linux-stable/drivers/spi/spi-omap2-mcspi.c

1542 lines
39 KiB
C
Raw Normal View History

/*
* OMAP2 McSPI controller driver
*
* Copyright (C) 2005, 2006 Nokia Corporation
* Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
* Juha Yrj<EFBFBD>l<EFBFBD> <juha.yrjola@nokia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/gcd.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/platform_data/spi-omap2-mcspi.h>
#define OMAP2_MCSPI_MAX_FREQ 48000000
#define OMAP2_MCSPI_MAX_DIVIDER 4096
#define OMAP2_MCSPI_MAX_FIFODEPTH 64
#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
#define SPI_AUTOSUSPEND_TIMEOUT 2000
#define OMAP2_MCSPI_REVISION 0x00
#define OMAP2_MCSPI_SYSSTATUS 0x14
#define OMAP2_MCSPI_IRQSTATUS 0x18
#define OMAP2_MCSPI_IRQENABLE 0x1c
#define OMAP2_MCSPI_WAKEUPENABLE 0x20
#define OMAP2_MCSPI_SYST 0x24
#define OMAP2_MCSPI_MODULCTRL 0x28
#define OMAP2_MCSPI_XFERLEVEL 0x7c
/* per-channel banks, 0x14 bytes each, first is: */
#define OMAP2_MCSPI_CHCONF0 0x2c
#define OMAP2_MCSPI_CHSTAT0 0x30
#define OMAP2_MCSPI_CHCTRL0 0x34
#define OMAP2_MCSPI_TX0 0x38
#define OMAP2_MCSPI_RX0 0x3c
/* per-register bitmasks: */
#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
#define OMAP2_MCSPI_CHCONF_POL BIT(1)
#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
#define OMAP2_MCSPI_CHCONF_IS BIT(18)
#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
/* We have 2 DMA channels per CS, one for RX and one for TX */
struct omap2_mcspi_dma {
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
struct completion dma_tx_completion;
struct completion dma_rx_completion;
char dma_rx_ch_name[14];
char dma_tx_ch_name[14];
};
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
* cache operations; better heuristics consider wordsize and bitrate.
*/
#define DMA_MIN_BYTES 160
/*
* Used for context save and restore, structure members to be updated whenever
* corresponding registers are modified.
*/
struct omap2_mcspi_regs {
u32 modulctrl;
u32 wakeupenable;
struct list_head cs;
};
struct omap2_mcspi {
struct spi_master *master;
/* Virtual base address of the controller */
void __iomem *base;
unsigned long phys;
/* SPI1 has 4 channels, while SPI2 has 2 */
struct omap2_mcspi_dma *dma_channels;
struct device *dev;
struct omap2_mcspi_regs ctx;
int fifo_depth;
unsigned int pin_dir:1;
};
struct omap2_mcspi_cs {
void __iomem *base;
unsigned long phys;
int word_len;
u16 mode;
struct list_head node;
/* Context save and restore shadow register */
u32 chconf0, chctrl0;
};
static inline void mcspi_write_reg(struct spi_master *master,
int idx, u32 val)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
writel_relaxed(val, mcspi->base + idx);
}
static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
return readl_relaxed(mcspi->base + idx);
}
static inline void mcspi_write_cs_reg(const struct spi_device *spi,
int idx, u32 val)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
writel_relaxed(val, cs->base + idx);
}
static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
return readl_relaxed(cs->base + idx);
}
static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
return cs->chconf0;
}
static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
cs->chconf0 = val;
mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
}
static inline int mcspi_bytes_per_word(int word_len)
{
if (word_len <= 8)
return 1;
else if (word_len <= 16)
return 2;
else /* word_len <= 32 */
return 4;
}
static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
int is_read, int enable)
{
u32 l, rw;
l = mcspi_cached_chconf0(spi);
if (is_read) /* 1 is read, 0 write */
rw = OMAP2_MCSPI_CHCONF_DMAR;
else
rw = OMAP2_MCSPI_CHCONF_DMAW;
if (enable)
l |= rw;
else
l &= ~rw;
mcspi_write_chconf0(spi, l);
}
static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
u32 l;
l = cs->chctrl0;
if (enable)
l |= OMAP2_MCSPI_CHCTRL_EN;
else
l &= ~OMAP2_MCSPI_CHCTRL_EN;
cs->chctrl0 = l;
mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
/* Flash post-writes */
mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
}
static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
u32 l;
/* The controller handles the inverted chip selects
* using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
* the inversion from the core spi_set_cs function.
