631 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2018-2021 Intel Corporation
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/hwmon.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/peci.h>
#include <linux/peci-cpu.h>
#include <linux/units.h>
#include <linux/workqueue.h>
#include "common.h"
#define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000)
/* Max number of channel ranks and DIMM index per channel */
#define CHAN_RANK_MAX_ON_HSX 8
#define DIMM_IDX_MAX_ON_HSX 3
#define CHAN_RANK_MAX_ON_BDX 4
#define DIMM_IDX_MAX_ON_BDX 3
#define CHAN_RANK_MAX_ON_BDXD 2
#define DIMM_IDX_MAX_ON_BDXD 2
#define CHAN_RANK_MAX_ON_SKX 6
#define DIMM_IDX_MAX_ON_SKX 2
#define CHAN_RANK_MAX_ON_ICX 8
#define DIMM_IDX_MAX_ON_ICX 2
#define CHAN_RANK_MAX_ON_ICXD 4
#define DIMM_IDX_MAX_ON_ICXD 2
#define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX
#define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX
#define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX)
#define CPU_SEG_MASK GENMASK(23, 16)
#define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16)
#define CPU_BUS_MASK GENMASK(7, 0)
#define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK)
#define DIMM_TEMP_MAX GENMASK(15, 8)
#define DIMM_TEMP_CRIT GENMASK(23, 16)
#define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8)
#define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16)
#define NO_DIMM_RETRY_COUNT_MAX 5
struct peci_dimmtemp;
struct dimm_info {
int chan_rank_max;
int dimm_idx_max;
u8 min_peci_revision;
int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order,
int chan_rank, u32 *data);
};
struct peci_dimm_thresholds {
long temp_max;
long temp_crit;
struct peci_sensor_state state;
};
enum peci_dimm_threshold_type {
temp_max_type,
temp_crit_type,
};
struct peci_dimmtemp {
struct peci_device *peci_dev;
struct device *dev;
const char *name;
const struct dimm_info *gen_info;
struct delayed_work detect_work;
struct {
struct peci_sensor_data temp;
struct peci_dimm_thresholds thresholds;
} dimm[DIMM_NUMS_MAX];
char **dimmtemp_label;
DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX);
u8 no_dimm_retry_count;
};
static u8 __dimm_temp(u32 reg, int dimm_order)
{
return (reg >> (dimm_order * 8)) & 0xff;
}
static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val)
{
int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
int ret = 0;
u32 data;
mutex_lock(&priv->dimm[dimm_no].temp.state.lock);
if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state))
goto skip_update;
ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data);
if (ret)
goto unlock;
priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE;
peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state);
skip_update:
*val = priv->dimm[dimm_no].temp.value;
unlock:
mutex_unlock(&priv->dimm[dimm_no].temp.state.lock);
return ret;
}
static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no)
{
int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
u32 data;
int ret;
if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state))
return 0;
ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data);
if (ret == -ENODATA) /* Use default or previous value */
return 0;
if (ret)
return ret;
priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE;
priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE;
peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state);
return 0;
}
static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type,
int dimm_no, long *val)
{
int ret;
mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock);
ret = update_thresholds(priv, dimm_no);
if (ret)
goto unlock;
switch (type) {
case temp_max_type:
*val = priv->dimm[dimm_no].thresholds.temp_max;
break;
case temp_crit_type:
*val = priv->dimm[dimm_no].thresholds.temp_crit;
break;
default:
ret = -EOPNOTSUPP;
break;
}
unlock:
mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock);
return ret;
}
