mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/lockdep.h>
|
2022-08-18 13:10:34 +00:00
|
|
|
#include <linux/sysfs.h>
|
|
|
|
#include <linux/kobject.h>
|
2022-08-18 13:10:35 +00:00
|
|
|
#include <linux/memory.h>
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
#include <linux/memory-tiers.h>
|
|
|
|
|
2022-08-18 13:10:37 +00:00
|
|
|
#include "internal.h"
|
|
|
|
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
struct memory_tier {
|
|
|
|
/* hierarchy of memory tiers */
|
|
|
|
struct list_head list;
|
|
|
|
/* list of all memory types part of this tier */
|
|
|
|
struct list_head memory_types;
|
|
|
|
/*
|
|
|
|
* start value of abstract distance. memory tier maps
|
|
|
|
* an abstract distance range,
|
|
|
|
* adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
|
|
|
|
*/
|
|
|
|
int adistance_start;
|
2022-08-18 13:10:40 +00:00
|
|
|
/* All the nodes that are part of all the lower memory tiers. */
|
|
|
|
nodemask_t lower_tier_mask;
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
};
|
|
|
|
|
2022-08-18 13:10:37 +00:00
|
|
|
struct demotion_nodes {
|
|
|
|
nodemask_t preferred;
|
|
|
|
};
|
|
|
|
|
2022-08-18 13:10:36 +00:00
|
|
|
struct node_memory_type_map {
|
|
|
|
struct memory_dev_type *memtype;
|
|
|
|
int map_count;
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static DEFINE_MUTEX(memory_tier_lock);
|
|
|
|
static LIST_HEAD(memory_tiers);
|
2022-08-18 13:10:36 +00:00
|
|
|
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
|
|
|
|
static struct memory_dev_type *default_dram_type;
|
2022-08-18 13:10:37 +00:00
|
|
|
#ifdef CONFIG_MIGRATION
|
2022-08-18 13:10:41 +00:00
|
|
|
static int top_tier_adistance;
|
2022-08-18 13:10:37 +00:00
|
|
|
/*
|
|
|
|
* node_demotion[] examples:
|
|
|
|
*
|
|
|
|
* Example 1:
|
|
|
|
*
|
|
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
|
|
|
|
*
|
|
|
|
* node distances:
|
|
|
|
* node 0 1 2 3
|
|
|
|
* 0 10 20 30 40
|
|
|
|
* 1 20 10 40 30
|
|
|
|
* 2 30 40 10 40
|
|
|
|
* 3 40 30 40 10
|
|
|
|
*
|
|
|
|
* memory_tiers0 = 0-1
|
|
|
|
* memory_tiers1 = 2-3
|
|
|
|
*
|
|
|
|
* node_demotion[0].preferred = 2
|
|
|
|
* node_demotion[1].preferred = 3
|
|
|
|
* node_demotion[2].preferred = <empty>
|
|
|
|
* node_demotion[3].preferred = <empty>
|
|
|
|
*
|
|
|
|
* Example 2:
|
|
|
|
*
|
|
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
|
|
|
|
*
|
|
|
|
* node distances:
|
|
|
|
* node 0 1 2
|
|
|
|
* 0 10 20 30
|
|
|
|
* 1 20 10 30
|
|
|
|
* 2 30 30 10
|
|
|
|
*
|
|
|
|
* memory_tiers0 = 0-2
|
|
|
|
*
|
|
|
|
* node_demotion[0].preferred = <empty>
|
|
|
|
* node_demotion[1].preferred = <empty>
|
|
|
|
* node_demotion[2].preferred = <empty>
|
|
|
|
*
|
|
|
|
* Example 3:
|
|
|
|
*
|
|
|
|
* Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
|
|
|
|
*
|
|
|
|
* node distances:
|
|
|
|
* node 0 1 2
|
|
|
|
* 0 10 20 30
|
|
|
|
* 1 20 10 40
|
|
|
|
* 2 30 40 10
|
|
|
|
*
|
|
|
|
* memory_tiers0 = 1
|
|
|
|
* memory_tiers1 = 0
|
|
|
|
* memory_tiers2 = 2
|
|
|
|
*
|
|
|
|
* node_demotion[0].preferred = 2
|
|
|
|
* node_demotion[1].preferred = 0
|
|
|
|
* node_demotion[2].preferred = <empty>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static struct demotion_nodes *node_demotion __read_mostly;
|
|
|
|
#endif /* CONFIG_MIGRATION */
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
|
|
|
|
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
|
|
|
|
{
|
|
|
|
bool found_slot = false;
|
|
|
|
struct memory_tier *memtier, *new_memtier;
|
|
|
|
int adistance = memtype->adistance;
|
|
|
|
unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
|
|
|
|
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
|
2022-08-18 13:10:39 +00:00
|
|
|
adistance = round_down(adistance, memtier_adistance_chunk_size);
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
/*
|
|
|
|
* If the memtype is already part of a memory tier,
|
|
|
|
* just return that.