*/
if (spi->mode & SPI_CS_HIGH)
enable = !enable;
if (spi->controller_state) {
int err = pm_runtime_get_sync(mcspi->dev);
if (err < 0) {
dev_err(mcspi->dev, "failed to get sync: %d\n", err);
return;
}
l = mcspi_cached_chconf0(spi);
if (enable)
l &= ~OMAP2_MCSPI_CHCONF_FORCE;
else
l |= OMAP2_MCSPI_CHCONF_FORCE;
mcspi_write_chconf0(spi, l);
pm_runtime_mark_last_busy(mcspi->dev);
pm_runtime_put_autosuspend(mcspi->dev);
}
}
static void omap2_mcspi_set_master_mode(struct spi_master *master)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
u32 l;
/*
* Setup when switching from (reset default) slave mode
* to single-channel master mode
*/
l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
ctx->modulctrl = l;
}
static void omap2_mcspi_set_fifo(const struct spi_device *spi,
struct spi_transfer *t, int enable)
{
struct spi_master *master = spi->master;
struct omap2_mcspi_cs *cs = spi->controller_state;
struct omap2_mcspi *mcspi;
unsigned int wcnt;
int max_fifo_depth, fifo_depth, bytes_per_word;
u32 chconf, xferlevel;
mcspi = spi_master_get_devdata(master);
chconf = mcspi_cached_chconf0(spi);
if (enable) {
bytes_per_word = mcspi_bytes_per_word(cs->word_len);
if (t->len % bytes_per_word != 0)
goto disable_fifo;
if (t->rx_buf != NULL && t->tx_buf != NULL)
max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
else
max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
fifo_depth = gcd(t->len, max_fifo_depth);
if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
goto disable_fifo;
wcnt = t->len / bytes_per_word;
if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
goto disable_fifo;
xferlevel = wcnt << 16;
if (t->rx_buf != NULL) {
chconf |= OMAP2_MCSPI_CHCONF_FFER;
xferlevel |= (fifo_depth - 1) << 8;
}
if (t->tx_buf != NULL) {
chconf |= OMAP2_MCSPI_CHCONF_FFET;
xferlevel |= fifo_depth - 1;
}
mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
mcspi_write_chconf0(spi, chconf);
mcspi->fifo_depth = fifo_depth;
return;
}
disable_fifo:
if (t->rx_buf != NULL)
chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
if (t->tx_buf != NULL)
chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
mcspi_write_chconf0(spi, chconf);
mcspi->fifo_depth = 0;
}
static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
{
struct spi_master *spi_cntrl = mcspi->master;
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
struct omap2_mcspi_cs *cs;
/* McSPI: context restore */
mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
list_for_each_entry(cs, &ctx->cs, node)
writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
}
static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(1000);
while (!(readl_relaxed(reg) & bit)) {
if (time_after(jiffies, timeout)) {
if (!(readl_relaxed(reg) & bit))
return -ETIMEDOUT;
else
return 0;
}
cpu_relax();
}
return 0;
}
static void omap2_mcspi_rx_callback(void *data)
{
struct spi_device *spi = data;
struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
/* We must disable the DMA RX request */
omap2_mcspi_set_dma_req(spi, 1, 0);
complete(&mcspi_dma->dma_rx_completion);
}
static void omap2_mcspi_tx_callback(void *data)
{
struct spi_device *spi = data;
struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
/* We must disable the DMA TX request */
omap2_mcspi_set_dma_req(spi, 0, 0);
complete(&mcspi_dma->dma_tx_completion);
}
static void omap2_mcspi_tx_dma(struct spi_device *spi,
struct spi_transfer *xfer,
struct dma_slave_config cfg)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
unsigned int count;
mcspi = spi_master_get_devdata(spi->master);
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
count = xfer->len;
if (mcspi_dma->dma_tx) {
struct dma_async_tx_descriptor *tx;
struct scatterlist sg;
dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
sg_init_table(&sg, 1);
sg_dma_address(&sg) = xfer->tx_dma;
sg_dma_len(&sg) = xfer->len;
tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (tx) {
tx->callback = omap2_mcspi_tx_callback;
tx->callback_param = spi;
dmaengine_submit(tx);
} else {
/* FIXME: fall back to PIO? */
}
}
dma_async_issue_pending(mcspi_dma->dma_tx);
omap2_mcspi_set_dma_req(spi, 0, 1);
}
static unsigned
omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
struct dma_slave_config cfg,
unsigned es)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
unsigned int count, dma_count;
u32 l;
int elements = 0;
int word_len, element_count;
struct omap2_mcspi_cs *cs = spi->controller_state;
mcspi = spi_master_get_devdata(spi->master);
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
count = xfer->len;
dma_count = xfer->len;
/*
* In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
* it mentions reducing DMA transfer length by one element in master
* normal mode.
*/
if (mcspi->fifo_depth == 0)
dma_count -= es;
word_len = cs->word_len;
l = mcspi_cached_chconf0(spi);
if (word_len <= 8)
element_count = count;
else if (word_len <= 16)
element_count = count >> 1;
else /* word_len <= 32 */
element_count = count >> 2;
if (mcspi_dma->dma_rx) {
struct dma_async_tx_descriptor *tx;
struct scatterlist sg;
dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
/*
* Reduce DMA transfer length by one more if McSPI is
* configured in turbo mode.
*/
if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
dma_count -= es;
sg_init_table(&sg, 1);
sg_dma_address(&sg) = xfer->rx_dma;
sg_dma_len(&sg) = dma_count;
tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
if (tx) {
tx->callback = omap2_mcspi_rx_callback;
tx->callback_param = spi;
dmaengine_submit(tx);
} else {
/* FIXME: fall back to PIO? */
}
}
dma_async_issue_pending(mcspi_dma->dma_rx);
omap2_mcspi_set_dma_req(spi, 1, 1);
wait_for_completion(&mcspi_dma->dma_rx_completion);
dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
DMA_FROM_DEVICE);
if (mcspi->fifo_depth > 0)
return count;
/*
* Due to the DMA transfer length reduction the missing bytes must
* be read manually to receive all of the expected data.