static int dimmtemp_read_string(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
struct peci_dimmtemp *priv = dev_get_drvdata(dev);
if (attr != hwmon_temp_label)
return -EOPNOTSUPP;
*str = (const char *)priv->dimmtemp_label[channel];
return 0;
}
static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct peci_dimmtemp *priv = dev_get_drvdata(dev);
switch (attr) {
case hwmon_temp_input:
return get_dimm_temp(priv, channel, val);
case hwmon_temp_max:
return get_dimm_thresholds(priv, temp_max_type, channel, val);
case hwmon_temp_crit:
return get_dimm_thresholds(priv, temp_crit_type, channel, val);
default:
break;
}
return -EOPNOTSUPP;
}
static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct peci_dimmtemp *priv = data;
if (test_bit(channel, priv->dimm_mask))
return 0444;
return 0;
}
static const struct hwmon_ops peci_dimmtemp_ops = {
.is_visible = dimmtemp_is_visible,
.read_string = dimmtemp_read_string,
.read = dimmtemp_read,
};
static int check_populated_dimms(struct peci_dimmtemp *priv)
{
int chan_rank_max = priv->gen_info->chan_rank_max;
int dimm_idx_max = priv->gen_info->dimm_idx_max;
u32 chan_rank_empty = 0;
u64 dimm_mask = 0;
int chan_rank, dimm_idx, ret;
u32 pcs;
BUILD_BUG_ON(BITS_PER_TYPE(chan_rank_empty) < CHAN_RANK_MAX);
BUILD_BUG_ON(BITS_PER_TYPE(dimm_mask) < DIMM_NUMS_MAX);
if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) {
WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d",
chan_rank_max, dimm_idx_max);
return -EINVAL;
}
for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) {
ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs);
if (ret) {
/*
* Overall, we expect either success or -EINVAL in
* order to determine whether DIMM is populated or not.
* For anything else we fall back to deferring the
* detection to be performed at a later point in time.
*/
if (ret == -EINVAL) {
chan_rank_empty |= BIT(chan_rank);
continue;
}
return -EAGAIN;
}
for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++)
if (__dimm_temp(pcs, dimm_idx))
dimm_mask |= BIT(chan_rank * dimm_idx_max + dimm_idx);
}
/*
* If we got all -EINVALs, it means that the CPU doesn't have any
* DIMMs. Unfortunately, it may also happen at the very start of
* host platform boot. Retrying a couple of times lets us make sure
* that the state is persistent.
*/
if (chan_rank_empty == GENMASK(chan_rank_max - 1, 0)) {
if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) {
priv->no_dimm_retry_count++;
return -EAGAIN;
}
return -ENODEV;
}
/*
* It's possible that memory training is not done yet. In this case we
* defer the detection to be performed at a later point in time.
*/
if (!dimm_mask) {
priv->no_dimm_retry_count = 0;
return -EAGAIN;
}
dev_dbg(priv->dev, "Scanned populated DIMMs: %#llx\n", dimm_mask);
bitmap_from_u64(priv->dimm_mask, dimm_mask);
return 0;
}
static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan)
{
int rank = chan / priv->gen_info->dimm_idx_max;
int idx = chan % priv->gen_info->dimm_idx_max;
priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL,
"DIMM %c%d", 'A' + rank,
idx + 1);
if (!priv->dimmtemp_label[chan])
return -ENOMEM;
return 0;
}
static const u32 peci_dimmtemp_temp_channel_config[] = {
[0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT,
0
};
static const struct hwmon_channel_info peci_dimmtemp_temp_channel = {
.type = hwmon_temp,
.config = peci_dimmtemp_temp_channel_config,
};
static const struct hwmon_channel_info *peci_dimmtemp_temp_info[] = {
&peci_dimmtemp_temp_channel,
NULL
};
static const struct hwmon_chip_info peci_dimmtemp_chip_info = {
.ops = &peci_dimmtemp_ops,
.info = peci_dimmtemp_temp_info,
};
static int create_dimm_temp_info(struct peci_dimmtemp *priv)
{
int ret, i, channels;
struct device *dev;
/*
* We expect to either find populated DIMMs and carry on with creating
* sensors, or find out that there are no DIMMs populated.
* All other states mean that the platform never reached the state that
* allows to check DIMM state - causing us to retry later on.