|
|
|
|
*/
|
2022-08-18 13:10:39 +00:00
|
|
|
if (!list_empty(&memtype->tier_sibiling)) {
|
|
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
|
|
if (adistance == memtier->adistance_start)
|
|
|
|
return memtier;
|
|
|
|
}
|
|
|
|
WARN_ON(1);
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
|
|
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
|
|
if (adistance == memtier->adistance_start) {
|
|
|
|
list_add(&memtype->tier_sibiling, &memtier->memory_types);
|
|
|
|
return memtier;
|
|
|
|
} else if (adistance < memtier->adistance_start) {
|
|
|
|
found_slot = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
new_memtier = kmalloc(sizeof(struct memory_tier), GFP_KERNEL);
|
|
|
|
if (!new_memtier)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
new_memtier->adistance_start = adistance;
|
|
|
|
INIT_LIST_HEAD(&new_memtier->list);
|
|
|
|
INIT_LIST_HEAD(&new_memtier->memory_types);
|
|
|
|
if (found_slot)
|
|
|
|
list_add_tail(&new_memtier->list, &memtier->list);
|
|
|
|
else
|
|
|
|
list_add_tail(&new_memtier->list, &memory_tiers);
|
|
|
|
list_add(&memtype->tier_sibiling, &new_memtier->memory_types);
|
|
|
|
return new_memtier;
|
|
|
|
}
|
|
|
|
|
2022-08-18 13:10:37 +00:00
|
|
|
static struct memory_tier *__node_get_memory_tier(int node)
|
|
|
|
{
|
2022-08-18 13:10:38 +00:00
|
|
|
pg_data_t *pgdat;
|
2022-08-18 13:10:37 +00:00
|
|
|
|
2022-08-18 13:10:38 +00:00
|
|
|
pgdat = NODE_DATA(node);
|
|
|
|
if (!pgdat)
|
|
|
|
return NULL;
|
|
|
|
/*
|
|
|
|
* Since we hold memory_tier_lock, we can avoid
|
|
|
|
* RCU read locks when accessing the details. No
|
|
|
|
* parallel updates are possible here.
