linux-stable/net/nfc/digital_technology.c

1301 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* NFC Digital Protocol stack
* Copyright (c) 2013, Intel Corporation.
*/
#define pr_fmt(fmt) "digital: %s: " fmt, __func__
#include "digital.h"
#define DIGITAL_CMD_SENS_REQ 0x26
#define DIGITAL_CMD_ALL_REQ 0x52
#define DIGITAL_CMD_SEL_REQ_CL1 0x93
#define DIGITAL_CMD_SEL_REQ_CL2 0x95
#define DIGITAL_CMD_SEL_REQ_CL3 0x97
#define DIGITAL_SDD_REQ_SEL_PAR 0x20
#define DIGITAL_SDD_RES_CT 0x88
#define DIGITAL_SDD_RES_LEN 5
#define DIGITAL_SEL_RES_LEN 1
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
#define DIGITAL_SEL_RES_NFCID1_COMPLETE(sel_res) (!((sel_res) & 0x04))
#define DIGITAL_SEL_RES_IS_T2T(sel_res) (!((sel_res) & 0x60))
#define DIGITAL_SEL_RES_IS_T4T(sel_res) ((sel_res) & 0x20)
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:29 +02:00
#define DIGITAL_SEL_RES_IS_NFC_DEP(sel_res) ((sel_res) & 0x40)
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
#define DIGITAL_SENS_RES_IS_T1T(sens_res) (((sens_res) & 0x0C00) == 0x0C00)
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
#define DIGITAL_SENS_RES_IS_VALID(sens_res) \
((!((sens_res) & 0x001F) && (((sens_res) & 0x0C00) == 0x0C00)) || \
(((sens_res) & 0x001F) && ((sens_res) & 0x0C00) != 0x0C00))
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
#define DIGITAL_MIFARE_READ_RES_LEN 16
#define DIGITAL_MIFARE_ACK_RES 0x0A
#define DIGITAL_CMD_SENSB_REQ 0x05
#define DIGITAL_SENSB_ADVANCED BIT(5)
#define DIGITAL_SENSB_EXTENDED BIT(4)
#define DIGITAL_SENSB_ALLB_REQ BIT(3)
#define DIGITAL_SENSB_N(n) ((n) & 0x7)
#define DIGITAL_CMD_SENSB_RES 0x50
#define DIGITAL_CMD_ATTRIB_REQ 0x1D
#define DIGITAL_ATTRIB_P1_TR0_DEFAULT (0x0 << 6)
#define DIGITAL_ATTRIB_P1_TR1_DEFAULT (0x0 << 4)
#define DIGITAL_ATTRIB_P1_SUPRESS_EOS BIT(3)
#define DIGITAL_ATTRIB_P1_SUPRESS_SOS BIT(2)
#define DIGITAL_ATTRIB_P2_LISTEN_POLL_1 (0x0 << 6)
#define DIGITAL_ATTRIB_P2_POLL_LISTEN_1 (0x0 << 4)
#define DIGITAL_ATTRIB_P2_MAX_FRAME_256 0x8
#define DIGITAL_ATTRIB_P4_DID(n) ((n) & 0xf)
#define DIGITAL_CMD_SENSF_REQ 0x00
#define DIGITAL_CMD_SENSF_RES 0x01
#define DIGITAL_SENSF_RES_MIN_LENGTH 17
#define DIGITAL_SENSF_RES_RD_AP_B1 0x00
#define DIGITAL_SENSF_RES_RD_AP_B2 0x8F
#define DIGITAL_SENSF_REQ_RC_NONE 0
#define DIGITAL_SENSF_REQ_RC_SC 1
#define DIGITAL_SENSF_REQ_RC_AP 2
#define DIGITAL_CMD_ISO15693_INVENTORY_REQ 0x01
#define DIGITAL_ISO15693_REQ_FLAG_DATA_RATE BIT(1)
#define DIGITAL_ISO15693_REQ_FLAG_INVENTORY BIT(2)
#define DIGITAL_ISO15693_REQ_FLAG_NB_SLOTS BIT(5)
#define DIGITAL_ISO15693_RES_FLAG_ERROR BIT(0)
#define DIGITAL_ISO15693_RES_IS_VALID(flags) \
(!((flags) & DIGITAL_ISO15693_RES_FLAG_ERROR))
#define DIGITAL_ISO_DEP_I_PCB 0x02
#define DIGITAL_ISO_DEP_PNI(pni) ((pni) & 0x01)
#define DIGITAL_ISO_DEP_PCB_TYPE(pcb) ((pcb) & 0xC0)
#define DIGITAL_ISO_DEP_I_BLOCK 0x00
#define DIGITAL_ISO_DEP_BLOCK_HAS_DID(pcb) ((pcb) & 0x08)
static const u8 digital_ats_fsc[] = {
16, 24, 32, 40, 48, 64, 96, 128,
};
#define DIGITAL_ATS_FSCI(t0) ((t0) & 0x0F)
#define DIGITAL_SENSB_FSCI(pi2) (((pi2) & 0xF0) >> 4)
#define DIGITAL_ATS_MAX_FSC 256
#define DIGITAL_RATS_BYTE1 0xE0
#define DIGITAL_RATS_PARAM 0x80
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
struct digital_sdd_res {
u8 nfcid1[4];
u8 bcc;
} __packed;
struct digital_sel_req {
u8 sel_cmd;
u8 b2;
u8 nfcid1[4];
u8 bcc;
} __packed;
struct digital_sensb_req {
