mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 21:53:44 +00:00
212 lines
8.1 KiB
Plaintext
212 lines
8.1 KiB
Plaintext
|
Open Firmware Device Tree Selftest
|
|||
|
----------------------------------
|
|||
|
|
|||
|
Author: Gaurav Minocha <gaurav.minocha.os@gmail.com>
|
|||
|
|
|||
|
1. Introduction
|
|||
|
|
|||
|
This document explains how the test data required for executing OF selftest
|
|||
|
is attached to the live tree dynamically, independent of the machine's
|
|||
|
architecture.
|
|||
|
|
|||
|
It is recommended to read the following documents before moving ahead.
|
|||
|
|
|||
|
[1] Documentation/devicetree/usage-model.txt
|
|||
|
[2] http://www.devicetree.org/Device_Tree_Usage
|
|||
|
|
|||
|
OF Selftest has been designed to test the interface (include/linux/of.h)
|
|||
|
provided to device driver developers to fetch the device information..etc.
|
|||
|
from the unflattened device tree data structure. This interface is used by
|
|||
|
most of the device drivers in various use cases.
|
|||
|
|
|||
|
|
|||
|
2. Test-data
|
|||
|
|
|||
|
The Device Tree Source file (drivers/of/testcase-data/testcases.dts) contains
|
|||
|
the test data required for executing the unit tests automated in
|
|||
|
drivers/of/selftests.c. Currently, following Device Tree Source Include files
|
|||
|
(.dtsi) are included in testcase.dts:
|
|||
|
|
|||
|
drivers/of/testcase-data/tests-interrupts.dtsi
|
|||
|
drivers/of/testcase-data/tests-platform.dtsi
|
|||
|
drivers/of/testcase-data/tests-phandle.dtsi
|
|||
|
drivers/of/testcase-data/tests-match.dtsi
|
|||
|
|
|||
|
When the kernel is build with OF_SELFTEST enabled, then the following make rule
|
|||
|
|
|||
|
$(obj)/%.dtb: $(src)/%.dts FORCE
|
|||
|
$(call if_changed_dep, dtc)
|
|||
|
|
|||
|
is used to compile the DT source file (testcase.dts) into a binary blob
|
|||
|
(testcase.dtb), also referred as flattened DT.
|
|||
|
|
|||
|
After that, using the following rule the binary blob above is wrapped as an
|
|||
|
assembly file (testcase.dtb.S).
|
|||
|
|
|||
|
$(obj)/%.dtb.S: $(obj)/%.dtb
|
|||
|
$(call cmd, dt_S_dtb)
|
|||
|
|
|||
|
The assembly file is compiled into an object file (testcase.dtb.o), and is
|
|||
|
linked into the kernel image.
|
|||
|
|
|||
|
|
|||
|
2.1. Adding the test data
|
|||
|
|
|||
|
Un-flattened device tree structure:
|
|||
|
|
|||
|
Un-flattened device tree consists of connected device_node(s) in form of a tree
|
|||
|
structure described below.
|
|||
|
|
|||
|
// following struct members are used to construct the tree
|
|||
|
struct device_node {
|
|||
|
...
|
|||
|
struct device_node *parent;
|
|||
|
struct device_node *child;
|
|||
|
struct device_node *sibling;
|
|||
|
struct device_node *allnext; /* next in list of all nodes */
|
|||
|
...
|
|||
|
};
|
|||
|
|
|||
|
Figure 1, describes a generic structure of machine’s un-flattened device tree
|
|||
|
considering only child and sibling pointers. There exists another pointer,
|
|||
|
*parent, that is used to traverse the tree in the reverse direction. So, at
|
|||
|
a particular level the child node and all the sibling nodes will have a parent
|
|||
|
pointer pointing to a common node (e.g. child1, sibling2, sibling3, sibling4’s
|
|||
|
parent points to root node)
|
|||
|
|
|||
|
root (‘/’)
|
|||
|
|
|
|||
|
child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|||
|
| | | |
|
|||
|
| | | null
|
|||
|
| | |
|
|||
|
| | child31 -> sibling32 -> null
|
|||
|
| | | |
|
|||
|
| | null null
|
|||
|
| |
|
|||
|
| child21 -> sibling22 -> sibling23 -> null
|
|||
|
| | | |
|
|||
|
| null null null
|
|||
|
|
|
|||
|
child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
|||
|
| | | |
|
|||
|
| | | null
|
|||
|
| | |
|
|||
|
null null child131 -> null
|
|||
|
|
|
|||
|
null
|
|||
|
|
|||
|
Figure 1: Generic structure of un-flattened device tree
|
|||
|
|
|||
|
|
|||
|
*allnext: it is used to link all the nodes of DT into a list. So, for the
|
|||
|
above tree the list would be as follows:
|
|||
|
|
|||
|
root->child1->child11->sibling12->sibling13->child131->sibling14->sibling2->
|
|||
|
child21->sibling22->sibling23->sibling3->child31->sibling32->sibling4->null
|
|||
|
|
|||
|
Before executing OF selftest, it is required to attach the test data to
|
|||
|
machine's device tree (if present). So, when selftest_data_add() is called,
|
|||
|
at first it reads the flattened device tree data linked into the kernel image
|
|||
|
via the following kernel symbols:
|
|||
|
|
|||
|
__dtb_testcases_begin - address marking the start of test data blob
|
|||
|
__dtb_testcases_end - address marking the end of test data blob
|
|||
|
|
|||
|
Secondly, it calls of_fdt_unflatten_device_tree() to unflatten the flattened
|
|||
|
blob. And finally, if the machine’s device tree (i.e live tree) is present,
|
|||
|
then it attaches the unflattened test data tree to the live tree, else it
|
|||
|
attaches itself as a live device tree.
