/expfs.c::find_exported_dentry()) as that is completely fs
* independent.
*
* The default ->get_parent() just returns -EACCES so we have to provide our
* own and the default ->get_dentry() is incompatible with NTFS due to not
* allowing the inode number 0 which is used in NTFS for the system file $MFT
* and due to using iget() whereas NTFS needs ntfs_iget().
*/
static struct export_operations ntfs_export_ops = {
.get_parent = ntfs_get_parent, /* Find the parent of a given
directory. */
.get_dentry = ntfs_get_dentry, /* Find a dentry for the inode
given a file handle
sub-fragment. */
};
/**
* ntfs_fill_super - mount an ntfs files system
* @sb: super block of ntfs file system to mount
* @opt: string containing the mount options
* @silent: silence error output
*
* ntfs_fill_super() is called by the VFS to mount the device described by @sb
* with the mount otions in @data with the NTFS file system.
*
* If @silent is true, remain silent even if errors are detected. This is used
* during bootup, when the kernel tries to mount the root file system with all
* registered file systems one after the other until one succeeds. This implies
* that all file systems except the correct one will quite correctly and
* expectedly return an error, but nobody wants to see error messages when in
* fact this is what is supposed to happen.
*
* NOTE: @sb->s_flags contains the mount options flags.
*/
static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
{
ntfs_volume *vol;
struct buffer_head *bh;
struct inode *tmp_ino;
int result;
ntfs_debug("Entering.");
#ifndef NTFS_RW
sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
#endif /* ! NTFS_RW */
/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
vol = NTFS_SB(sb);
if (!vol) {
if (!silent)
ntfs_error(sb, "Allocation of NTFS volume structure "
"failed. Aborting mount...");
return -ENOMEM;
}
/* Initialize ntfs_volume structure. */
memset(vol, 0, sizeof(ntfs_volume));
vol->sb = sb;
vol->upcase = NULL;
vol->attrdef = NULL;
vol->mft_ino = NULL;
vol->mftbmp_ino = NULL;
init_rwsem(&vol->mftbmp_lock);
#ifdef NTFS_RW
vol->mftmirr_ino = NULL;
vol->logfile_ino = NULL;
#endif /* NTFS_RW */
vol->lcnbmp_ino = NULL;
init_rwsem(&vol->lcnbmp_lock);
vol->vol_ino = NULL;
vol->root_ino = NULL;
vol->secure_ino = NULL;
vol->extend_ino = NULL;
#ifdef NTFS_RW
vol->quota_ino = NULL;
vol->quota_q_ino = NULL;
#endif /* NTFS_RW */
vol->nls_map = NULL;
/*
* Default is group and other don't have any access to files or
* directories while owner has full access. Further, files by default
* are not executable but directories are of course browseable.
*/
vol->fmask = 0177;
vol->dmask = 0077;
unlock_kernel();
/* Important to get the mount options dealt with now. */
if (!parse_options(vol, (char*)opt))
goto err_out_now;
/*
* TODO: Fail safety check. In the future we should really be able to
* cope with this being the case, but for now just bail out.
*/
if (bdev_hardsect_size(sb->s_bdev) > NTFS_BLOCK_SIZE) {
if (!silent)
ntfs_error(sb, "Device has unsupported hardsect_size.");
goto err_out_now;
}
/* Setup the device access block size to NTFS_BLOCK_SIZE. */
if (sb_set_blocksize(sb, NTFS_BLOCK_SIZE) != NTFS_BLOCK_SIZE) {
if (!silent)
ntfs_error(sb, "Unable to set block size.");
goto err_out_now;
}
/* Get the size of the device in units of NTFS_BLOCK_SIZE bytes. */
vol->nr_blocks = sb->s_bdev->bd_inode->i_size >> NTFS_BLOCK_SIZE_BITS;
/* Read the boot sector and return unlocked buffer head to it. */
if (!(bh = read_ntfs_boot_sector(sb, silent))) {
if (!silent)
ntfs_error(sb, "Not an NTFS volume.");
goto err_out_now;
}
/*
* Extract the data from the boot sector and setup the ntfs super block
* using it.
*/
result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
/* Initialize the cluster and mft allocators. */
ntfs_setup_allocators(vol);
brelse(bh);
if (!result) {
if (!silent)
ntfs_error(sb, "Unsupported NTFS filesystem.");
goto err_out_now;
}
/*
* TODO: When we start coping with sector sizes different from
* NTFS_BLOCK_SIZE, we now probably need to set the blocksize of the
* device (probably to NTFS_BLOCK_SIZE).
