linux-stable/fs/overlayfs/namei.c

1206 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011 Novell Inc.
* Copyright (C) 2016 Red Hat, Inc.
*/
#include <linux/fs.h>
#include <linux/cred.h>
#include <linux/ctype.h>
#include <linux/namei.h>
#include <linux/xattr.h>
#include <linux/ratelimit.h>
#include <linux/mount.h>
#include <linux/exportfs.h>
#include "overlayfs.h"
struct ovl_lookup_data {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 14:42:08 +00:00
struct super_block *sb;
struct vfsmount *mnt;
struct qstr name;
bool is_dir;
bool opaque;
bool stop;
bool last;
char *redirect;
bool metacopy;
};
static int ovl_check_redirect(const struct path *path, struct ovl_lookup_data *d,
size_t prelen, const char *post)
{
int res;
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
char *buf;
struct ovl_fs *ofs = OVL_FS(d->sb);
buf = ovl_get_redirect_xattr(ofs, path, prelen + strlen(post));
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
if (IS_ERR_OR_NULL(buf))
return PTR_ERR(buf);
if (buf[0] == '/') {
ovl: fix lookup with middle layer opaque dir and absolute path redirects As of now if we encounter an opaque dir while looking for a dentry, we set d->last=true. This means that there is no need to look further in any of the lower layers. This works fine as long as there are no redirets or relative redircts. But what if there is an absolute redirect on the children dentry of opaque directory. We still need to continue to look into next lower layer. This patch fixes it. Here is an example to demonstrate the issue. Say you have following setup. upper: /redirect (redirect=/a/b/c) lower1: /a/[b]/c ([b] is opaque) (c has absolute redirect=/a/b/d/) lower0: /a/b/d/foo Now "redirect" dir should merge with lower1:/a/b/c/ and lower0:/a/b/d. Note, despite the fact lower1:/a/[b] is opaque, we need to continue to look into lower0 because children c has an absolute redirect. Following is a reproducer. Watch me make foo disappear: $ mkdir lower middle upper work work2 merged $ mkdir lower/origin $ touch lower/origin/foo $ mount -t overlay none merged/ \ -olowerdir=lower,upperdir=middle,workdir=work2 $ mkdir merged/pure $ mv merged/origin merged/pure/redirect $ umount merged $ mount -t overlay none merged/ \ -olowerdir=middle:lower,upperdir=upper,workdir=work $ mv merged/pure/redirect merged/redirect Now you see foo inside a twice redirected merged dir: $ ls merged/redirect foo $ umount merged $ mount -t overlay none merged/ \ -olowerdir=middle:lower,upperdir=upper,workdir=work After mount cycle you don't see foo inside the same dir: $ ls merged/redirect During middle layer lookup, the opaqueness of middle/pure is left in the lookup state and then middle/pure/redirect is wrongly treated as opaque. Fixes: 02b69b284cd7 ("ovl: lookup redirects") Cc: <stable@vger.kernel.org> #v4.10 Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-12 14:30:41 +00:00
/*
* One of the ancestor path elements in an absolute path
* lookup in ovl_lookup_layer() could have been opaque and
* that will stop further lookup in lower layers (d->stop=true)
* But we have found an absolute redirect in descendant path
ovl: fix lookup with middle layer opaque dir and absolute path redirects As of now if we encounter an opaque dir while looking for a dentry, we set d->last=true. This means that there is no need to look further in any of the lower layers. This works fine as long as there are no redirets or relative redircts. But what if there is an absolute redirect on the children dentry of opaque directory. We still need to continue to look into next lower layer. This patch fixes it. Here is an example to demonstrate the issue. Say you have following setup. upper: /redirect (redirect=/a/b/c) lower1: /a/[b]/c ([b] is opaque) (c has absolute redirect=/a/b/d/) lower0: /a/b/d/foo Now "redirect" dir should merge with lower1:/a/b/c/ and lower0:/a/b/d. Note, despite the fact lower1:/a/[b] is opaque, we need to continue to look into lower0 because children c has an absolute redirect. Following is a reproducer. Watch me make foo disappear: $ mkdir lower middle upper work work2 merged $ mkdir lower/origin $ touch lower/origin/foo $ mount -t overlay none merged/ \ -olowerdir=lower,upperdir=middle,workdir=work2 $ mkdir merged/pure $ mv merged/origin merged/pure/redirect $ umount merged $ mount -t overlay none merged/ \ -olowerdir=middle:lower,upperdir=upper,workdir=work $ mv merged/pure/redirect merged/redirect Now you see foo inside a twice redirected merged dir: $ ls merged/redirect foo $ umount merged $ mount -t overlay none merged/ \ -olowerdir=middle:lower,upperdir=upper,workdir=work After mount cycle you don't see foo inside the same dir: $ ls merged/redirect During middle layer lookup, the opaqueness of middle/pure is left in the lookup state and then middle/pure/redirect is wrongly treated as opaque. Fixes: 02b69b284cd7 ("ovl: lookup redirects") Cc: <stable@vger.kernel.org> #v4.10 Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-12 14:30:41 +00:00
* element and that should force continue lookup in lower
* layers (reset d->stop).
*/
d->stop = false;
} else {
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
res = strlen(buf) + 1;
memmove(buf + prelen, buf, res);
memcpy(buf, d->name.name, prelen);
}
strcat(buf, post);
kfree(d->redirect);
d->redirect = buf;
d->name.name = d->redirect;
d->name.len = strlen(d->redirect);
return 0;
}
static int ovl_acceptable(void *ctx, struct dentry *dentry)
{
/*
* A non-dir origin may be disconnected, which is fine, because
* we only need it for its unique inode number.
*/
if (!d_is_dir(dentry))
return 1;
/* Don't decode a deleted empty directory */
if (d_unhashed(dentry))
return 0;
/* Check if directory belongs to the layer we are decoding from */
return is_subdir(dentry, ((struct vfsmount *)ctx)->mnt_root);
}
/*
* Check validity of an overlay file handle buffer.
*
* Return 0 for a valid file handle.
* Return -ENODATA for "origin unknown".
* Return <0 for an invalid file handle.