*/
omap2_mcspi_set_enable(spi, 0);
elements = element_count - 1;
if (l & OMAP2_MCSPI_CHCONF_TURBO) {
elements--;
if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
& OMAP2_MCSPI_CHSTAT_RXS)) {
u32 w;
w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
if (word_len <= 8)
((u8 *)xfer->rx_buf)[elements++] = w;
else if (word_len <= 16)
((u16 *)xfer->rx_buf)[elements++] = w;
else /* word_len <= 32 */
((u32 *)xfer->rx_buf)[elements++] = w;
} else {
int bytes_per_word = mcspi_bytes_per_word(word_len);
dev_err(&spi->dev, "DMA RX penultimate word empty\n");
count -= (bytes_per_word << 1);
omap2_mcspi_set_enable(spi, 1);
return count;
}
}
if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
& OMAP2_MCSPI_CHSTAT_RXS)) {
u32 w;
w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
if (word_len <= 8)
((u8 *)xfer->rx_buf)[elements] = w;
else if (word_len <= 16)
((u16 *)xfer->rx_buf)[elements] = w;
else /* word_len <= 32 */
((u32 *)xfer->rx_buf)[elements] = w;
} else {
dev_err(&spi->dev, "DMA RX last word empty\n");
count -= mcspi_bytes_per_word(word_len);
}
omap2_mcspi_set_enable(spi, 1);
return count;
}
static unsigned
omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_cs *cs = spi->controller_state;
struct omap2_mcspi_dma *mcspi_dma;
unsigned int count;
u32 l;
u8 *rx;
const u8 *tx;
struct dma_slave_config cfg;
enum dma_slave_buswidth width;
unsigned es;
u32 burst;
void __iomem *chstat_reg;
void __iomem *irqstat_reg;
int wait_res;
mcspi = spi_master_get_devdata(spi->master);
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
l = mcspi_cached_chconf0(spi);
if (cs->word_len <= 8) {
width = DMA_SLAVE_BUSWIDTH_1_BYTE;
es = 1;
} else if (cs->word_len <= 16) {
width = DMA_SLAVE_BUSWIDTH_2_BYTES;
es = 2;
} else {
width = DMA_SLAVE_BUSWIDTH_4_BYTES;
es = 4;
}
count = xfer->len;
burst = 1;
if (mcspi->fifo_depth > 0) {
if (count > mcspi->fifo_depth)
burst = mcspi->fifo_depth / es;
else
burst = count / es;
}
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
cfg.src_addr_width = width;
cfg.dst_addr_width = width;
cfg.src_maxburst = burst;
cfg.dst_maxburst = burst;
rx = xfer->rx_buf;
tx = xfer->tx_buf;
if (tx != NULL)
omap2_mcspi_tx_dma(spi, xfer, cfg);
if (rx != NULL)
count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
if (tx != NULL) {
wait_for_completion(&mcspi_dma->dma_tx_completion);
dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
DMA_TO_DEVICE);
if (mcspi->fifo_depth > 0) {
irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
if (mcspi_wait_for_reg_bit(irqstat_reg,
OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
dev_err(&spi->dev, "EOW timed out\n");
mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
OMAP2_MCSPI_IRQSTATUS_EOW);
}
/* for TX_ONLY mode, be sure all words have shifted out */
if (rx == NULL) {
chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
if (mcspi->fifo_depth > 0) {
wait_res = mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXFFE);
if (wait_res < 0)
dev_err(&spi->dev, "TXFFE timed out\n");
} else {
wait_res = mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS);
if (wait_res < 0)
dev_err(&spi->dev, "TXS timed out\n");
}
if (wait_res >= 0 &&
(mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_EOT) < 0))
dev_err(&spi->dev, "EOT timed out\n");
}
}
return count;
}
static unsigned
omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_cs *cs = spi->controller_state;
unsigned int count, c;
u32 l;
void __iomem *base = cs->base;
void __iomem *tx_reg;
void __iomem *rx_reg;
void __iomem *chstat_reg;
int word_len;
mcspi = spi_master_get_devdata(spi->master);
count = xfer->len;
c = count;
word_len = cs->word_len;
l = mcspi_cached_chconf0(spi);
/* We store the pre-calculated register addresses on stack to speed
* up the transfer loop. */
tx_reg = base + OMAP2_MCSPI_TX0;
rx_reg = base + OMAP2_MCSPI_RX0;
chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
if (c < (word_len>>3))
return 0;
if (word_len <= 8) {
u8 *rx;
const u8 *tx;
rx = xfer->rx_buf;
tx = xfer->tx_buf;
do {
c -= 1;
if (tx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0) {
dev_err(&spi->dev, "TXS timed out\n");
goto out;
}
dev_vdbg(&spi->dev, "write-%d %02x\n",
word_len, *tx);
writel_relaxed(*tx++, tx_reg);
}
if (rx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev, "RXS timed out\n");
goto out;
}
if (c == 1 && tx == NULL &&
(l & OMAP2_MCSPI_CHCONF_TURBO)) {
omap2_mcspi_set_enable(spi, 0);
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %02x\n",
word_len, *(rx - 1));
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev,
"RXS timed out\n");
goto out;
}
c = 0;
} else if (c == 0 && tx == NULL) {
omap2_mcspi_set_enable(spi, 0);
}
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %02x\n",
word_len, *(rx - 1));
}
} while (c);
} else if (word_len <= 16) {
u16 *rx;
const u16 *tx;