|
|
|
|
*/
|
|
|
|
return rcu_dereference_check(pgdat->memtier,
|
|
|
|
lockdep_is_held(&memory_tier_lock));
|
2022-08-18 13:10:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_MIGRATION
|
2022-08-18 13:10:41 +00:00
|
|
|
bool node_is_toptier(int node)
|
|
|
|
{
|
|
|
|
bool toptier;
|
|
|
|
pg_data_t *pgdat;
|
|
|
|
struct memory_tier *memtier;
|
|
|
|
|
|
|
|
pgdat = NODE_DATA(node);
|
|
|
|
if (!pgdat)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
|
|
if (!memtier) {
|
|
|
|
toptier = true;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (memtier->adistance_start <= top_tier_adistance)
|
|
|
|
toptier = true;
|
|
|
|
else
|
|
|
|
toptier = false;
|
|
|
|
out:
|
|
|
|
rcu_read_unlock();
|
|
|
|
return toptier;
|
|
|
|
}
|
|
|
|
|
2022-08-18 13:10:40 +00:00
|
|
|
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
|
|
|
|
{
|
|
|
|
struct memory_tier *memtier;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pg_data_t.memtier updates includes a synchronize_rcu()
|
|
|
|
* which ensures that we either find NULL or a valid memtier
|
|
|
|
* in NODE_DATA. protect the access via rcu_read_lock();
|
|
|
|
*/
|
|
|
|
rcu_read_lock();
|
|
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
|
|
if (memtier)
|
|
|
|
*targets = memtier->lower_tier_mask;
|
|
|
|
else
|
|
|
|
*targets = NODE_MASK_NONE;
|
|
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
|
2022-08-18 13:10:37 +00:00
|
|
|
/**
|
|
|
|
* next_demotion_node() - Get the next node in the demotion path
|
|
|
|
* @node: The starting node to lookup the next node
|
|
|
|
*
|
|
|
|
* Return: node id for next memory node in the demotion path hierarchy
|
|
|
|
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
|
|
|
|
* @node online or guarantee that it *continues* to be the next demotion
|
|
|
|
* target.
|
|
|
|
*/
|
|
|
|
int next_demotion_node(int node)
|
|
|
|
{
|
|
|
|
struct demotion_nodes *nd;
|
|
|
|
int target;
|
|
|
|
|
|
|
|
if (!node_demotion)
|
|
|
|
return NUMA_NO_NODE;
|
|
|
|
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* node_demotion[] is updated without excluding this
|
|
|
|
* function from running.
|
|
|
|
*
|
|
|
|
* Make sure to use RCU over entire code blocks if
|
|
|
|
* node_demotion[] reads need to be consistent.
|
|
|
|
*/
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
|
|
* If there are multiple target nodes, just select one
|
|
|
|
* target node randomly.
|
|
|
|
*
|
|
|
|
* In addition, we can also use round-robin to select
|
|
|
|
* target node, but we should introduce another variable
|
|
|
|
* for node_demotion[] to record last selected target node,
|
|
|
|
* that may cause cache ping-pong due to the changing of
|
|
|
|
* last target node. Or introducing per-cpu data to avoid
|
|
|
|
* caching issue, which seems more complicated. So selecting
|
|
|
|
* target node randomly seems better until now.
|
|
|
|
*/
|
|
|
|
target = node_random(&nd->preferred);
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return target;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void disable_all_demotion_targets(void)
|
|
|
|
{
|
2022-08-18 13:10:40 +00:00
|
|
|
struct memory_tier *memtier;
|
2022-08-18 13:10:37 +00:00
|
|
|
int node;
|
|
|
|
|
2022-08-18 13:10:40 +00:00
|
|
|
for_each_node_state(node, N_MEMORY) {
|
2022-08-18 13:10:37 +00:00
|
|
|
node_demotion[node].preferred = NODE_MASK_NONE;
|
2022-08-18 13:10:40 +00:00
|
|
|
/*
|
|
|
|
* We are holding memory_tier_lock, it is safe
|
|
|
|
* to access pgda->memtier.
|
|
|
|
*/
|
|
|
|
memtier = __node_get_memory_tier(node);
|
|
|
|
if (memtier)
|
|
|
|
memtier->lower_tier_mask = NODE_MASK_NONE;
|
|
|
|
}
|
2022-08-18 13:10:37 +00:00
|
|
|
/*
|
|
|
|
* Ensure that the "disable" is visible across the system.
|
|
|
|
* Readers will see either a combination of before+disable
|
|
|
|
* state or disable+after. They will never see before and
|
|
|
|
* after state together.