*/
int ovl_check_fb_len(struct ovl_fb *fb, int fb_len)
{
if (fb_len < sizeof(struct ovl_fb) || fb_len < fb->len)
return -EINVAL;
if (fb->magic != OVL_FH_MAGIC)
return -EINVAL;
/* Treat larger version and unknown flags as "origin unknown" */
if (fb->version > OVL_FH_VERSION || fb->flags & ~OVL_FH_FLAG_ALL)
return -ENODATA;
/* Treat endianness mismatch as "origin unknown" */
if (!(fb->flags & OVL_FH_FLAG_ANY_ENDIAN) &&
(fb->flags & OVL_FH_FLAG_BIG_ENDIAN) != OVL_FH_FLAG_CPU_ENDIAN)
return -ENODATA;
return 0;
}
static struct ovl_fh *ovl_get_fh(struct ovl_fs *ofs, struct dentry *upperdentry,
enum ovl_xattr ox)
{
int res, err;
struct ovl_fh *fh = NULL;
res = ovl_getxattr_upper(ofs, upperdentry, ox, NULL, 0);
if (res < 0) {
if (res == -ENODATA || res == -EOPNOTSUPP)
return NULL;
goto fail;
}
/* Zero size value means "copied up but origin unknown" */
if (res == 0)
return NULL;
fh = kzalloc(res + OVL_FH_WIRE_OFFSET, GFP_KERNEL);
if (!fh)
return ERR_PTR(-ENOMEM);
res = ovl_getxattr_upper(ofs, upperdentry, ox, fh->buf, res);
if (res < 0)
goto fail;
err = ovl_check_fb_len(&fh->fb, res);
if (err < 0) {
if (err == -ENODATA)
goto out;
goto invalid;
}
return fh;
out:
kfree(fh);
return NULL;
fail:
pr_warn_ratelimited("failed to get origin (%i)\n", res);
goto out;
invalid:
pr_warn_ratelimited("invalid origin (%*phN)\n", res, fh);
goto out;
}
struct dentry *ovl_decode_real_fh(struct ovl_fs *ofs, struct ovl_fh *fh,
struct vfsmount *mnt, bool connected)
{
struct dentry *real;
int bytes;
if (!capable(CAP_DAC_READ_SEARCH))
return NULL;
/*
* Make sure that the stored uuid matches the uuid of the lower
* layer where file handle will be decoded.
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 14:59:54 +00:00
* In case of uuid=off option just make sure that stored uuid is null.
*/
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 14:59:54 +00:00
if (ofs->config.uuid ? !uuid_equal(&fh->fb.uuid, &mnt->mnt_sb->s_uuid) :
!uuid_is_null(&fh->fb.uuid))
return NULL;
bytes = (fh->fb.len - offsetof(struct ovl_fb, fid));
real = exportfs_decode_fh(mnt, (struct fid *)fh->fb.fid,
bytes >> 2, (int)fh->fb.type,
connected ? ovl_acceptable : NULL, mnt);
if (IS_ERR(real)) {
/*
* Treat stale file handle to lower file as "origin unknown".
* upper file handle could become stale when upper file is
* unlinked and this information is needed to handle stale
* index entries correctly.
*/
if (real == ERR_PTR(-ESTALE) &&
!(fh->fb.flags & OVL_FH_FLAG_PATH_UPPER))
real = NULL;
return real;
}
if (ovl_dentry_weird(real)) {
dput(real);
return NULL;
}
return real;
}
static bool ovl_is_opaquedir(struct ovl_fs *ofs, const struct path *path)
{
return ovl_path_check_dir_xattr(ofs, path, OVL_XATTR_OPAQUE);
}
static struct dentry *ovl_lookup_positive_unlocked(struct ovl_lookup_data *d,
const char *name,
struct dentry *base, int len,
bool drop_negative)
{
struct dentry *ret = lookup_one_unlocked(mnt_idmap(d->mnt), name, base, len);
if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
if (drop_negative && ret->d_lockref.count == 1) {
spin_lock(&ret->d_lock);
/* Recheck condition under lock */
if (d_is_negative(ret) && ret->d_lockref.count == 1)
__d_drop(ret);
spin_unlock(&ret->d_lock);
}
dput(ret);
ret = ERR_PTR(-ENOENT);
}
return ret;
}
static int ovl_lookup_single(struct dentry *base, struct ovl_lookup_data *d,
const char *name, unsigned int namelen,
size_t prelen, const char *post,
struct dentry **ret, bool drop_negative)
{
struct dentry *this;
struct path path;
int err;
bool last_element = !post[0];
this = ovl_lookup_positive_unlocked(d, name, base, namelen, drop_negative);
if (IS_ERR(this)) {
err = PTR_ERR(this);
this = NULL;
if (err == -ENOENT || err == -ENAMETOOLONG)
goto out;
goto out_err;
}
if (ovl_dentry_weird(this)) {
/* Don't support traversing automounts and other weirdness */
err = -EREMOTE;
goto out_err;
}
if (ovl_is_whiteout(this)) {
d->stop = d->opaque = true;
goto put_and_out;
}
/*
* This dentry should be a regular file if previous layer lookup
* found a metacopy dentry.
*/
if (last_element && d->metacopy && !d_is_reg(this)) {
d->stop = true;
goto put_and_out;
}
path.dentry = this;
path.mnt = d->mnt;
if (!d_can_lookup(this)) {
if (d->is_dir || !last_element) {
d->stop = true;
goto put_and_out;
}
err = ovl_check_metacopy_xattr(OVL_FS(d->sb), &path);
if (err < 0)
goto out_err;
d->metacopy = err;
d->stop = !d->metacopy;
if (!d->metacopy || d->last)
goto out;
} else {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 14:42:08 +00:00
if (ovl_lookup_trap_inode(d->sb, this)) {
/* Caught in a trap of overlapping layers */
err = -ELOOP;
goto out_err;
}
if (last_element)
d->is_dir = true;
if (d->last)
goto out;
if (ovl_is_opaquedir(OVL_FS(d->sb), &path)) {
d->stop = true;
if (last_element)
d->opaque = true;
goto out;
}
}
err = ovl_check_redirect(&path, d, prelen, post);
if (err)
goto out_err;
out:
*ret = this;
return 0;
put_and_out:
dput(this);
this = NULL;
goto out;
out_err:
dput(this);
return err;
}
static int ovl_lookup_layer(struct dentry *base, struct ovl_lookup_data *d,
struct dentry **ret, bool drop_negative)
{
/* Counting down from the end, since the prefix can change */
size_t rem = d->name.len - 1;
struct dentry *dentry = NULL;
int err;
if (d->name.name[0] != '/')
return ovl_lookup_single(base, d, d->name.name, d->name.len,
0, "", ret, drop_negative);
while (!IS_ERR_OR_NULL(base) && d_can_lookup(base)) {
const char *s = d->name.name + d->name.len - rem;
const char *next = strchrnul(s, '/');
size_t thislen = next - s;
bool end = !next[0];
/* Verify we did not go off the rails */
if (WARN_ON(s[-1] != '/'))
return -EIO;
err = ovl_lookup_single(base, d, s, thislen,
d->name.len - rem, next, &base,
drop_negative);
dput(dentry);
if (err)
return err;
dentry = base;
if (end)
break;
rem -= thislen + 1;
if (WARN_ON(rem >= d->name.len))
return -EIO;
}
*ret = dentry;
return 0;
}
int ovl_check_origin_fh(struct ovl_fs *ofs, struct ovl_fh *fh, bool connected,
struct dentry *upperdentry, struct ovl_path **stackp)
{
struct dentry *origin = NULL;
int i;
for (i = 1; i <= ovl_numlowerlayer(ofs); i++) {
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 20:28:41 +00:00
/*
* If lower fs uuid is not unique among lower fs we cannot match
* fh->uuid to layer.