*/
/* Setup remaining fields in the super block. */
sb->s_magic = NTFS_SB_MAGIC;
/*
* Ntfs allows 63 bits for the file size, i.e. correct would be:
* sb->s_maxbytes = ~0ULL >> 1;
* But the kernel uses a long as the page cache page index which on
* 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
* defined to the maximum the page cache page index can cope with
* without overflowing the index or to 2^63 - 1, whichever is smaller.
*/
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_time_gran = 100;
/*
* Now load the metadata required for the page cache and our address
* space operations to function. We do this by setting up a specialised
* read_inode method and then just calling the normal iget() to obtain
* the inode for $MFT which is sufficient to allow our normal inode
* operations and associated address space operations to function.
*/
sb->s_op = &ntfs_sops;
tmp_ino = new_inode(sb);
if (!tmp_ino) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto err_out_now;
}
tmp_ino->i_ino = FILE_MFT;
insert_inode_hash(tmp_ino);
if (ntfs_read_inode_mount(tmp_ino) < 0) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto iput_tmp_ino_err_out_now;
}
down(&ntfs_lock);
/*
* The current mount is a compression user if the cluster size is
* less than or equal 4kiB.
*/
if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
result = allocate_compression_buffers();
if (result) {
ntfs_error(NULL, "Failed to allocate buffers "
"for compression engine.");
ntfs_nr_compression_users--;
up(&ntfs_lock);
goto iput_tmp_ino_err_out_now;
}
}
/*
* Generate the global default upcase table if necessary. Also
* temporarily increment the number of upcase users to avoid race
* conditions with concurrent (u)mounts.
*/
if (!default_upcase)
default_upcase = generate_default_upcase();
ntfs_nr_upcase_users++;
up(&ntfs_lock);
/*
* From now on, ignore @silent parameter. If we fail below this line,
* it will be due to a corrupt fs or a system error, so we report it.
*/
/*
* Open the system files with normal access functions and complete
* setting up the ntfs super block.
*/
if (!load_system_files(vol)) {
ntfs_error(sb, "Failed to load system files.");
goto unl_upcase_iput_tmp_ino_err_out_now;
}
if ((sb->s_root = d_alloc_root(vol->root_ino))) {
/* We increment i_count simulating an ntfs_iget(). */
atomic_inc(&vol->root_ino->i_count);
ntfs_debug("Exiting, status successful.");
/* Release the default upcase if it has no users. */
down(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
up(&ntfs_lock);
sb->s_export_op = &ntfs_export_ops;
lock_kernel();
return 0;
}
ntfs_error(sb, "Failed to allocate root directory.");
/* Clean up after the successful load_system_files() call from above. */
// TODO: Use ntfs_put_super() instead of repeating all this code...
// FIXME: Should mark the volume clean as the error is most likely
// -ENOMEM.
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
#endif /* NTFS_RW */
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
down(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
up(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
if (vol->nls_map) {
unload_nls(vol->nls_map);
vol->nls_map = NULL;
}
/* Error exit code path. */
unl_upcase_iput_tmp_ino_err_out_now:
/*
* Decrease the number of upcase users and destroy the global default
* upcase table if necessary.
*/
down(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
up(&ntfs_lock);
iput_tmp_ino_err_out_now:
iput(tmp_ino);
if (vol->mft_ino && vol->mft_ino != tmp_ino)
iput(vol->mft_ino);
vol->mft_ino = NULL;
/*
* This is needed to get ntfs_clear_extent_inode() called for each
* inode we have ever called ntfs_iget()/iput() on, otherwise we A)
* leak resources and B) a subsequent mount fails automatically due to
* ntfs_iget() never calling down into our ntfs_read_locked_inode()
* method again... FIXME: Do we need to do this twice now because of
* attribute inodes? I think not, so leave as is for now... (AIA)
*/
if (invalidate_inodes(sb)) {
ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
"driver bug.");
/* Copied from fs/super.c. I just love this message. (-; */
printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
"seconds. Have a nice day...\n");
}
/* Errors at this stage are irrelevant. */
err_out_now:
lock_kernel();
sb->s_fs_info = NULL;
kfree(vol);
ntfs_debug("Failed, returning -EINVAL.");
return -EINVAL;
}
/*
* This is a slab cache to optimize allocations and deallocations of Unicode
* strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
* (255) Unicode characters + a terminating NULL Unicode character.