rx = xfer->rx_buf;
tx = xfer->tx_buf;
do {
c -= 2;
if (tx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0) {
dev_err(&spi->dev, "TXS timed out\n");
goto out;
}
dev_vdbg(&spi->dev, "write-%d %04x\n",
word_len, *tx);
writel_relaxed(*tx++, tx_reg);
}
if (rx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev, "RXS timed out\n");
goto out;
}
if (c == 2 && tx == NULL &&
(l & OMAP2_MCSPI_CHCONF_TURBO)) {
omap2_mcspi_set_enable(spi, 0);
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %04x\n",
word_len, *(rx - 1));
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev,
"RXS timed out\n");
goto out;
}
c = 0;
} else if (c == 0 && tx == NULL) {
omap2_mcspi_set_enable(spi, 0);
}
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %04x\n",
word_len, *(rx - 1));
}
} while (c >= 2);
} else if (word_len <= 32) {
u32 *rx;
const u32 *tx;
rx = xfer->rx_buf;
tx = xfer->tx_buf;
do {
c -= 4;
if (tx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0) {
dev_err(&spi->dev, "TXS timed out\n");
goto out;
}
dev_vdbg(&spi->dev, "write-%d %08x\n",
word_len, *tx);
writel_relaxed(*tx++, tx_reg);
}
if (rx != NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev, "RXS timed out\n");
goto out;
}
if (c == 4 && tx == NULL &&
(l & OMAP2_MCSPI_CHCONF_TURBO)) {
omap2_mcspi_set_enable(spi, 0);
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %08x\n",
word_len, *(rx - 1));
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_RXS) < 0) {
dev_err(&spi->dev,
"RXS timed out\n");
goto out;
}
c = 0;
} else if (c == 0 && tx == NULL) {
omap2_mcspi_set_enable(spi, 0);
}
*rx++ = readl_relaxed(rx_reg);
dev_vdbg(&spi->dev, "read-%d %08x\n",
word_len, *(rx - 1));
}
} while (c >= 4);
}
/* for TX_ONLY mode, be sure all words have shifted out */
if (xfer->rx_buf == NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0) {
dev_err(&spi->dev, "TXS timed out\n");
} else if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_EOT) < 0)
dev_err(&spi->dev, "EOT timed out\n");
/* disable chan to purge rx datas received in TX_ONLY transfer,
* otherwise these rx datas will affect the direct following
* RX_ONLY transfer.
*/
omap2_mcspi_set_enable(spi, 0);
}
out:
omap2_mcspi_set_enable(spi, 1);
return count - c;
}
static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
{
u32 div;
for (div = 0; div < 15; div++)
if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
return div;
return 15;
}
/* called only when no transfer is active to this device */
static int omap2_mcspi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct omap2_mcspi_cs *cs = spi->controller_state;
struct omap2_mcspi *mcspi;
struct spi_master *spi_cntrl;
u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
u8 word_len = spi->bits_per_word;
u32 speed_hz = spi->max_speed_hz;
mcspi = spi_master_get_devdata(spi->master);
spi_cntrl = mcspi->master;
if (t != NULL && t->bits_per_word)
word_len = t->bits_per_word;
cs->word_len = word_len;
if (t && t->speed_hz)
speed_hz = t->speed_hz;
speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
clkd = omap2_mcspi_calc_divisor(speed_hz);
speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
clkg = 0;
} else {
div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
clkd = (div - 1) & 0xf;
extclk = (div - 1) >> 4;
clkg = OMAP2_MCSPI_CHCONF_CLKG;
}
l = mcspi_cached_chconf0(spi);
/* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
* REVISIT: this controller could support SPI_3WIRE mode.
*/
if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
l &= ~OMAP2_MCSPI_CHCONF_IS;
l &= ~OMAP2_MCSPI_CHCONF_DPE1;
l |= OMAP2_MCSPI_CHCONF_DPE0;
} else {
l |= OMAP2_MCSPI_CHCONF_IS;
l |= OMAP2_MCSPI_CHCONF_DPE1;
l &= ~OMAP2_MCSPI_CHCONF_DPE0;
}
/* wordlength */
l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
l |= (word_len - 1) << 7;
/* set chipselect polarity; manage with FORCE */
if (!(spi->mode & SPI_CS_HIGH))
l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
else
l &= ~OMAP2_MCSPI_CHCONF_EPOL;
/* set clock divisor */
l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
l |= clkd << 2;
/* set clock granularity */
l &= ~OMAP2_MCSPI_CHCONF_CLKG;
l |= clkg;
if (clkg) {
cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
cs->chctrl0 |= extclk << 8;
mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
}
/* set SPI mode 0..3 */
if (spi->mode & SPI_CPOL)
l |= OMAP2_MCSPI_CHCONF_POL;
else
l &= ~OMAP2_MCSPI_CHCONF_POL;
if (spi->mode & SPI_CPHA)
l |= OMAP2_MCSPI_CHCONF_PHA;
else
l &= ~OMAP2_MCSPI_CHCONF_PHA;
mcspi_write_chconf0(spi, l);
cs->mode = spi->mode;
dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
speed_hz,
(spi->mode & SPI_CPHA) ? "trailing" : "leading",
(spi->mode & SPI_CPOL) ? "inverted" : "normal");
return 0;
}
/*
* Note that we currently allow DMA only if we get a channel
* for both rx and tx. Otherwise we'll do PIO for both rx and tx.