*/
if (ofs->layers[i].fsid &&
ofs->layers[i].fs->bad_uuid)
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 20:28:41 +00:00
continue;
origin = ovl_decode_real_fh(ofs, fh, ofs->layers[i].mnt,
connected);
if (origin)
break;
}
if (!origin)
return -ESTALE;
else if (IS_ERR(origin))
return PTR_ERR(origin);
if (upperdentry && !ovl_is_whiteout(upperdentry) &&
inode_wrong_type(d_inode(upperdentry), d_inode(origin)->i_mode))
goto invalid;
if (!*stackp)
*stackp = kmalloc(sizeof(struct ovl_path), GFP_KERNEL);
if (!*stackp) {
dput(origin);
return -ENOMEM;
}
**stackp = (struct ovl_path){
.dentry = origin,
.layer = &ofs->layers[i]
};
return 0;
invalid:
pr_warn_ratelimited("invalid origin (%pd2, ftype=%x, origin ftype=%x).\n",
upperdentry, d_inode(upperdentry)->i_mode & S_IFMT,
d_inode(origin)->i_mode & S_IFMT);
dput(origin);
return -ESTALE;
}
static int ovl_check_origin(struct ovl_fs *ofs, struct dentry *upperdentry,
struct ovl_path **stackp)
{
struct ovl_fh *fh = ovl_get_fh(ofs, upperdentry, OVL_XATTR_ORIGIN);
int err;
if (IS_ERR_OR_NULL(fh))
return PTR_ERR(fh);
err = ovl_check_origin_fh(ofs, fh, false, upperdentry, stackp);
kfree(fh);
if (err) {
if (err == -ESTALE)
return 0;
return err;
}
return 0;
}
/*
* Verify that @fh matches the file handle stored in xattr @name.
* Return 0 on match, -ESTALE on mismatch, < 0 on error.
*/
static int ovl_verify_fh(struct ovl_fs *ofs, struct dentry *dentry,
enum ovl_xattr ox, const struct ovl_fh *fh)
{
struct ovl_fh *ofh = ovl_get_fh(ofs, dentry, ox);
int err = 0;
if (!ofh)
return -ENODATA;
if (IS_ERR(ofh))
return PTR_ERR(ofh);
if (fh->fb.len != ofh->fb.len || memcmp(&fh->fb, &ofh->fb, fh->fb.len))
err = -ESTALE;
kfree(ofh);
return err;
}
/*
* Verify that @real dentry matches the file handle stored in xattr @name.
*
* If @set is true and there is no stored file handle, encode @real and store
* file handle in xattr @name.
*
* Return 0 on match, -ESTALE on mismatch, -ENODATA on no xattr, < 0 on error.
*/
int ovl_verify_set_fh(struct ovl_fs *ofs, struct dentry *dentry,
enum ovl_xattr ox, struct dentry *real, bool is_upper,
bool set)
{
struct inode *inode;
struct ovl_fh *fh;
int err;
fh = ovl_encode_real_fh(ofs, real, is_upper);
err = PTR_ERR(fh);
if (IS_ERR(fh)) {
fh = NULL;
goto fail;
}
err = ovl_verify_fh(ofs, dentry, ox, fh);
if (set && err == -ENODATA)
err = ovl_setxattr(ofs, dentry, ox, fh->buf, fh->fb.len);
if (err)
goto fail;
out:
kfree(fh);
return err;
fail:
inode = d_inode(real);
pr_warn_ratelimited("failed to verify %s (%pd2, ino=%lu, err=%i)\n",
is_upper ? "upper" : "origin", real,
inode ? inode->i_ino : 0, err);
goto out;
}
/* Get upper dentry from index */
struct dentry *ovl_index_upper(struct ovl_fs *ofs, struct dentry *index,
bool connected)
{
struct ovl_fh *fh;
struct dentry *upper;
if (!d_is_dir(index))
return dget(index);
fh = ovl_get_fh(ofs, index, OVL_XATTR_UPPER);
if (IS_ERR_OR_NULL(fh))
return ERR_CAST(fh);
upper = ovl_decode_real_fh(ofs, fh, ovl_upper_mnt(ofs), connected);
kfree(fh);
if (IS_ERR_OR_NULL(upper))
return upper ?: ERR_PTR(-ESTALE);
if (!d_is_dir(upper)) {
pr_warn_ratelimited("invalid index upper (%pd2, upper=%pd2).\n",
index, upper);
dput(upper);
return ERR_PTR(-EIO);
}
return upper;
}
/*
* Verify that an index entry name matches the origin file handle stored in
* OVL_XATTR_ORIGIN and that origin file handle can be decoded to lower path.
* Return 0 on match, -ESTALE on mismatch or stale origin, < 0 on error.
*/
int ovl_verify_index(struct ovl_fs *ofs, struct dentry *index)
{
struct ovl_fh *fh = NULL;
size_t len;
struct ovl_path origin = { };
struct ovl_path *stack = &origin;
struct dentry *upper = NULL;
int err;
if (!d_inode(index))
return 0;
err = -EINVAL;
if (index->d_name.len < sizeof(struct ovl_fb)*2)
goto fail;
err = -ENOMEM;
len = index->d_name.len / 2;
fh = kzalloc(len + OVL_FH_WIRE_OFFSET, GFP_KERNEL);
if (!fh)
goto fail;
err = -EINVAL;
if (hex2bin(fh->buf, index->d_name.name, len))
goto fail;
err = ovl_check_fb_len(&fh->fb, len);
if (err)
goto fail;
/*
* Whiteout index entries are used as an indication that an exported
* overlay file handle should be treated as stale (i.e. after unlink
* of the overlay inode). These entries contain no origin xattr.
*/
if (ovl_is_whiteout(index))
goto out;
/*
* Verifying directory index entries are not stale is expensive, so
* only verify stale dir index if NFS export is enabled.
*/
if (d_is_dir(index) && !ofs->config.nfs_export)
goto out;
/*
* Directory index entries should have 'upper' xattr pointing to the
* real upper dir. Non-dir index entries are hardlinks to the upper
* real inode. For non-dir index, we can read the copy up origin xattr
* directly from the index dentry, but for dir index we first need to
* decode the upper directory.
*/
upper = ovl_index_upper(ofs, index, false);
if (IS_ERR_OR_NULL(upper)) {
err = PTR_ERR(upper);
/*
* Directory index entries with no 'upper' xattr need to be
* removed. When dir index entry has a stale 'upper' xattr,
* we assume that upper dir was removed and we treat the dir
* index as orphan entry that needs to be whited out.
*/
if (err == -ESTALE)
goto orphan;
else if (!err)
err = -ESTALE;
goto fail;
}
err = ovl_verify_fh(ofs, upper, OVL_XATTR_ORIGIN, fh);
dput(upper);
if (err)
goto fail;
/* Check if non-dir index is orphan and don't warn before cleaning it */
if (!d_is_dir(index) && d_inode(index)->i_nlink == 1) {
err = ovl_check_origin_fh(ofs, fh, false, index, &stack);
if (err)
goto fail;
if (ovl_get_nlink(ofs, origin.dentry, index, 0) == 0)
goto orphan;
}
out:
dput(origin.dentry);
kfree(fh);
return err;
fail:
pr_warn_ratelimited("failed to verify index (%pd2, ftype=%x, err=%i)\n",
index, d_inode(index)->i_mode & S_IFMT, err);
goto out;
orphan:
pr_warn_ratelimited("orphan index entry (%pd2, ftype=%x, nlink=%u)\n",
index, d_inode(index)->i_mode & S_IFMT,
d_inode(index)->i_nlink);
err = -ENOENT;
goto out;
}
static int ovl_get_index_name_fh(struct ovl_fh *fh, struct qstr *name)
{
char *n, *s;
n = kcalloc(fh->fb.len, 2, GFP_KERNEL);
if (!n)
return -ENOMEM;
s = bin2hex(n, fh->buf, fh->fb.len);
*name = (struct qstr) QSTR_INIT(n, s - n);
return 0;
}
/*
* Lookup in indexdir for the index entry of a lower real inode or a copy up
* origin inode. The index entry name is the hex representation of the lower
* inode file handle.