*/
ret = check_populated_dimms(priv);
if (ret == -ENODEV) {
dev_dbg(priv->dev, "No DIMMs found\n");
return 0;
} else if (ret) {
schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES);
dev_dbg(priv->dev, "Deferred populating DIMM temp info\n");
return ret;
}
channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max;
priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL);
if (!priv->dimmtemp_label)
return -ENOMEM;
for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) {
ret = create_dimm_temp_label(priv, i);
if (ret)
return ret;
mutex_init(&priv->dimm[i].thresholds.state.lock);
mutex_init(&priv->dimm[i].temp.state.lock);
}
dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv,
&peci_dimmtemp_chip_info, NULL);
if (IS_ERR(dev)) {
dev_err(priv->dev, "Failed to register hwmon device\n");
return PTR_ERR(dev);
}
dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name);
return 0;
}
static void create_dimm_temp_info_delayed(struct work_struct *work)
{
struct peci_dimmtemp *priv = container_of(to_delayed_work(work),
struct peci_dimmtemp,
detect_work);
int ret;
ret = create_dimm_temp_info(priv);
if (ret && ret != -EAGAIN)
dev_err(priv->dev, "Failed to populate DIMM temp info\n");
}
static void remove_delayed_work(void *_priv)
{
struct peci_dimmtemp *priv = _priv;
cancel_delayed_work_sync(&priv->detect_work);
}
static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id)
{
struct device *dev = &adev->dev;
struct peci_device *peci_dev = to_peci_device(dev->parent);
struct peci_dimmtemp *priv;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d",
peci_dev->info.socket_id);
if (!priv->name)
return -ENOMEM;
priv->dev = dev;
priv->peci_dev = peci_dev;
priv->gen_info = (const struct dimm_info *)id->driver_data;
/*
* This is just a sanity check. Since we're using commands that are
* guaranteed to be supported on a given platform, we should never see
* revision lower than expected.
*/
if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision)
dev_warn(priv->dev,
"Unexpected PECI revision %#x, some features may be unavailable\n",
peci_dev->info.peci_revision);
INIT_DELAYED_WORK(&priv->detect_work, create_dimm_temp_info_delayed);
ret = devm_add_action_or_reset(priv->dev, remove_delayed_work, priv);
if (ret)
return ret;
ret = create_dimm_temp_info(priv);
if (ret && ret != -EAGAIN) {
dev_err(dev, "Failed to populate DIMM temp info\n");
return ret;
}
return 0;
}
static int
read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
u8 dev, func;
u16 reg;
int ret;
/*
* Device 20, Function 0: IMC 0 channel 0 -> rank 0
* Device 20, Function 1: IMC 0 channel 1 -> rank 1
* Device 21, Function 0: IMC 0 channel 2 -> rank 2
* Device 21, Function 1: IMC 0 channel 3 -> rank 3
* Device 23, Function 0: IMC 1 channel 0 -> rank 4
* Device 23, Function 1: IMC 1 channel 1 -> rank 5
* Device 24, Function 0: IMC 1 channel 2 -> rank 6
* Device 24, Function 1: IMC 1 channel 3 -> rank 7
*/
dev = 20 + chan_rank / 2 + chan_rank / 4;
func = chan_rank % 2;
reg = 0x120 + dimm_order * 4;
ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data);
if (ret)
return ret;
return 0;
}
static int
read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
u8 dev, func;
u16 reg;
int ret;
/*
* Device 10, Function 2: IMC 0 channel 0 -> rank 0
* Device 10, Function 6: IMC 0 channel 1 -> rank 1
* Device 12, Function 2: IMC 1 channel 0 -> rank 2
* Device 12, Function 6: IMC 1 channel 1 -> rank 3
*/
dev = 10 + chan_rank / 2 * 2;
func = (chan_rank % 2) ? 6 : 2;
reg = 0x120 + dimm_order * 4;
ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
if (ret)
return ret;
return 0;
}
static int
read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
u8 dev, func;