*/
static int omap2_mcspi_request_dma(struct spi_device *spi)
{
struct spi_master *master = spi->master;
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
int ret = 0;
mcspi = spi_master_get_devdata(master);
mcspi_dma = mcspi->dma_channels + spi->chip_select;
init_completion(&mcspi_dma->dma_rx_completion);
init_completion(&mcspi_dma->dma_tx_completion);
mcspi_dma->dma_rx = dma_request_chan(&master->dev,
mcspi_dma->dma_rx_ch_name);
if (IS_ERR(mcspi_dma->dma_rx)) {
ret = PTR_ERR(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = NULL;
goto no_dma;
}
mcspi_dma->dma_tx = dma_request_chan(&master->dev,
mcspi_dma->dma_tx_ch_name);
if (IS_ERR(mcspi_dma->dma_tx)) {
ret = PTR_ERR(mcspi_dma->dma_tx);
mcspi_dma->dma_tx = NULL;
dma_release_channel(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = NULL;
}
no_dma:
return ret;
}
static int omap2_mcspi_setup(struct spi_device *spi)
{
int ret;
struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
struct omap2_mcspi_dma *mcspi_dma;
struct omap2_mcspi_cs *cs = spi->controller_state;
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
if (!cs) {
SPI: fix over-eager devm_xxx() conversion 1a77b127ae (OMAP : SPI : use devm_* functions) converted the SPI device controller state to use devm_kzalloc(). Unfortunately, this is used against an unbound struct device, which results in the following when the device is bound to its driver: ------------[ cut here ]------------ WARNING: at /home/rmk/git/linux-rmk/drivers/base/dd.c:257 driver_probe_device+0x78/0x21c() Modules linked in: Backtrace: [<c0017d0c>] (dump_backtrace+0x0/0x10c) from [<c033e208>] (dump_stack+0x18/0x1c) r7:00000000 r6:c01ff28c r5:c040050c r4:00000101 [<c033e1f0>] (dump_stack+0x0/0x1c) from [<c00337ec>] (warn_slowpath_common+0x58/0x70) [<c0033794>] (warn_slowpath_common+0x0/0x70) from [<c0033828>] (warn_slowpath_null+0x24/0x2c) [<c0033804>] (warn_slowpath_null+0x0/0x2c) from [<c01ff28c>] (driver_probe_device+0x78/0x21c) [<c01ff214>] (driver_probe_device+0x0/0x21c) from [<c01ff49c>] (__driver_attach+0x6c/0x90) [<c01ff430>] (__driver_attach+0x0/0x90) from [<c01fda70>] (bus_for_each_dev+0x58/0x98) [<c01fda18>] (bus_for_each_dev+0x0/0x98) from [<c01ff0f4>] (driver_attach+0x20/0x28) [<c01ff0d4>] (driver_attach+0x0/0x28) from [<c01fe2f4>] (bus_add_driver+0xb4/0x230) [<c01fe240>] (bus_add_driver+0x0/0x230) from [<c01ffb24>] (driver_register+0xac/0x138) [<c01ffa78>] (driver_register+0x0/0x138) from [<c0215d4c>] (spi_register_driver+0x4c/0x60) [<c0215d00>] (spi_register_driver+0x0/0x60) from [<c045414c>] (ks8851_init+0x14/0x1c) [<c0454138>] (ks8851_init+0x0/0x1c) from [<c0008770>] (do_one_initcall+0x9c/0x164) [<c00086d4>] (do_one_initcall+0x0/0x164) from [<c0436410>] (kernel_init+0x128/0x210) [<c04362e8>] (kernel_init+0x0/0x210) from [<c0038754>] (do_exit+0x0/0x72c) ---[ end trace 4dcda79f5e89dd84 ]--- ks8851 spi1.0: message enable is 0 ks8851 spi1.0: eth0: revision 0, MAC 08:00:28:01:4d:c6, IRQ 194, has EEPROM Fix this by partially reverting the original commit. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2012-06-18 11:27:04 +01:00
cs = kzalloc(sizeof *cs, GFP_KERNEL);
if (!cs)
return -ENOMEM;
cs->base = mcspi->base + spi->chip_select * 0x14;
cs->phys = mcspi->phys + spi->chip_select * 0x14;
cs->mode = 0;
cs->chconf0 = 0;
cs->chctrl0 = 0;
spi->controller_state = cs;
/* Link this to context save list */
list_add_tail(&cs->node, &ctx->cs);
if (gpio_is_valid(spi->cs_gpio)) {
ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
if (ret) {
dev_err(&spi->dev, "failed to request gpio\n");
return ret;
}
gpio_direction_output(spi->cs_gpio,
!(spi->mode & SPI_CS_HIGH));
}
}
if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
ret = omap2_mcspi_request_dma(spi);
if (ret)
dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n",
ret);
}
ret = pm_runtime_get_sync(mcspi->dev);
if (ret < 0)
return ret;
ret = omap2_mcspi_setup_transfer(spi, NULL);
pm_runtime_mark_last_busy(mcspi->dev);
pm_runtime_put_autosuspend(mcspi->dev);
return ret;
}
static void omap2_mcspi_cleanup(struct spi_device *spi)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
struct omap2_mcspi_cs *cs;
mcspi = spi_master_get_devdata(spi->master);
if (spi->controller_state) {
/* Unlink controller state from context save list */
cs = spi->controller_state;
list_del(&cs->node);
SPI: fix over-eager devm_xxx() conversion 1a77b127ae (OMAP : SPI : use devm_* functions) converted the SPI device controller state to use devm_kzalloc(). Unfortunately, this is used against an unbound struct device, which results in the following when the device is bound to its driver: ------------[ cut here ]------------ WARNING: at /home/rmk/git/linux-rmk/drivers/base/dd.c:257 driver_probe_device+0x78/0x21c() Modules linked in: Backtrace: [<c0017d0c>] (dump_backtrace+0x0/0x10c) from [<c033e208>] (dump_stack+0x18/0x1c) r7:00000000 r6:c01ff28c r5:c040050c r4:00000101 [<c033e1f0>] (dump_stack+0x0/0x1c) from [<c00337ec>] (warn_slowpath_common+0x58/0x70) [<c0033794>] (warn_slowpath_common+0x0/0x70) from [<c0033828>] (warn_slowpath_null+0x24/0x2c) [<c0033804>] (warn_slowpath_null+0x0/0x2c) from [<c01ff28c>] (driver_probe_device+0x78/0x21c) [<c01ff214>] (driver_probe_device+0x0/0x21c) from [<c01ff49c>] (__driver_attach+0x6c/0x90) [<c01ff430>] (__driver_attach+0x0/0x90) from [<c01fda70>] (bus_for_each_dev+0x58/0x98) [<c01fda18>] (bus_for_each_dev+0x0/0x98) from [<c01ff0f4>] (driver_attach+0x20/0x28) [<c01ff0d4>] (driver_attach+0x0/0x28) from [<c01fe2f4>] (bus_add_driver+0xb4/0x230) [<c01fe240>] (bus_add_driver+0x0/0x230) from [<c01ffb24>] (driver_register+0xac/0x138) [<c01ffa78>] (driver_register+0x0/0x138) from [<c0215d4c>] (spi_register_driver+0x4c/0x60) [<c0215d00>] (spi_register_driver+0x0/0x60) from [<c045414c>] (ks8851_init+0x14/0x1c) [<c0454138>] (ks8851_init+0x0/0x1c) from [<c0008770>] (do_one_initcall+0x9c/0x164) [<c00086d4>] (do_one_initcall+0x0/0x164) from [<c0436410>] (kernel_init+0x128/0x210) [<c04362e8>] (kernel_init+0x0/0x210) from [<c0038754>] (do_exit+0x0/0x72c) ---[ end trace 4dcda79f5e89dd84 ]--- ks8851 spi1.0: message enable is 0 ks8851 spi1.0: eth0: revision 0, MAC 08:00:28:01:4d:c6, IRQ 194, has EEPROM Fix this by partially reverting the original commit. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2012-06-18 11:27:04 +01:00
kfree(cs);
}
if (spi->chip_select < spi->master->num_chipselect) {
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
if (mcspi_dma->dma_rx) {
dma_release_channel(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = NULL;
}
if (mcspi_dma->dma_tx) {
dma_release_channel(mcspi_dma->dma_tx);
mcspi_dma->dma_tx = NULL;
}
}
if (gpio_is_valid(spi->cs_gpio))
gpio_free(spi->cs_gpio);
}
static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
struct spi_device *spi, struct spi_transfer *t)
{
/* We only enable one channel at a time -- the one whose message is
* -- although this controller would gladly
* arbitrate among multiple channels. This corresponds to "single
* channel" master mode. As a side effect, we need to manage the
* chipselect with the FORCE bit ... CS != channel enable.
*/
struct spi_master *master;
struct omap2_mcspi_dma *mcspi_dma;
struct omap2_mcspi_cs *cs;
struct omap2_mcspi_device_config *cd;
int par_override = 0;
int status = 0;
u32 chconf;
master = spi->master;
mcspi_dma = mcspi->dma_channels + spi->chip_select;
cs = spi->controller_state;
cd = spi->controller_data;
/*
* The slave driver could have changed spi->mode in which case
* it will be different from cs->mode (the current hardware setup).
* If so, set par_override (even though its not a parity issue) so
* omap2_mcspi_setup_transfer will be called to configure the hardware
* with the correct mode on the first iteration of the loop below.
*/
if (spi->mode != cs->mode)
par_override = 1;
omap2_mcspi_set_enable(spi, 0);
if (gpio_is_valid(spi->cs_gpio))
omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
if (par_override ||
(t->speed_hz != spi->max_speed_hz) ||
(t->bits_per_word != spi->bits_per_word)) {
par_override = 1;
status = omap2_mcspi_setup_transfer(spi, t);
if (status < 0)
goto out;
if (t->speed_hz == spi->max_speed_hz &&
t->bits_per_word == spi->bits_per_word)
par_override = 0;
}
if (cd && cd->cs_per_word) {
chconf = mcspi->ctx.modulctrl;
chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
mcspi->ctx.modulctrl =
mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
}
chconf = mcspi_cached_chconf0(spi);
chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
if (t->tx_buf == NULL)
chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
else if (t->rx_buf == NULL)
chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
if (cd && cd->turbo_mode && t->tx_buf == NULL) {
/* Turbo mode is for more than one word */
if (t->len > ((cs->word_len + 7) >> 3))
chconf |= OMAP2_MCSPI_CHCONF_TURBO;
}
mcspi_write_chconf0(spi, chconf);
if (t->len) {
unsigned count;
if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
(t->len >= DMA_MIN_BYTES))
omap2_mcspi_set_fifo(spi, t, 1);
omap2_mcspi_set_enable(spi, 1);
/* RX_ONLY mode needs dummy data in TX reg */
if (t->tx_buf == NULL)
writel_relaxed(0, cs->base
+ OMAP2_MCSPI_TX0);
if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
(t->len >= DMA_MIN_BYTES))
count = omap2_mcspi_txrx_dma(spi, t);
else
count = omap2_mcspi_txrx_pio(spi, t);
if (count != t->len) {
status = -EIO;
goto out;
}
}
omap2_mcspi_set_enable(spi, 0);
if (mcspi->fifo_depth > 0)
omap2_mcspi_set_fifo(spi, t, 0);
out:
/* Restore defaults if they were overriden */
if (par_override) {
par_override = 0;
status = omap2_mcspi_setup_transfer(spi, NULL);
}
if (cd && cd->cs_per_word) {
chconf = mcspi->ctx.modulctrl;
chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
mcspi->ctx.modulctrl =
mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
}
omap2_mcspi_set_enable(spi, 0);
if (gpio_is_valid(spi->cs_gpio))
omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
if (mcspi->fifo_depth > 0 && t)
omap2_mcspi_set_fifo(spi, t, 0);
return status;
}
static int omap2_mcspi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
struct omap2_mcspi_cs *cs;
/* Only a single channel can have the FORCE bit enabled
* in its chconf0 register.