*/
kmem_cache_t *ntfs_name_cache;
/* Slab caches for efficient allocation/deallocation of of inodes. */
kmem_cache_t *ntfs_inode_cache;
kmem_cache_t *ntfs_big_inode_cache;
/* Init once constructor for the inode slab cache. */
static void ntfs_big_inode_init_once(void *foo, kmem_cache_t *cachep,
unsigned long flags)
{
ntfs_inode *ni = (ntfs_inode *)foo;
if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
SLAB_CTOR_CONSTRUCTOR)
inode_init_once(VFS_I(ni));
}
/*
* Slab caches to optimize allocations and deallocations of attribute search
* contexts and index contexts, respectively.
*/
kmem_cache_t *ntfs_attr_ctx_cache;
kmem_cache_t *ntfs_index_ctx_cache;
/* Driver wide semaphore. */
DECLARE_MUTEX(ntfs_lock);
static struct super_block *ntfs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
}
static struct file_system_type ntfs_fs_type = {
.owner = THIS_MODULE,
.name = "ntfs",
.get_sb = ntfs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
/* Stable names for the slab caches. */
static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
static const char ntfs_name_cache_name[] = "ntfs_name_cache";
static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
static int __init init_ntfs_fs(void)
{
int err = 0;
/* This may be ugly but it results in pretty output so who cares. (-8 */
printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
#ifdef NTFS_RW
"W"
#else
"O"
#endif
#ifdef DEBUG
" DEBUG"
#endif
#ifdef MODULE
" MODULE"
#endif
"].\n");
ntfs_debug("Debug messages are enabled.");
ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
sizeof(ntfs_index_context), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
if (!ntfs_index_ctx_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_index_ctx_cache_name);
goto ictx_err_out;
}
ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
sizeof(ntfs_attr_search_ctx), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
if (!ntfs_attr_ctx_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_attr_ctx_cache_name);
goto actx_err_out;
}
ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!ntfs_name_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_name_cache_name);
goto name_err_out;
}
ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
sizeof(ntfs_inode), 0,
SLAB_RECLAIM_ACCOUNT, NULL, NULL);
if (!ntfs_inode_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_inode_cache_name);
goto inode_err_out;
}
ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
sizeof(big_ntfs_inode), 0,
SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
ntfs_big_inode_init_once, NULL);
if (!ntfs_big_inode_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_big_inode_cache_name);
goto big_inode_err_out;
}
/* Register the ntfs sysctls. */
err = ntfs_sysctl(1);
if (err) {
printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
goto sysctl_err_out;
}
err = register_filesystem(&ntfs_fs_type);
if (!err) {
ntfs_debug("NTFS driver registered successfully.");
return 0; /* Success! */
}
printk(KERN_CRIT "NTFS: Failed to register NTFS file system driver!\n");
sysctl_err_out:
kmem_cache_destroy(ntfs_big_inode_cache);
big_inode_err_out:
kmem_cache_destroy(ntfs_inode_cache);
inode_err_out:
kmem_cache_destroy(ntfs_name_cache);
name_err_out:
kmem_cache_destroy(ntfs_attr_ctx_cache);
actx_err_out:
kmem_cache_destroy(ntfs_index_ctx_cache);
ictx_err_out:
if (!err) {
printk(KERN_CRIT "NTFS: Aborting NTFS file system driver "
"registration...\n");
err = -ENOMEM;
}
return err;
}
static void __exit exit_ntfs_fs(void)
{
int err = 0;
ntfs_debug("Unregistering NTFS driver.");
unregister_filesystem(&ntfs_fs_type);
if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1))
printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
ntfs_big_inode_cache_name);
if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1))
printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
ntfs_inode_cache_name);
if (kmem_cache_destroy(ntfs_name_cache) && (err = 1))
printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
ntfs_name_cache_name);
if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1))
printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
ntfs_attr_ctx_cache_name);
if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1))
printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
ntfs_index_ctx_cache_name);
if (err)
printk(KERN_CRIT "NTFS: This causes memory to leak! There is "
"probably a BUG in the driver! Please report "
"you saw this message to "
"linux-ntfs-dev@lists.sourceforge.net\n");
/* Unregister the ntfs sysctls. */
ntfs_sysctl(0);
}
MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2004 Anton Altaparmakov");
MODULE_VERSION(NTFS_VERSION);
MODULE_LICENSE("GPL");
#ifdef DEBUG
module_param(debug_msgs, bool, 0);
MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
#endif
module_init(init_ntfs_fs)
module_exit(exit_ntfs_fs)