|
|
|
|
*/
|
|
|
|
synchronize_rcu();
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
|
|
|
|
{
|
|
|
|
nodemask_t nodes = NODE_MASK_NONE;
|
|
|
|
struct memory_dev_type *memtype;
|
|
|
|
|
|
|
|
list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling)
|
|
|
|
nodes_or(nodes, nodes, memtype->nodes);
|
|
|
|
|
|
|
|
return nodes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find an automatic demotion target for all memory
|
|
|
|
* nodes. Failing here is OK. It might just indicate
|
|
|
|
* being at the end of a chain.
|
|
|
|
*/
|
|
|
|
static void establish_demotion_targets(void)
|
|
|
|
{
|
|
|
|
struct memory_tier *memtier;
|
|
|
|
struct demotion_nodes *nd;
|
|
|
|
int target = NUMA_NO_NODE, node;
|
|
|
|
int distance, best_distance;
|
2022-08-18 13:10:40 +00:00
|
|
|
nodemask_t tier_nodes, lower_tier;
|
2022-08-18 13:10:37 +00:00
|
|
|
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
|
|
|
|
if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION))
|
|
|
|
return;
|
|
|
|
|
|
|
|
disable_all_demotion_targets();
|
|
|
|
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
|
|
best_distance = -1;
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
|
|
|
|
memtier = __node_get_memory_tier(node);
|
|
|
|
if (!memtier || list_is_last(&memtier->list, &memory_tiers))
|
|
|
|
continue;
|
|
|
|
/*
|
|
|
|
* Get the lower memtier to find the demotion node list.
|
|
|
|
*/
|
|
|
|
memtier = list_next_entry(memtier, list);
|
|
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
|
|
/*
|
|
|
|
* find_next_best_node, use 'used' nodemask as a skip list.
|
|
|
|
* Add all memory nodes except the selected memory tier
|
|
|
|
* nodelist to skip list so that we find the best node from the
|
|
|
|
* memtier nodelist.
|
|
|
|
*/
|
|
|
|
nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find all the nodes in the memory tier node list of same best distance.
|
|
|
|
* add them to the preferred mask. We randomly select between nodes
|
|
|
|
* in the preferred mask when allocating pages during demotion.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
target = find_next_best_node(node, &tier_nodes);
|
|
|
|
if (target == NUMA_NO_NODE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
distance = node_distance(node, target);
|
|
|
|
if (distance == best_distance || best_distance == -1) {
|
|
|
|
best_distance = distance;
|
|
|
|
node_set(target, nd->preferred);
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while (1);
|
|
|
|
}
|
2022-08-18 13:10:41 +00:00
|
|
|
/*
|
|
|
|
* Promotion is allowed from a memory tier to higher
|
|
|
|
* memory tier only if the memory tier doesn't include
|
|
|
|
* compute. We want to skip promotion from a memory tier,
|
|
|
|
* if any node that is part of the memory tier have CPUs.
|
|
|
|
* Once we detect such a memory tier, we consider that tier
|
|
|
|
* as top tiper from which promotion is not allowed.
|
|
|
|
*/
|
|
|
|
list_for_each_entry_reverse(memtier, &memory_tiers, list) {
|
|
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
|
|
nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
|
|
|
|
if (!nodes_empty(tier_nodes)) {
|
|
|
|
/*
|
|
|
|
* abstract distance below the max value of this memtier
|
|
|
|
* is considered toptier.
|
|
|
|
*/
|
|
|
|
top_tier_adistance = memtier->adistance_start +
|
|
|
|
MEMTIER_CHUNK_SIZE - 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2022-08-18 13:10:40 +00:00
|
|
|
/*
|
|
|
|
* Now build the lower_tier mask for each node collecting node mask from
|
|
|
|
* all memory tier below it. This allows us to fallback demotion page
|
|
|
|
* allocation to a set of nodes that is closer the above selected
|
|
|
|
* perferred node.
|
|
|
|
*/
|
|
|
|
lower_tier = node_states[N_MEMORY];
|
|
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
|
|
/*
|
|
|
|
* Keep removing current tier from lower_tier nodes,
|
|
|
|
* This will remove all nodes in current and above
|
|
|
|
* memory tier from the lower_tier mask.