*
* If the index dentry in negative, then either no lower aliases have been
* copied up yet, or aliases have been copied up in older kernels and are
* not indexed.
*
* If the index dentry for a copy up origin inode is positive, but points
* to an inode different than the upper inode, then either the upper inode
* has been copied up and not indexed or it was indexed, but since then
* index dir was cleared. Either way, that index cannot be used to identify
* the overlay inode.
*/
int ovl_get_index_name(struct ovl_fs *ofs, struct dentry *origin,
struct qstr *name)
{
struct ovl_fh *fh;
int err;
fh = ovl_encode_real_fh(ofs, origin, false);
if (IS_ERR(fh))
return PTR_ERR(fh);
err = ovl_get_index_name_fh(fh, name);
kfree(fh);
return err;
}
/* Lookup index by file handle for NFS export */
struct dentry *ovl_get_index_fh(struct ovl_fs *ofs, struct ovl_fh *fh)
{
struct dentry *index;
struct qstr name;
int err;
err = ovl_get_index_name_fh(fh, &name);
if (err)
return ERR_PTR(err);
index = lookup_positive_unlocked(name.name, ofs->indexdir, name.len);
kfree(name.name);
if (IS_ERR(index)) {
if (PTR_ERR(index) == -ENOENT)
index = NULL;
return index;
}
if (ovl_is_whiteout(index))
err = -ESTALE;
else if (ovl_dentry_weird(index))
err = -EIO;
else
return index;
dput(index);
return ERR_PTR(err);
}
struct dentry *ovl_lookup_index(struct ovl_fs *ofs, struct dentry *upper,
struct dentry *origin, bool verify)
{
struct dentry *index;
struct inode *inode;
struct qstr name;
bool is_dir = d_is_dir(origin);
int err;
err = ovl_get_index_name(ofs, origin, &name);
if (err)
return ERR_PTR(err);
index = lookup_one_positive_unlocked(ovl_upper_mnt_idmap(ofs), name.name,
ofs->indexdir, name.len);
if (IS_ERR(index)) {
err = PTR_ERR(index);
if (err == -ENOENT) {
index = NULL;
goto out;
}
pr_warn_ratelimited("failed inode index lookup (ino=%lu, key=%.*s, err=%i);\n"
"overlayfs: mount with '-o index=off' to disable inodes index.\n",
d_inode(origin)->i_ino, name.len, name.name,
err);
goto out;
}
inode = d_inode(index);
if (ovl_is_whiteout(index) && !verify) {
/*
* When index lookup is called with !verify for decoding an
* overlay file handle, a whiteout index implies that decode
* should treat file handle as stale and no need to print a
* warning about it.
*/
dput(index);
index = ERR_PTR(-ESTALE);
goto out;
} else if (ovl_dentry_weird(index) || ovl_is_whiteout(index) ||
inode_wrong_type(inode, d_inode(origin)->i_mode)) {
/*
* Index should always be of the same file type as origin
* except for the case of a whiteout index. A whiteout
* index should only exist if all lower aliases have been
* unlinked, which means that finding a lower origin on lookup
* whose index is a whiteout should be treated as an error.
*/
pr_warn_ratelimited("bad index found (index=%pd2, ftype=%x, origin ftype=%x).\n",
index, d_inode(index)->i_mode & S_IFMT,
d_inode(origin)->i_mode & S_IFMT);
goto fail;
} else if (is_dir && verify) {
if (!upper) {
pr_warn_ratelimited("suspected uncovered redirected dir found (origin=%pd2, index=%pd2).\n",
origin, index);
goto fail;
}
/* Verify that dir index 'upper' xattr points to upper dir */
err = ovl_verify_upper(ofs, index, upper, false);
if (err) {
if (err == -ESTALE) {
pr_warn_ratelimited("suspected multiply redirected dir found (upper=%pd2, origin=%pd2, index=%pd2).\n",
upper, origin, index);
}
goto fail;
}
} else if (upper && d_inode(upper) != inode) {
goto out_dput;
}
out:
kfree(name.name);
return index;
out_dput:
dput(index);
index = NULL;
goto out;
fail:
dput(index);
index = ERR_PTR(-EIO);
goto out;
}
/*
* Returns next layer in stack starting from top.
* Returns -1 if this is the last layer.
*/
int ovl_path_next(int idx, struct dentry *dentry, struct path *path)
{
struct ovl_entry *oe = OVL_E(dentry);
struct ovl_path *lowerstack = ovl_lowerstack(oe);
BUG_ON(idx < 0);
if (idx == 0) {
ovl_path_upper(dentry, path);
if (path->dentry)
return ovl_numlower(oe) ? 1 : -1;
idx++;
}
BUG_ON(idx > ovl_numlower(oe));
path->dentry = lowerstack[idx - 1].dentry;
path->mnt = lowerstack[idx - 1].layer->mnt;
return (idx < ovl_numlower(oe)) ? idx + 1 : -1;
}
/* Fix missing 'origin' xattr */
static int ovl_fix_origin(struct ovl_fs *ofs, struct dentry *dentry,
struct dentry *lower, struct dentry *upper)
{
int err;
if (ovl_check_origin_xattr(ofs, upper))
return 0;
err = ovl_want_write(dentry);
if (err)
return err;
err = ovl_set_origin(ofs, lower, upper);
if (!err)
err = ovl_set_impure(dentry->d_parent, upper->d_parent);
ovl_drop_write(dentry);
return err;
}
struct dentry *ovl_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct ovl_entry *oe = NULL;
const struct cred *old_cred;
struct ovl_fs *ofs = dentry->d_sb->s_fs_info;
struct ovl_entry *poe = OVL_E(dentry->d_parent);
struct ovl_entry *roe = OVL_E(dentry->d_sb->s_root);
struct ovl_path *stack = NULL, *origin_path = NULL;
struct dentry *upperdir, *upperdentry = NULL;
struct dentry *origin = NULL;
struct dentry *index = NULL;
unsigned int ctr = 0;
struct inode *inode = NULL;
bool upperopaque = false;
char *upperredirect = NULL;
struct dentry *this;
unsigned int i;
int err;
bool uppermetacopy = false;
struct ovl_lookup_data d = {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 14:42:08 +00:00
.sb = dentry->d_sb,
.name = dentry->d_name,
.is_dir = false,
.opaque = false,
.stop = false,
.last = ofs->config.redirect_follow ? false : !ovl_numlower(poe),
.redirect = NULL,
.metacopy = false,
};
if (dentry->d_name.len > ofs->namelen)
return ERR_PTR(-ENAMETOOLONG);
old_cred = ovl_override_creds(dentry->d_sb);
upperdir = ovl_dentry_upper(dentry->d_parent);
if (upperdir) {
d.mnt = ovl_upper_mnt(ofs);
err = ovl_lookup_layer(upperdir, &d, &upperdentry, true);
if (err)
goto out;
if (upperdentry && upperdentry->d_flags & DCACHE_OP_REAL) {
dput(upperdentry);
err = -EREMOTE;
goto out;
}
if (upperdentry && !d.is_dir) {
/*
* Lookup copy up origin by decoding origin file handle.