u16 reg;
int ret;
/*
* Device 10, Function 2: IMC 0 channel 0 -> rank 0
* Device 10, Function 6: IMC 0 channel 1 -> rank 1
* Device 11, Function 2: IMC 0 channel 2 -> rank 2
* Device 12, Function 2: IMC 1 channel 0 -> rank 3
* Device 12, Function 6: IMC 1 channel 1 -> rank 4
* Device 13, Function 2: IMC 1 channel 2 -> rank 5
*/
dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0);
func = chan_rank % 3 == 1 ? 6 : 2;
reg = 0x120 + dimm_order * 4;
ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
if (ret)
return ret;
return 0;
}
static int
read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
{
u32 reg_val;
u64 offset;
int ret;
u8 dev;
ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, &reg_val);
if (ret || !(reg_val & BIT(31)))
return -ENODATA; /* Use default or previous value */
ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, &reg_val);
if (ret)
return -ENODATA; /* Use default or previous value */
/*
* Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0
* Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1
* Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2
* Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3
* Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4
* Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5
* Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6
* Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7
*/
dev = 26 + chan_rank / 2;
offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000;
ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val),
dev, 0, offset, data);
if (ret)
return ret;
return 0;
}
static const struct dimm_info dimm_hsx = {
.chan_rank_max = CHAN_RANK_MAX_ON_HSX,
.dimm_idx_max = DIMM_IDX_MAX_ON_HSX,
.min_peci_revision = 0x33,
.read_thresholds = &read_thresholds_hsx,
};
static const struct dimm_info dimm_bdx = {
.chan_rank_max = CHAN_RANK_MAX_ON_BDX,
.dimm_idx_max = DIMM_IDX_MAX_ON_BDX,
.min_peci_revision = 0x33,
.read_thresholds = &read_thresholds_hsx,
};
static const struct dimm_info dimm_bdxd = {
.chan_rank_max = CHAN_RANK_MAX_ON_BDXD,
.dimm_idx_max = DIMM_IDX_MAX_ON_BDXD,
.min_peci_revision = 0x33,
.read_thresholds = &read_thresholds_bdxd,
};
static const struct dimm_info dimm_skx = {
.chan_rank_max = CHAN_RANK_MAX_ON_SKX,
.dimm_idx_max = DIMM_IDX_MAX_ON_SKX,
.min_peci_revision = 0x33,
.read_thresholds = &read_thresholds_skx,
};
static const struct dimm_info dimm_icx = {
.chan_rank_max = CHAN_RANK_MAX_ON_ICX,
.dimm_idx_max = DIMM_IDX_MAX_ON_ICX,
.min_peci_revision = 0x40,
.read_thresholds = &read_thresholds_icx,
};
static const struct dimm_info dimm_icxd = {
.chan_rank_max = CHAN_RANK_MAX_ON_ICXD,
.dimm_idx_max = DIMM_IDX_MAX_ON_ICXD,
.min_peci_revision = 0x40,
.read_thresholds = &read_thresholds_icx,
};
static const struct auxiliary_device_id peci_dimmtemp_ids[] = {
{
.name = "peci_cpu.dimmtemp.hsx",
.driver_data = (kernel_ulong_t)&dimm_hsx,
},
{
.name = "peci_cpu.dimmtemp.bdx",
.driver_data = (kernel_ulong_t)&dimm_bdx,
},
{
.name = "peci_cpu.dimmtemp.bdxd",
.driver_data = (kernel_ulong_t)&dimm_bdxd,
},
{
.name = "peci_cpu.dimmtemp.skx",
.driver_data = (kernel_ulong_t)&dimm_skx,
},
{
.name = "peci_cpu.dimmtemp.icx",
.driver_data = (kernel_ulong_t)&dimm_icx,
},
{
.name = "peci_cpu.dimmtemp.icxd",
.driver_data = (kernel_ulong_t)&dimm_icxd,
},
{ }
};
MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids);
static struct auxiliary_driver peci_dimmtemp_driver = {
.probe = peci_dimmtemp_probe,
.id_table = peci_dimmtemp_ids,
};
module_auxiliary_driver(peci_dimmtemp_driver);
MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>");
MODULE_DESCRIPTION("PECI dimmtemp driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PECI_CPU);