|
|
|
|
*/
|
|
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
|
|
nodes_andnot(lower_tier, lower_tier, tier_nodes);
|
|
|
|
memtier->lower_tier_mask = lower_tier;
|
|
|
|
}
|
2022-08-18 13:10:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static inline void disable_all_demotion_targets(void) {}
|
|
|
|
static inline void establish_demotion_targets(void) {}
|
|
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
|
2022-08-18 13:10:36 +00:00
|
|
|
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
|
|
{
|
|
|
|
if (!node_memory_types[node].memtype)
|
|
|
|
node_memory_types[node].memtype = memtype;
|
|
|
|
/*
|
|
|
|
* for each device getting added in the same NUMA node
|
|
|
|
* with this specific memtype, bump the map count. We
|
|
|
|
* Only take memtype device reference once, so that
|
|
|
|
* changing a node memtype can be done by droping the
|
|
|
|
* only reference count taken here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (node_memory_types[node].memtype == memtype) {
|
|
|
|
if (!node_memory_types[node].map_count++)
|
|
|
|
kref_get(&memtype->kref);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
static struct memory_tier *set_node_memory_tier(int node)
|
|
|
|
{
|
|
|
|
struct memory_tier *memtier;
|
|
|
|
struct memory_dev_type *memtype;
|
2022-08-18 13:10:38 +00:00
|
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
|
|
|
|
if (!node_state(node, N_MEMORY))
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
2022-08-18 13:10:36 +00:00
|
|
|
__init_node_memory_type(node, default_dram_type);
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
|
2022-08-18 13:10:36 +00:00
|
|
|
memtype = node_memory_types[node].memtype;
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
node_set(node, memtype->nodes);
|
|
|
|
memtier = find_create_memory_tier(memtype);
|
2022-08-18 13:10:38 +00:00
|
|
|
if (!IS_ERR(memtier))
|
|
|
|
rcu_assign_pointer(pgdat->memtier, memtier);
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
return memtier;
|
|
|
|
}
|
|
|
|
|
2022-08-18 13:10:35 +00:00
|
|
|
static void destroy_memory_tier(struct memory_tier *memtier)
|
|
|
|
{
|
|
|
|
list_del(&memtier->list);
|
2022-08-18 13:10:38 +00:00
|
|
|
/*
|
|
|
|
* synchronize_rcu in clear_node_memory_tier makes sure
|
|
|
|
* we don't have rcu access to this memory tier.
|
|
|
|
*/
|
2022-08-18 13:10:35 +00:00
|
|
|
kfree(memtier);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool clear_node_memory_tier(int node)
|
|
|
|
{
|
|
|
|
bool cleared = false;
|
2022-08-18 13:10:38 +00:00
|
|
|
pg_data_t *pgdat;
|
2022-08-18 13:10:35 +00:00
|
|
|
struct memory_tier *memtier;
|
|
|
|
|
2022-08-18 13:10:38 +00:00
|
|
|
pgdat = NODE_DATA(node);
|
|
|
|
if (!pgdat)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure that anybody looking at NODE_DATA who finds
|
|
|
|
* a valid memtier finds memory_dev_types with nodes still
|
|
|
|
* linked to the memtier. We achieve this by waiting for
|
|
|
|
* rcu read section to finish using synchronize_rcu.