* We may get a disconnected dentry, which is fine,
* because we only need to hold the origin inode in
* cache and use its inode number. We may even get a
* connected dentry, that is not under any of the lower
* layers root. That is also fine for using it's inode
* number - it's the same as if we held a reference
* to a dentry in lower layer that was moved under us.
*/
err = ovl_check_origin(ofs, upperdentry, &origin_path);
if (err)
goto out_put_upper;
if (d.metacopy)
uppermetacopy = true;
}
if (d.redirect) {
err = -ENOMEM;
upperredirect = kstrdup(d.redirect, GFP_KERNEL);
if (!upperredirect)
goto out_put_upper;
if (d.redirect[0] == '/')
poe = roe;
}
upperopaque = d.opaque;
}
if (!d.stop && ovl_numlower(poe)) {
err = -ENOMEM;
stack = ovl_stack_alloc(ofs->numlayer - 1);
if (!stack)
goto out_put_upper;
}
for (i = 0; !d.stop && i < ovl_numlower(poe); i++) {
struct ovl_path lower = ovl_lowerstack(poe)[i];
ovl: Set d->last properly during lookup d->last signifies that this is the last layer we are looking into and there is no more. And that means this allows for some optimzation opportunities during lookup. For example, in ovl_lookup_single() we don't have to check for opaque xattr of a directory is this is the last layer we are looking into (d->last = true). But knowing for sure whether we are looking into last layer can be very tricky. If redirects are not enabled, then we can look at poe->numlower and figure out if the lookup we are about to is last layer or not. But if redircts are enabled then it is possible poe->numlower suggests that we are looking in last layer, but there is an absolute redirect present in found element and that redirects us to a layer in root and that means lookup will continue in lower layers further. For example, consider following. /upperdir/pure (opaque=y) /upperdir/pure/foo (opaque=y,redirect=/bar) /lowerdir/bar In this case pure is "pure upper". When we look for "foo", that time poe->numlower=0. But that alone does not mean that we will not search for a merge candidate in /lowerdir. Absolute redirect changes that. IOW, d->last should not be set just based on poe->numlower if redirects are enabled. That can lead to setting d->last while it should not have and that means we will not check for opaque xattr while we should have. So do this. - If redirects are not enabled, then continue to rely on poe->numlower information to determine if it is last layer or not. - If redirects are enabled, then set d->last = true only if this is the last layer in root ovl_entry (roe). Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Fixes: 02b69b284cd7 ("ovl: lookup redirects") Cc: <stable@vger.kernel.org> #v4.10
2018-03-09 20:44:41 +00:00
if (!ofs->config.redirect_follow)
d.last = i == ovl_numlower(poe) - 1;
ovl: Set d->last properly during lookup d->last signifies that this is the last layer we are looking into and there is no more. And that means this allows for some optimzation opportunities during lookup. For example, in ovl_lookup_single() we don't have to check for opaque xattr of a directory is this is the last layer we are looking into (d->last = true). But knowing for sure whether we are looking into last layer can be very tricky. If redirects are not enabled, then we can look at poe->numlower and figure out if the lookup we are about to is last layer or not. But if redircts are enabled then it is possible poe->numlower suggests that we are looking in last layer, but there is an absolute redirect present in found element and that redirects us to a layer in root and that means lookup will continue in lower layers further. For example, consider following. /upperdir/pure (opaque=y) /upperdir/pure/foo (opaque=y,redirect=/bar) /lowerdir/bar In this case pure is "pure upper". When we look for "foo", that time poe->numlower=0. But that alone does not mean that we will not search for a merge candidate in /lowerdir. Absolute redirect changes that. IOW, d->last should not be set just based on poe->numlower if redirects are enabled. That can lead to setting d->last while it should not have and that means we will not check for opaque xattr while we should have. So do this. - If redirects are not enabled, then continue to rely on poe->numlower information to determine if it is last layer or not. - If redirects are enabled, then set d->last = true only if this is the last layer in root ovl_entry (roe). Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Fixes: 02b69b284cd7 ("ovl: lookup redirects") Cc: <stable@vger.kernel.org> #v4.10
2018-03-09 20:44:41 +00:00
else
d.last = lower.layer->idx == ovl_numlower(roe);
ovl: Set d->last properly during lookup d->last signifies that this is the last layer we are looking into and there is no more. And that means this allows for some optimzation opportunities during lookup. For example, in ovl_lookup_single() we don't have to check for opaque xattr of a directory is this is the last layer we are looking into (d->last = true). But knowing for sure whether we are looking into last layer can be very tricky. If redirects are not enabled, then we can look at poe->numlower and figure out if the lookup we are about to is last layer or not. But if redircts are enabled then it is possible poe->numlower suggests that we are looking in last layer, but there is an absolute redirect present in found element and that redirects us to a layer in root and that means lookup will continue in lower layers further. For example, consider following. /upperdir/pure (opaque=y) /upperdir/pure/foo (opaque=y,redirect=/bar) /lowerdir/bar In this case pure is "pure upper". When we look for "foo", that time poe->numlower=0. But that alone does not mean that we will not search for a merge candidate in /lowerdir. Absolute redirect changes that. IOW, d->last should not be set just based on poe->numlower if redirects are enabled. That can lead to setting d->last while it should not have and that means we will not check for opaque xattr while we should have. So do this. - If redirects are not enabled, then continue to rely on poe->numlower information to determine if it is last layer or not. - If redirects are enabled, then set d->last = true only if this is the last layer in root ovl_entry (roe). Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Fixes: 02b69b284cd7 ("ovl: lookup redirects") Cc: <stable@vger.kernel.org> #v4.10
2018-03-09 20:44:41 +00:00
d.mnt = lower.layer->mnt;
err = ovl_lookup_layer(lower.dentry, &d, &this, false);
if (err)
goto out_put;
if (!this)
continue;
if ((uppermetacopy || d.metacopy) && !ofs->config.metacopy) {
ovl: fix leaked dentry Since commit 6815f479ca90 ("ovl: use only uppermetacopy state in ovl_lookup()"), overlayfs doesn't put temporary dentry when there is a metacopy error, which leads to dentry leaks when shutting down the related superblock: overlayfs: refusing to follow metacopy origin for (/file0) ... BUG: Dentry (____ptrval____){i=3f33,n=file3} still in use (1) [unmount of overlay overlay] ... WARNING: CPU: 1 PID: 432 at umount_check.cold+0x107/0x14d CPU: 1 PID: 432 Comm: unmount-overlay Not tainted 5.12.0-rc5 #1 ... RIP: 0010:umount_check.cold+0x107/0x14d ... Call Trace: d_walk+0x28c/0x950 ? dentry_lru_isolate+0x2b0/0x2b0 ? __kasan_slab_free+0x12/0x20 do_one_tree+0x33/0x60 shrink_dcache_for_umount+0x78/0x1d0 generic_shutdown_super+0x70/0x440 kill_anon_super+0x3e/0x70 deactivate_locked_super+0xc4/0x160 deactivate_super+0xfa/0x140 cleanup_mnt+0x22e/0x370 __cleanup_mnt+0x1a/0x30 task_work_run+0x139/0x210 do_exit+0xb0c/0x2820 ? __kasan_check_read+0x1d/0x30 ? find_held_lock+0x35/0x160 ? lock_release+0x1b6/0x660 ? mm_update_next_owner+0xa20/0xa20 ? reacquire_held_locks+0x3f0/0x3f0 ? __sanitizer_cov_trace_const_cmp4+0x22/0x30 do_group_exit+0x135/0x380 __do_sys_exit_group.isra.0+0x20/0x20 __x64_sys_exit_group+0x3c/0x50 do_syscall_64+0x45/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae ... VFS: Busy inodes after unmount of overlay. Self-destruct in 5 seconds. Have a nice day... This fix has been tested with a syzkaller reproducer. Cc: Amir Goldstein <amir73il@gmail.com> Cc: <stable@vger.kernel.org> # v5.8+ Reported-by: syzbot <syzkaller@googlegroups.com> Fixes: 6815f479ca90 ("ovl: use only uppermetacopy state in ovl_lookup()") Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com> Link: https://lore.kernel.org/r/20210329164907.2133175-1-mic@digikod.net Reviewed-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-29 16:49:07 +00:00
dput(this);
err = -EPERM;
pr_warn_ratelimited("refusing to follow metacopy origin for (%pd2)\n", dentry);
goto out_put;
}
/*
* If no origin fh is stored in upper of a merge dir, store fh
* of lower dir and set upper parent "impure".