|
|||
|
|
|||
|
attach_node_and_children() uses of_attach_node() to attach the nodes into the
|
|||
|
live tree as explained below. To explain the same, the test data tree described
|
|||
|
in Figure 2 is attached to the live tree described in Figure 1.
|
|||
|
|
|||
|
root (‘/’)
|
|||
|
|
|
|||
|
testcase-data
|
|||
|
|
|
|||
|
test-child0 -> test-sibling1 -> test-sibling2 -> test-sibling3 -> null
|
|||
|
| | | |
|
|||
|
test-child01 null null null
|
|||
|
|
|||
|
|
|||
|
allnext list:
|
|||
|
|
|||
|
root->testcase-data->test-child0->test-child01->test-sibling1->test-sibling2
|
|||
|
->test-sibling3->null
|
|||
|
|
|||
|
Figure 2: Example test data tree to be attached to live tree.
|
|||
|
|
|||
|
According to the scenario above, the live tree is already present so it isn’t
|
|||
|
required to attach the root(‘/’) node. All other nodes are attached by calling
|
|||
|
of_attach_node() on each node.
|
|||
|
|
|||
|
In the function of_attach_node(), the new node is attached as the child of the
|
|||
|
given parent in live tree. But, if parent already has a child then the new node
|
|||
|
replaces the current child and turns it into its sibling. So, when the testcase
|
|||
|
data node is attached to the live tree above (Figure 1), the final structure is
|
|||
|
as shown in Figure 3.
|
|||
|
|
|||
|
root (‘/’)
|
|||
|
|
|
|||
|
testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|||
|
| | | | |
|
|||
|
(...) | | | null
|
|||
|
| | child31 -> sibling32 -> null
|
|||
|
| | | |
|
|||
|
| | null null
|
|||
|
| |
|
|||
|
| child21 -> sibling22 -> sibling23 -> null
|
|||
|
| | | |
|
|||
|
| null null null
|
|||
|
|
|
|||
|
child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
|||
|
| | | |
|
|||
|
null null | null
|
|||
|
|
|
|||
|
child131 -> null
|
|||
|
|
|
|||
|
null
|
|||
|
-----------------------------------------------------------------------
|
|||
|
|
|||
|
root (‘/’)
|
|||
|
|
|
|||
|
testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|||
|
| | | | |
|
|||
|
| (...) (...) (...) null
|
|||
|
|
|
|||
|
test-sibling3 -> test-sibling2 -> test-sibling1 -> test-child0 -> null
|
|||
|
| | | |
|
|||
|
null null null test-child01
|
|||
|
|
|||
|
|
|||
|
Figure 3: Live device tree structure after attaching the testcase-data.
|
|||
|
|
|||
|
|
|||
|
Astute readers would have noticed that test-child0 node becomes the last
|
|||
|
sibling compared to the earlier structure (Figure 2). After attaching first
|
|||
|
test-child0 the test-sibling1 is attached that pushes the child node
|
|||
|
(i.e. test-child0) to become a sibling and makes itself a child node,
|
|||
|
as mentioned above.
|
|||
|
|
|||
|
If a duplicate node is found (i.e. if a node with same full_name property is
|
|||
|
already present in the live tree), then the node isn’t attached rather its
|
|||
|
properties are updated to the live tree’s node by calling the function
|
|||
|
update_node_properties().
|
|||
|
|
|||
|
|
|||
|
2.2. Removing the test data
|
|||
|
|
|||
|
Once the test case execution is complete, selftest_data_remove is called in
|
|||
|
order to remove the device nodes attached initially (first the leaf nodes are
|
|||
|
detached and then moving up the parent nodes are removed, and eventually the
|
|||
|
whole tree). selftest_data_remove() calls detach_node_and_children() that uses
|
|||
|
of_detach_node() to detach the nodes from the live device tree.
|
|||
|
|
|||
|
To detach a node, of_detach_node() first updates all_next linked list, by
|
|||
|
attaching the previous node’s allnext to current node’s allnext pointer. And
|
|||
|
then, it either updates the child pointer of given node’s parent to its
|
|||
|
sibling or attaches the previous sibling to the given node’s sibling, as
|
|||
|
appropriate. That is it :)
|