|
|
|
|
* This also enables us to free the destroyed memory tier
|
|
|
|
* with kfree instead of kfree_rcu
|
|
|
|
*/
|
2022-08-18 13:10:35 +00:00
|
|
|
memtier = __node_get_memory_tier(node);
|
|
|
|
if (memtier) {
|
|
|
|
struct memory_dev_type *memtype;
|
|
|
|
|
2022-08-18 13:10:38 +00:00
|
|
|
rcu_assign_pointer(pgdat->memtier, NULL);
|
|
|
|
synchronize_rcu();
|
2022-08-18 13:10:36 +00:00
|
|
|
memtype = node_memory_types[node].memtype;
|
2022-08-18 13:10:35 +00:00
|
|
|
node_clear(node, memtype->nodes);
|
|
|
|
if (nodes_empty(memtype->nodes)) {
|
|
|
|
list_del_init(&memtype->tier_sibiling);
|
|
|
|
if (list_empty(&memtier->memory_types))
|
|
|
|
destroy_memory_tier(memtier);
|
|
|
|
}
|
|
|
|
cleared = true;
|
|
|
|
}
|
|
|
|
return cleared;
|
|
|
|
}
|
|
|
|
|
2022-08-18 13:10:36 +00:00
|
|
|
static void release_memtype(struct kref *kref)
|
|
|
|
{
|
|
|
|
struct memory_dev_type *memtype;
|
|
|
|
|
|
|
|
memtype = container_of(kref, struct memory_dev_type, kref);
|
|
|
|
kfree(memtype);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct memory_dev_type *alloc_memory_type(int adistance)
|
|
|
|
{
|
|
|
|
struct memory_dev_type *memtype;
|
|
|
|
|
|
|
|
memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
|
|
|
|
if (!memtype)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
memtype->adistance = adistance;
|
|
|
|
INIT_LIST_HEAD(&memtype->tier_sibiling);
|
|
|
|
memtype->nodes = NODE_MASK_NONE;
|
|
|
|
kref_init(&memtype->kref);
|
|
|
|
return memtype;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(alloc_memory_type);
|
|
|
|
|
|
|
|
void destroy_memory_type(struct memory_dev_type *memtype)
|
|
|
|
{
|
|
|
|
kref_put(&memtype->kref, release_memtype);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(destroy_memory_type);
|
|
|
|
|
|
|
|
void init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
|
|
{
|
|
|
|
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
|
|
__init_node_memory_type(node, memtype);
|
|
|
|
mutex_unlock(&memory_tier_lock);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(init_node_memory_type);
|
|
|
|
|
|
|
|
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
|
|
{
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
|
|
if (node_memory_types[node].memtype == memtype)
|
|
|
|
node_memory_types[node].map_count--;
|
|
|
|
/*
|
|
|
|
* If we umapped all the attached devices to this node,
|
|
|
|
* clear the node memory type.
|
|
|
|
*/
|
|
|
|
if (!node_memory_types[node].map_count) {
|
|
|
|
node_memory_types[node].memtype = NULL;
|
|
|
|
kref_put(&memtype->kref, release_memtype);
|
|
|
|
}
|
|
|
|
mutex_unlock(&memory_tier_lock);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clear_node_memory_type);
|
|
|
|
|
2022-08-18 13:10:35 +00:00
|
|
|
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
|
|
|
|
unsigned long action, void *_arg)
|
|
|
|
{
|
2022-08-18 13:10:37 +00:00
|
|
|
struct memory_tier *memtier;
|
2022-08-18 13:10:35 +00:00
|
|
|
struct memory_notify *arg = _arg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only update the node migration order when a node is
|
|
|
|
* changing status, like online->offline.
|
|
|
|
*/
|
|
|
|
if (arg->status_change_nid < 0)
|
|
|
|
return notifier_from_errno(0);
|
|
|
|
|
|
|
|
switch (action) {
|
|
|
|
case MEM_OFFLINE:
|
|
|
|
mutex_lock(&memory_tier_lock);
|
2022-08-18 13:10:37 +00:00
|
|
|
if (clear_node_memory_tier(arg->status_change_nid))
|
|
|
|
establish_demotion_targets();
|
2022-08-18 13:10:35 +00:00
|
|
|
mutex_unlock(&memory_tier_lock);
|
|
|
|
break;
|
|
|
|
case MEM_ONLINE:
|
|
|
|
mutex_lock(&memory_tier_lock);
|
2022-08-18 13:10:37 +00:00
|
|
|
memtier = set_node_memory_tier(arg->status_change_nid);
|
|
|
|
if (!IS_ERR(memtier))
|
|
|
|
establish_demotion_targets();
|
2022-08-18 13:10:35 +00:00
|
|
|
mutex_unlock(&memory_tier_lock);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return notifier_from_errno(0);
|
|
|
|
}
|
|
|
|
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
static int __init memory_tier_init(void)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
struct memory_tier *memtier;
|
|
|
|
|
2022-08-18 13:10:37 +00:00
|
|
|
#ifdef CONFIG_MIGRATION
|
|
|
|
node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
|
|
|
|
GFP_KERNEL);
|
|
|
|
WARN_ON(!node_demotion);
|
|
|
|
#endif
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
mutex_lock(&memory_tier_lock);
|
2022-08-18 13:10:36 +00:00
|
|
|
/*
|
|
|
|
* For now we can have 4 faster memory tiers with smaller adistance
|
|
|
|
* than default DRAM tier.