*/
if (upperdentry && !ctr && !ofs->noxattr && d.is_dir) {
err = ovl_fix_origin(ofs, dentry, this, upperdentry);
if (err) {
dput(this);
goto out_put;
}
}
/*
* When "verify_lower" feature is enabled, do not merge with a
* lower dir that does not match a stored origin xattr. In any
* case, only verified origin is used for index lookup.
*
* For non-dir dentry, if index=on, then ensure origin
* matches the dentry found using path based lookup,
* otherwise error out.
*/
if (upperdentry && !ctr &&
((d.is_dir && ovl_verify_lower(dentry->d_sb)) ||
(!d.is_dir && ofs->config.index && origin_path))) {
err = ovl_verify_origin(ofs, upperdentry, this, false);
if (err) {
dput(this);
if (d.is_dir)
break;
goto out_put;
}
origin = this;
}
ovl: fix redirect traversal on metacopy dentries Amir pointed me to metacopy test cases in unionmount-testsuite and I decided to run "./run --ov=10 --meta" and it failed while running test "rename-mass-5.py". Problem is w.r.t absolute redirect traversal on intermediate metacopy dentry. We do not store intermediate metacopy dentries and also skip current loop/layer and move onto lookup in next layer. But at the end of loop, we have logic to reset "poe" and layer index if currnently looked up dentry has absolute redirect. We skip all that and that means lookup in next layer will fail. Following is simple test case to reproduce this. - mkdir -p lower upper work merged lower/a lower/b - touch lower/a/foo.txt - mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,metacopy=on none merged # Following will create absolute redirect "/a/foo.txt" on upper/b/bar.txt. - mv merged/a/foo.txt merged/b/bar.txt # unmount overlay and use upper as lower layer (lower2) for next mount. - umount merged - mv upper lower2 - rm -rf work; mkdir -p upper work - mount -t overlay -o lowerdir=lower2:lower,upperdir=upper,workdir=work,metacopy=on none merged # Force a metacopy copy-up - chown bin:bin merged/b/bar.txt # unmount overlay and use upper as lower layer (lower3) for next mount. - umount merged - mv upper lower3 - rm -rf work; mkdir -p upper work - mount -t overlay -o lowerdir=lower3:lower2:lower,upperdir=upper,workdir=work,metacopy=on none merged # ls merged/b/bar.txt ls: cannot access 'bar.txt': Input/output error Intermediate lower layer (lower2) has metacopy dentry b/bar.txt with absolute redirect "/a/foo.txt". We skipped redirect processing at the end of loop which sets poe to roe and sets the appropriate next lower layer index. And that means lookup failed in next layer. Fix this by continuing the loop for any intermediate dentries. We still do not save these at lower stack. With this fix applied unionmount-testsuite, "./run --ov-10 --meta" now passes. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-02 15:23:38 +00:00
if (d.metacopy && ctr) {
/*
* Do not store intermediate metacopy dentries in
* lower chain, except top most lower metacopy dentry.
* Continue the loop so that if there is an absolute
* redirect on this dentry, poe can be reset to roe.
*/
dput(this);
this = NULL;
} else {
stack[ctr].dentry = this;
stack[ctr].layer = lower.layer;
ctr++;
}
/*
* Following redirects can have security consequences: it's like
* a symlink into the lower layer without the permission checks.
* This is only a problem if the upper layer is untrusted (e.g
* comes from an USB drive). This can allow a non-readable file
* or directory to become readable.
*
* Only following redirects when redirects are enabled disables
* this attack vector when not necessary.
*/
err = -EPERM;
if (d.redirect && !ofs->config.redirect_follow) {
pr_warn_ratelimited("refusing to follow redirect for (%pd2)\n",
dentry);
goto out_put;
}
if (d.stop)
break;
if (d.redirect && d.redirect[0] == '/' && poe != roe) {
poe = roe;
/* Find the current layer on the root dentry */
i = lower.layer->idx - 1;
}
}
/*
* For regular non-metacopy upper dentries, there is no lower
* path based lookup, hence ctr will be zero. If a dentry is found
* using ORIGIN xattr on upper, install it in stack.
*
* For metacopy dentry, path based lookup will find lower dentries.
* Just make sure a corresponding data dentry has been found.