* Scan all channels and disable them except the current one.
* A FORCE can remain from a last transfer having cs_change enabled
*/
list_for_each_entry(cs, &ctx->cs, node) {
if (msg->spi->controller_state == cs)
continue;
if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
writel_relaxed(cs->chconf0,
cs->base + OMAP2_MCSPI_CHCONF0);
readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
}
}
return 0;
}
static int omap2_mcspi_transfer_one(struct spi_master *master,
struct spi_device *spi, struct spi_transfer *t)
{
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
const void *tx_buf = t->tx_buf;
void *rx_buf = t->rx_buf;
unsigned len = t->len;
mcspi = spi_master_get_devdata(master);
mcspi_dma = mcspi->dma_channels + spi->chip_select;
if ((len && !(rx_buf || tx_buf))) {
dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
t->speed_hz,
len,
tx_buf ? "tx" : "",
rx_buf ? "rx" : "",
t->bits_per_word);
return -EINVAL;
}
if (len < DMA_MIN_BYTES)
goto skip_dma_map;
if (mcspi_dma->dma_tx && tx_buf != NULL) {
t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
len, DMA_TO_DEVICE);
if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
'T', len);
return -EINVAL;
}
}
if (mcspi_dma->dma_rx && rx_buf != NULL) {
t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
DMA_FROM_DEVICE);
if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
'R', len);
if (tx_buf != NULL)
dma_unmap_single(mcspi->dev, t->tx_dma,
len, DMA_TO_DEVICE);
return -EINVAL;
}
}
skip_dma_map:
return omap2_mcspi_work_one(mcspi, spi, t);
}
static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
{
struct spi_master *master = mcspi->master;
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
int ret = 0;
ret = pm_runtime_get_sync(mcspi->dev);
if (ret < 0)
return ret;
mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
OMAP2_MCSPI_WAKEUPENABLE_WKEN);
ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
omap2_mcspi_set_master_mode(master);
pm_runtime_mark_last_busy(mcspi->dev);
pm_runtime_put_autosuspend(mcspi->dev);
return 0;
}
static int omap_mcspi_runtime_resume(struct device *dev)
{
struct omap2_mcspi *mcspi;
struct spi_master *master;
master = dev_get_drvdata(dev);
mcspi = spi_master_get_devdata(master);
omap2_mcspi_restore_ctx(mcspi);
return 0;
}
static struct omap2_mcspi_platform_config omap2_pdata = {
.regs_offset = 0,
};
static struct omap2_mcspi_platform_config omap4_pdata = {
.regs_offset = OMAP4_MCSPI_REG_OFFSET,
};
static const struct of_device_id omap_mcspi_of_match[] = {
{
.compatible = "ti,omap2-mcspi",
.data = &omap2_pdata,
},
{
.compatible = "ti,omap4-mcspi",
.data = &omap4_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
static int omap2_mcspi_probe(struct platform_device *pdev)
{
struct spi_master *master;
const struct omap2_mcspi_platform_config *pdata;
struct omap2_mcspi *mcspi;
struct resource *r;
int status = 0, i;
u32 regs_offset = 0;
static int bus_num = 1;
struct device_node *node = pdev->dev.of_node;
const struct of_device_id *match;
master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
if (master == NULL) {
dev_dbg(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
master->setup = omap2_mcspi_setup;
master->auto_runtime_pm = true;
master->prepare_message = omap2_mcspi_prepare_message;
master->transfer_one = omap2_mcspi_transfer_one;
master->set_cs = omap2_mcspi_set_cs;
master->cleanup = omap2_mcspi_cleanup;
master->dev.of_node = node;
master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
platform_set_drvdata(pdev, master);
mcspi = spi_master_get_devdata(master);
mcspi->master = master;
match = of_match_device(omap_mcspi_of_match, &pdev->dev);
if (match) {
u32 num_cs = 1; /* default number of chipselect */
pdata = match->data;
of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
master->num_chipselect = num_cs;
master->bus_num = bus_num++;
if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
} else {
pdata = dev_get_platdata(&pdev->dev);
master->num_chipselect = pdata->num_cs;
if (pdev->id != -1)
master->bus_num = pdev->id;
mcspi->pin_dir = pdata->pin_dir;
}
regs_offset = pdata->regs_offset;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
status = -ENODEV;
goto free_master;
}
r->start += regs_offset;
r->end += regs_offset;
mcspi->phys = r->start;
mcspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(mcspi->base)) {
status = PTR_ERR(mcspi->base);
goto free_master;
}
mcspi->dev = &pdev->dev;
INIT_LIST_HEAD(&mcspi->ctx.cs);
mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
sizeof(struct omap2_mcspi_dma),
GFP_KERNEL);
if (mcspi->dma_channels == NULL) {
status = -ENOMEM;
goto free_master;
}
for (i = 0; i < master->num_chipselect; i++) {
sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
}
if (status < 0)
goto free_master;
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
pm_runtime_enable(&pdev->dev);
status = omap2_mcspi_master_setup(mcspi);
if (status < 0)
goto disable_pm;
status = devm_spi_register_master(&pdev->dev, master);
if (status < 0)
goto disable_pm;
return status;
disable_pm:
spi: omap2-mcspi: Fix PM regression with deferred probe for pm_runtime_reinit Commit 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") introduced pm_runtime_reinit() that is used to reinitialize PM runtime after -EPROBE_DEFER. This allows shutting down the device after a failed probe. However, for drivers using pm_runtime_use_autosuspend() this can cause a state where suspend callback is never called after -EPROBE_DEFER. On the following device driver probe, hardware state is different from the PM runtime state causing omap_device to produce the following error: omap_device_enable() called from invalid state 1 And with omap_device and omap hardware being picky for PM, this will block any deeper idle states in hardware. The solution is to fix the drivers to follow the PM runtime documentation: 1. For sections of code that needs the device disabled, use pm_runtime_put_sync_suspend() if pm_runtime_set_autosuspend() has been set. 2. For driver exit code, use pm_runtime_dont_use_autosuspend() before pm_runtime_put_sync() if pm_runtime_use_autosuspend() has been set. Fixes: 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") Cc: linux-spi@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Mark Brown <broonie@kernel.org> Cc: Nishanth Menon <nm@ti.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Tero Kristo <t-kristo@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2016-02-10 15:02:46 -08:00