|
|
|
|
*/
|
|
|
|
default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
|
|
|
|
if (!default_dram_type)
|
|
|
|
panic("%s() failed to allocate default DRAM tier\n", __func__);
|
|
|
|
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
/*
|
|
|
|
* Look at all the existing N_MEMORY nodes and add them to
|
|
|
|
* default memory tier or to a tier if we already have memory
|
|
|
|
* types assigned.
|
|
|
|
*/
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
|
|
memtier = set_node_memory_tier(node);
|
|
|
|
if (IS_ERR(memtier))
|
|
|
|
/*
|
|
|
|
* Continue with memtiers we are able to setup
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
}
|
2022-08-18 13:10:37 +00:00
|
|
|
establish_demotion_targets();
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
mutex_unlock(&memory_tier_lock);
|
|
|
|
|
2022-08-18 13:10:35 +00:00
|
|
|
hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO);
|
mm/demotion: add support for explicit memory tiers
Patch series "mm/demotion: Memory tiers and demotion", v15.
The current kernel has the basic memory tiering support: Inactive pages on
a higher tier NUMA node can be migrated (demoted) to a lower tier NUMA
node to make room for new allocations on the higher tier NUMA node.
Frequently accessed pages on a lower tier NUMA node can be migrated
(promoted) to a higher tier NUMA node to improve the performance.
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy tier-by-tier by establishing the per-node
demotion targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases:
* The current tier initialization code always initializes each
memory-only NUMA node into a lower tier. But a memory-only NUMA node
may have a high performance memory device (e.g. a DRAM-backed
memory-only node on a virtual machine) and that should be put into a
higher tier.
* The current tier hierarchy always puts CPU nodes into the top tier.
But on a system with HBM (e.g. GPU memory) devices, these memory-only
HBM NUMA nodes should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
* Also because the current tier hierarchy always puts CPU nodes into the
top tier, when a CPU is hot-added (or hot-removed) and triggers a memory
node from CPU-less into a CPU node (or vice versa), the memory tier
hierarchy gets changed, even though no memory node is added or removed.
This can make the tier hierarchy unstable and make it difficult to
support tier-based memory accounting.
* A higher tier node can only be demoted to nodes with shortest distance
on the next lower tier as defined by the demotion path, not any other
node from any lower tier. This strict, demotion order does not work in
all use cases (e.g. some use cases may want to allow cross-socket
demotion to another node in the same demotion tier as a fallback when
the preferred demotion node is out of space), and has resulted in the
feature request for an interface to override the system-wide, per-node
demotion order from the userspace. This demotion order is also
inconsistent with the page allocation fallback order when all the nodes
in a higher tier are out of space: The page allocation can fall back to
any node from any lower tier, whereas the demotion order doesn't allow
that.
This patch series make the creation of memory tiers explicit under the
control of device driver.
Memory Tier Initialization
==========================
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
By default, all memory nodes are assigned to the default tier with
abstract distance 512.
A device driver can move its memory nodes from the default tier. For
example, PMEM can move its memory nodes below the default tier, whereas
GPU can move its memory nodes above the default tier.
The kernel initialization code makes the decision on which exact tier a
memory node should be assigned to based on the requests from the device
drivers as well as the memory device hardware information provided by the
firmware.