*/
if (d.metacopy || (uppermetacopy && !ctr)) {
pr_warn_ratelimited("metacopy with no lower data found - abort lookup (%pd2)\n",
dentry);
err = -EIO;
goto out_put;
} else if (!d.is_dir && upperdentry && !ctr && origin_path) {
if (WARN_ON(stack != NULL)) {
err = -EIO;
goto out_put;
}
stack = origin_path;
ctr = 1;
ovl: simplify setting of origin for index lookup overlayfs can keep index of copied up files and directories and it seems to serve two primary puroposes. For regular files, it avoids breaking lower hardlinks over copy up. For directories it seems to be used for various error checks. During ovl_lookup(), we lookup for index using lower dentry in many a cases. That lower dentry is called "origin" and following is a summary of current logic. If there is no upperdentry, always lookup for index using lower dentry. For regular files it helps avoiding breaking hard links over copyup and for directories it seems to be just error checks. If there is an upperdentry, then there are 3 possible cases. - For directories, lower dentry is found using two ways. One is regular path based lookup in lower layers and second is using ORIGIN xattr on upper dentry. First verify that path based lookup lower dentry matches the one pointed by upper ORIGIN xattr. If yes, use this verified origin for index lookup. - For regular files (non-metacopy), there is no path based lookup in lower layers as lookup stops once we find upper dentry. So there is no origin verification. If there is ORIGIN xattr present on upper, use that to lookup index otherwise don't. - For regular metacopy files, again lower dentry is found using path based lookup as well as ORIGIN xattr on upper. Path based lookup is continued in this case to find lower data dentry for metacopy upper. So like directories we only use verified origin. If ORIGIN xattr is not present (Either because lower did not support file handles or because this is hardlink copied up with index=off), then don't use path lookup based lower dentry as origin. This is same as regular non-metacopy file case. Suggested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-01 15:56:50 +00:00
origin = origin_path->dentry;
origin_path = NULL;
}
/*
ovl: simplify setting of origin for index lookup overlayfs can keep index of copied up files and directories and it seems to serve two primary puroposes. For regular files, it avoids breaking lower hardlinks over copy up. For directories it seems to be used for various error checks. During ovl_lookup(), we lookup for index using lower dentry in many a cases. That lower dentry is called "origin" and following is a summary of current logic. If there is no upperdentry, always lookup for index using lower dentry. For regular files it helps avoiding breaking hard links over copyup and for directories it seems to be just error checks. If there is an upperdentry, then there are 3 possible cases. - For directories, lower dentry is found using two ways. One is regular path based lookup in lower layers and second is using ORIGIN xattr on upper dentry. First verify that path based lookup lower dentry matches the one pointed by upper ORIGIN xattr. If yes, use this verified origin for index lookup. - For regular files (non-metacopy), there is no path based lookup in lower layers as lookup stops once we find upper dentry. So there is no origin verification. If there is ORIGIN xattr present on upper, use that to lookup index otherwise don't. - For regular metacopy files, again lower dentry is found using path based lookup as well as ORIGIN xattr on upper. Path based lookup is continued in this case to find lower data dentry for metacopy upper. So like directories we only use verified origin. If ORIGIN xattr is not present (Either because lower did not support file handles or because this is hardlink copied up with index=off), then don't use path lookup based lower dentry as origin. This is same as regular non-metacopy file case. Suggested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-01 15:56:50 +00:00
* Always lookup index if there is no-upperdentry.
*
ovl: simplify setting of origin for index lookup overlayfs can keep index of copied up files and directories and it seems to serve two primary puroposes. For regular files, it avoids breaking lower hardlinks over copy up. For directories it seems to be used for various error checks. During ovl_lookup(), we lookup for index using lower dentry in many a cases. That lower dentry is called "origin" and following is a summary of current logic. If there is no upperdentry, always lookup for index using lower dentry. For regular files it helps avoiding breaking hard links over copyup and for directories it seems to be just error checks. If there is an upperdentry, then there are 3 possible cases. - For directories, lower dentry is found using two ways. One is regular path based lookup in lower layers and second is using ORIGIN xattr on upper dentry. First verify that path based lookup lower dentry matches the one pointed by upper ORIGIN xattr. If yes, use this verified origin for index lookup. - For regular files (non-metacopy), there is no path based lookup in lower layers as lookup stops once we find upper dentry. So there is no origin verification. If there is ORIGIN xattr present on upper, use that to lookup index otherwise don't. - For regular metacopy files, again lower dentry is found using path based lookup as well as ORIGIN xattr on upper. Path based lookup is continued in this case to find lower data dentry for metacopy upper. So like directories we only use verified origin. If ORIGIN xattr is not present (Either because lower did not support file handles or because this is hardlink copied up with index=off), then don't use path lookup based lower dentry as origin. This is same as regular non-metacopy file case. Suggested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-01 15:56:50 +00:00
* For the case of upperdentry, we have set origin by now if it
* needed to be set. There are basically three cases.
*
* For directories, lookup index by lower inode and verify it matches
* upper inode. We only trust dir index if we verified that lower dir
* matches origin, otherwise dir index entries may be inconsistent
* and we ignore them.
*
* For regular upper, we already set origin if upper had ORIGIN
* xattr. There is no verification though as there is no path
* based dentry lookup in lower in this case.
*
* For metacopy upper, we set a verified origin already if index
* is enabled and if upper had an ORIGIN xattr.
*
*/
ovl: simplify setting of origin for index lookup overlayfs can keep index of copied up files and directories and it seems to serve two primary puroposes. For regular files, it avoids breaking lower hardlinks over copy up. For directories it seems to be used for various error checks. During ovl_lookup(), we lookup for index using lower dentry in many a cases. That lower dentry is called "origin" and following is a summary of current logic. If there is no upperdentry, always lookup for index using lower dentry. For regular files it helps avoiding breaking hard links over copyup and for directories it seems to be just error checks. If there is an upperdentry, then there are 3 possible cases. - For directories, lower dentry is found using two ways. One is regular path based lookup in lower layers and second is using ORIGIN xattr on upper dentry. First verify that path based lookup lower dentry matches the one pointed by upper ORIGIN xattr. If yes, use this verified origin for index lookup. - For regular files (non-metacopy), there is no path based lookup in lower layers as lookup stops once we find upper dentry. So there is no origin verification. If there is ORIGIN xattr present on upper, use that to lookup index otherwise don't. - For regular metacopy files, again lower dentry is found using path based lookup as well as ORIGIN xattr on upper. Path based lookup is continued in this case to find lower data dentry for metacopy upper. So like directories we only use verified origin. If ORIGIN xattr is not present (Either because lower did not support file handles or because this is hardlink copied up with index=off), then don't use path lookup based lower dentry as origin. This is same as regular non-metacopy file case. Suggested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-01 15:56:50 +00:00
if (!upperdentry && ctr)
origin = stack[0].dentry;
if (origin && ovl_indexdir(dentry->d_sb) &&
(!d.is_dir || ovl_index_all(dentry->d_sb))) {
index = ovl_lookup_index(ofs, upperdentry, origin, true);
if (IS_ERR(index)) {
err = PTR_ERR(index);
index = NULL;
goto out_put;
}
}
if (ctr) {
oe = ovl_alloc_entry(ctr);
err = -ENOMEM;
if (!oe)
goto out_put;
ovl_stack_cpy(ovl_lowerstack(oe), stack, ctr);
}
if (upperopaque)
ovl_dentry_set_opaque(dentry);
if (upperdentry)
ovl_dentry_set_upper_alias(dentry);
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
else if (index) {
struct path upperpath = {
.dentry = upperdentry = dget(index),
.mnt = ovl_upper_mnt(ofs),
};
/*
* It's safe to assign upperredirect here: the previous
* assignment of happens only if upperdentry is non-NULL, and
* this one only if upperdentry is NULL.