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
free_master:
spi_master_put(master);
return status;
}
static int omap2_mcspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
spi: omap2-mcspi: Fix PM regression with deferred probe for pm_runtime_reinit Commit 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") introduced pm_runtime_reinit() that is used to reinitialize PM runtime after -EPROBE_DEFER. This allows shutting down the device after a failed probe. However, for drivers using pm_runtime_use_autosuspend() this can cause a state where suspend callback is never called after -EPROBE_DEFER. On the following device driver probe, hardware state is different from the PM runtime state causing omap_device to produce the following error: omap_device_enable() called from invalid state 1 And with omap_device and omap hardware being picky for PM, this will block any deeper idle states in hardware. The solution is to fix the drivers to follow the PM runtime documentation: 1. For sections of code that needs the device disabled, use pm_runtime_put_sync_suspend() if pm_runtime_set_autosuspend() has been set. 2. For driver exit code, use pm_runtime_dont_use_autosuspend() before pm_runtime_put_sync() if pm_runtime_use_autosuspend() has been set. Fixes: 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") Cc: linux-spi@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Mark Brown <broonie@kernel.org> Cc: Nishanth Menon <nm@ti.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Tero Kristo <t-kristo@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2016-02-10 15:02:46 -08:00
pm_runtime_dont_use_autosuspend(mcspi->dev);
pm_runtime_put_sync(mcspi->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:omap2_mcspi");
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
#ifdef CONFIG_SUSPEND
/*
* When SPI wake up from off-mode, CS is in activate state. If it was in
* unactive state when driver was suspend, then force it to unactive state at
* wake up.
*/
static int omap2_mcspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
struct omap2_mcspi_regs *ctx = &mcspi->ctx;
struct omap2_mcspi_cs *cs;
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
pm_runtime_get_sync(mcspi->dev);
list_for_each_entry(cs, &ctx->cs, node) {
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
/*
* We need to toggle CS state for OMAP take this
* change in account.
*/
cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
}
}
pm_runtime_mark_last_busy(mcspi->dev);
pm_runtime_put_autosuspend(mcspi->dev);
return pinctrl_pm_select_default_state(dev);
}
static int omap2_mcspi_suspend(struct device *dev)
{
return pinctrl_pm_select_sleep_state(dev);
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
}
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
#else
#define omap2_mcspi_suspend NULL
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
#define omap2_mcspi_resume NULL
#endif
static const struct dev_pm_ops omap2_mcspi_pm_ops = {
.resume = omap2_mcspi_resume,
.suspend = omap2_mcspi_suspend,
.runtime_resume = omap_mcspi_runtime_resume,
spi/omap2_mcspi.c: Force CS to be in inactive state after off-mode transition When SPI wake up from OFF mode, CS is in the wrong state: force it to the inactive state. During the system life, I monitored the CS behavior using a oscilloscope. I also activated debug in omap2_mcspi, so I saw when driver disable the clocks and restore context when device is not used.Each time the CS was in the correct state. It was only when system was put suspend to ram with off-mode activated that on resume the CS was in wrong state( ie activated). Changelog: * Change from v1 to v2: - Rebase on linus/master (after 2.6.37-rc1) - Do some clean-up and fix indentation on both patches - Add more explanations for patch 2 * Change from v2 to v3: - Use directly resume function of spi_master instead of using function - from spi_device as Grant Likely pointed it out. - Force this transition explicitly for each CS used by a device. * Change from v3 to v4: - Patch clean-up according to Kevin Hilman and checkpatch. - Now force CS to be in inactive state only if it was inactive when it was suspended. * Change from v4 to v5: - Rebase on linus/master (after 2.6.37-rc3) - Collapse some lines as pointed by Grant Likely - Fix a spelling * Change from v5 to v6: - Rebase on linus/master (after 2.6.37-rc7) - Use CONFIG_SUSPEND instead of CONFIG_PM - Didn't use legacy PM methods anymore. Instead, add a struct dev_pm_ops and add the resume method there. - Fix multi-line comment style * Change from v6 to v7: - Rebase on linus/master (after 2.6.37-rc8) - Drop an extra line Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Acked-by: David Brownell <dbrownell@users.sourceforge.net> Reviewed-by: Kevin Hilman <khilman@deeprootsystems.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-12-29 11:52:53 +01:00
};
static struct platform_driver omap2_mcspi_driver = {
.driver = {
.name = "omap2_mcspi",
.pm = &omap2_mcspi_pm_ops,
.of_match_table = omap_mcspi_of_match,
},
.probe = omap2_mcspi_probe,
.remove = omap2_mcspi_remove,
};
module_platform_driver(omap2_mcspi_driver);
MODULE_LICENSE("GPL");