Hot-adding/removing CPUs doesn't affect memory tier hierarchy.
This patch (of 10):
In the current kernel, memory tiers are defined implicitly via a demotion
path relationship between NUMA nodes, which is created during the kernel
initialization and updated when a NUMA node is hot-added or hot-removed.
The current implementation puts all nodes with CPU into the highest tier,
and builds the tier hierarchy by establishing the per-node demotion
targets based on the distances between nodes.
This current memory tier kernel implementation needs to be improved for
several important use cases,
The current tier initialization code always initializes each memory-only
NUMA node into a lower tier. But a memory-only NUMA node may have a high
performance memory device (e.g. a DRAM-backed memory-only node on a
virtual machine) that should be put into a higher tier.
The current tier hierarchy always puts CPU nodes into the top tier. But
on a system with HBM or GPU devices, the memory-only NUMA nodes mapping
these devices should be in the top tier, and DRAM nodes with CPUs are
better to be placed into the next lower tier.
With current kernel higher tier node can only be demoted to nodes with
shortest distance on the next lower tier as defined by the demotion path,
not any other node from any lower tier. This strict, demotion order does
not work in all use cases (e.g. some use cases may want to allow
cross-socket demotion to another node in the same demotion tier as a
fallback when the preferred demotion node is out of space), This demotion
order is also inconsistent with the page allocation fallback order when
all the nodes in a higher tier are out of space: The page allocation can
fall back to any node from any lower tier, whereas the demotion order
doesn't allow that.
This patch series address the above by defining memory tiers explicitly.
Linux kernel presents memory devices as NUMA nodes and each memory device
is of a specific type. The memory type of a device is represented by its
abstract distance. A memory tier corresponds to a range of abstract
distance. This allows for classifying memory devices with a specific
performance range into a memory tier.
This patch configures the range/chunk size to be 128. The default DRAM
abstract distance is 512. We can have 4 memory tiers below the default
DRAM with abstract distance range 0 - 127, 127 - 255, 256- 383, 384 - 511.
Faster memory devices can be placed in these faster(higher) memory tiers.
Slower memory devices like persistent memory will have abstract distance
higher than the default DRAM level.
[akpm@linux-foundation.org: fix comment, per Aneesh]
Link: https://lkml.kernel.org/r/20220818131042.113280-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-18 13:10:33 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
subsys_initcall(memory_tier_init);
|
2022-08-18 13:10:34 +00:00
|
|
|
|
|
|
|
bool numa_demotion_enabled = false;
|
|
|
|
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
return sysfs_emit(buf, "%s\n",
|
|
|
|
numa_demotion_enabled ? "true" : "false");
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr,
|
|
|
|
const char *buf, size_t count)
|
|
|
|
{
|
|
|
|
ssize_t ret;
|
|
|
|
|
|
|
|
ret = kstrtobool(buf, &numa_demotion_enabled);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct kobj_attribute numa_demotion_enabled_attr =
|
|
|
|
__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
|
|
|
|
numa_demotion_enabled_store);
|
|
|
|
|
|
|
|
static struct attribute *numa_attrs[] = {
|
|
|
|
&numa_demotion_enabled_attr.attr,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct attribute_group numa_attr_group = {
|
|
|
|
.attrs = numa_attrs,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init numa_init_sysfs(void)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
struct kobject *numa_kobj;
|
|
|
|
|
|
|
|
numa_kobj = kobject_create_and_add("numa", mm_kobj);
|
|
|
|
if (!numa_kobj) {
|
|
|
|
pr_err("failed to create numa kobject\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
err = sysfs_create_group(numa_kobj, &numa_attr_group);
|
|
|
|
if (err) {
|
|
|
|
pr_err("failed to register numa group\n");
|
|
|
|
goto delete_obj;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
delete_obj:
|
|
|
|
kobject_put(numa_kobj);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
subsys_initcall(numa_init_sysfs);
|
|
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
#endif
|