*/
upperredirect = ovl_get_redirect_xattr(ofs, &upperpath, 0);
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
if (IS_ERR(upperredirect)) {
err = PTR_ERR(upperredirect);
upperredirect = NULL;
goto out_free_oe;
}
err = ovl_check_metacopy_xattr(ofs, &upperpath);
if (err < 0)
goto out_free_oe;
uppermetacopy = err;
ovl: Check redirect on index as well Right now we seem to check redirect only if upperdentry is found. But it is possible that there is no upperdentry but later we found an index. We need to check redirect on index as well and set it in ovl_inode->redirect. Otherwise link code can assume that dentry does not have redirect and place a new one which breaks things. In my testing overlay/033 test started failing in xfstests. Following are the details. For example do following. $ mkdir lower upper work merged - Make lower dir with 4 links. $ echo "foo" > lower/l0.txt $ ln lower/l0.txt lower/l1.txt $ ln lower/l0.txt lower/l2.txt $ ln lower/l0.txt lower/l3.txt - Mount with index on and metacopy on. $ mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work,\ index=on,metacopy=on none merged - Link lower $ ln merged/l0.txt merged/l4.txt (This will metadata copy up of l0.txt and put an absolute redirect /l0.txt) $ echo 2 > /proc/sys/vm/drop/caches $ ls merged/l1.txt (Now l1.txt will be looked up. There is no upper dentry but there is lower dentry and index will be found. We don't check for redirect on index, hence ovl_inode->redirect will be NULL.) - Link Upper $ ln merged/l4.txt merged/l5.txt (Lookup of l4.txt will use inode from l1.txt lookup which is still in cache. It has ovl_inode->redirect NULL, hence link will put a new redirect and replace /l0.txt with /l4.txt - Drop caches. echo 2 > /proc/sys/vm/drop_caches - List l1.txt and it returns -ESTALE $ ls merged/l0.txt (It returns stale because, we found a metacopy of l0.txt in upper and it has redirect l4.txt but there is no file named l4.txt in lower layer. So lower data copy is not found and -ESTALE is returned.) So problem here is that we did not process redirect on index. Check redirect on index as well and then problem is fixed. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-05-11 15:49:32 +00:00
}
if (upperdentry || ctr) {
struct ovl_inode_params oip = {
.upperdentry = upperdentry,
.oe = oe,
.index = index,
.redirect = upperredirect,
};
inode = ovl_get_inode(dentry->d_sb, &oip);
err = PTR_ERR(inode);
if (IS_ERR(inode))
goto out_free_oe;
ovl: initialize OVL_UPPERDATA in ovl_lookup() Currently ovl_get_inode() initializes OVL_UPPERDATA flag and for that it has to call ovl_check_metacopy_xattr() and check if metacopy xattr is present or not. yangerkun reported sometimes underlying filesystem might return -EIO and in that case error handling path does not cleanup properly leading to various warnings. Run generic/461 with ext4 upper/lower layer sometimes may trigger the bug as below(linux 4.19): [ 551.001349] overlayfs: failed to get metacopy (-5) [ 551.003464] overlayfs: failed to get inode (-5) [ 551.004243] overlayfs: cleanup of 'd44/fd51' failed (-5) [ 551.004941] overlayfs: failed to get origin (-5) [ 551.005199] ------------[ cut here ]------------ [ 551.006697] WARNING: CPU: 3 PID: 24674 at fs/inode.c:1528 iput+0x33b/0x400 ... [ 551.027219] Call Trace: [ 551.027623] ovl_create_object+0x13f/0x170 [ 551.028268] ovl_create+0x27/0x30 [ 551.028799] path_openat+0x1a35/0x1ea0 [ 551.029377] do_filp_open+0xad/0x160 [ 551.029944] ? vfs_writev+0xe9/0x170 [ 551.030499] ? page_counter_try_charge+0x77/0x120 [ 551.031245] ? __alloc_fd+0x160/0x2a0 [ 551.031832] ? do_sys_open+0x189/0x340 [ 551.032417] ? get_unused_fd_flags+0x34/0x40 [ 551.033081] do_sys_open+0x189/0x340 [ 551.033632] __x64_sys_creat+0x24/0x30 [ 551.034219] do_syscall_64+0xd5/0x430 [ 551.034800] entry_SYSCALL_64_after_hwframe+0x44/0xa9 One solution is to improve error handling and call iget_failed() if error is encountered. Amir thinks that this path is little intricate and there is not real need to check and initialize OVL_UPPERDATA in ovl_get_inode(). Instead caller of ovl_get_inode() can initialize this state. And this will avoid double checking of metacopy xattr lookup in ovl_lookup() and ovl_get_inode(). OVL_UPPERDATA is inode flag. So I was little concerned that initializing it outside ovl_get_inode() might have some races. But this is one way transition. That is once a file has been fully copied up, it can't go back to metacopy file again. And that seems to help avoid races. So as of now I can't see any races w.r.t OVL_UPPERDATA being set wrongly. So move settingof OVL_UPPERDATA inside the callers of ovl_get_inode(). ovl_obtain_alias() already does it. So only two callers now left are ovl_lookup() and ovl_instantiate(). Reported-by: yangerkun <yangerkun@huawei.com> Suggested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-01 15:56:52 +00:00
if (upperdentry && !uppermetacopy)
ovl_set_flag(OVL_UPPERDATA, inode);
}
ovl_dentry_init_reval(dentry, upperdentry, OVL_I_E(inode));
revert_creds(old_cred);
if (origin_path) {
dput(origin_path->dentry);
kfree(origin_path);
}
dput(index);
ovl_stack_free(stack, ctr);
kfree(d.redirect);
return d_splice_alias(inode, dentry);
out_free_oe:
ovl_free_entry(oe);
out_put:
dput(index);
ovl_stack_free(stack, ctr);
out_put_upper:
if (origin_path) {
dput(origin_path->dentry);
kfree(origin_path);
}
dput(upperdentry);
kfree(upperredirect);
out:
kfree(d.redirect);
revert_creds(old_cred);
return ERR_PTR(err);
}
bool ovl_lower_positive(struct dentry *dentry)
{
struct ovl_entry *poe = OVL_E(dentry->d_parent);
const struct qstr *name = &dentry->d_name;
const struct cred *old_cred;
unsigned int i;
bool positive = false;
bool done = false;
/*
* If dentry is negative, then lower is positive iff this is a
* whiteout.
*/
if (!dentry->d_inode)
return ovl_dentry_is_opaque(dentry);
/* Negative upper -> positive lower */
if (!ovl_dentry_upper(dentry))
return true;
old_cred = ovl_override_creds(dentry->d_sb);
/* Positive upper -> have to look up lower to see whether it exists */
for (i = 0; !done && !positive && i < ovl_numlower(poe); i++) {
struct dentry *this;
struct ovl_path *parentpath = &ovl_lowerstack(poe)[i];
this = lookup_one_positive_unlocked(
mnt_idmap(parentpath->layer->mnt),
name->name, parentpath->dentry, name->len);
if (IS_ERR(this)) {
switch (PTR_ERR(this)) {
case -ENOENT:
case -ENAMETOOLONG:
break;
default:
/*
* Assume something is there, we just couldn't
* access it.
*/
positive = true;
break;
}
} else {
positive = !ovl_is_whiteout(this);
done = true;
dput(this);
}
}
revert_creds(old_cred);
return positive;
}