u8 cmd;
u8 afi;
u8 param;
} __packed;
struct digital_sensb_res {
u8 cmd;
u8 nfcid0[4];
u8 app_data[4];
u8 proto_info[3];
} __packed;
struct digital_attrib_req {
u8 cmd;
u8 nfcid0[4];
u8 param1;
u8 param2;
u8 param3;
u8 param4;
} __packed;
struct digital_attrib_res {
u8 mbli_did;
} __packed;
struct digital_sensf_req {
u8 cmd;
u8 sc1;
u8 sc2;
u8 rc;
u8 tsn;
} __packed;
struct digital_sensf_res {
u8 cmd;
u8 nfcid2[8];
u8 pad0[2];
u8 pad1[3];
u8 mrti_check;
u8 mrti_update;
u8 pad2;
u8 rd[2];
} __packed;
struct digital_iso15693_inv_req {
u8 flags;
u8 cmd;
u8 mask_len;
u64 mask;
} __packed;
struct digital_iso15693_inv_res {
u8 flags;
u8 dsfid;
u64 uid;
} __packed;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
static int digital_in_send_sdd_req(struct nfc_digital_dev *ddev,
struct nfc_target *target);
int digital_in_iso_dep_pull_sod(struct nfc_digital_dev *ddev,
struct sk_buff *skb)
{
u8 pcb;
u8 block_type;
if (skb->len < 1)
return -EIO;
pcb = *skb->data;
block_type = DIGITAL_ISO_DEP_PCB_TYPE(pcb);
/* No support fo R-block nor S-block */
if (block_type != DIGITAL_ISO_DEP_I_BLOCK) {
pr_err("ISO_DEP R-block and S-block not supported\n");
return -EIO;
}
if (DIGITAL_ISO_DEP_BLOCK_HAS_DID(pcb)) {
pr_err("DID field in ISO_DEP PCB not supported\n");
return -EIO;
}
skb_pull(skb, 1);
return 0;
}
int digital_in_iso_dep_push_sod(struct nfc_digital_dev *ddev,
struct sk_buff *skb)
{
/*
* Chaining not supported so skb->len + 1 PCB byte + 2 CRC bytes must
* not be greater than remote FSC
*/
if (skb->len + 3 > ddev->target_fsc)
return -EIO;
skb_push(skb, 1);
*skb->data = DIGITAL_ISO_DEP_I_PCB | ddev->curr_nfc_dep_pni;
ddev->curr_nfc_dep_pni =
DIGITAL_ISO_DEP_PNI(ddev->curr_nfc_dep_pni + 1);
return 0;
}
static void digital_in_recv_ats(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct nfc_target *target = arg;
u8 fsdi;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len < 2) {
rc = -EIO;
goto exit;
}
fsdi = DIGITAL_ATS_FSCI(resp->data[1]);
if (fsdi >= 8)
ddev->target_fsc = DIGITAL_ATS_MAX_FSC;
else
ddev->target_fsc = digital_ats_fsc[fsdi];
ddev->curr_nfc_dep_pni = 0;
rc = digital_target_found(ddev, target, NFC_PROTO_ISO14443);
exit:
dev_kfree_skb(resp);
kfree(target);
if (rc)
digital_poll_next_tech(ddev);
}
static int digital_in_send_rats(struct nfc_digital_dev *ddev,
struct nfc_target *target)
{
int rc;
struct sk_buff *skb;
skb = digital_skb_alloc(ddev, 2);
if (!skb)
return -ENOMEM;
skb_put_u8(skb, DIGITAL_RATS_BYTE1);
skb_put_u8(skb, DIGITAL_RATS_PARAM);
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_ats,
target);
if (rc)
kfree_skb(skb);
return rc;
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
static void digital_in_recv_sel_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct nfc_target *target = arg;
int rc;
u8 sel_res;
u8 nfc_proto;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (!DIGITAL_DRV_CAPS_IN_CRC(ddev)) {
rc = digital_skb_check_crc_a(resp);
if (rc) {
PROTOCOL_ERR("4.4.1.3");
goto exit;
}
}
if (resp->len != DIGITAL_SEL_RES_LEN) {
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
rc = -EIO;
goto exit;
}
sel_res = resp->data[0];
if (!DIGITAL_SEL_RES_NFCID1_COMPLETE(sel_res)) {
rc = digital_in_send_sdd_req(ddev, target);
if (rc)
goto exit;
goto exit_free_skb;
}
target->sel_res = sel_res;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
if (DIGITAL_SEL_RES_IS_T2T(sel_res)) {
nfc_proto = NFC_PROTO_MIFARE;
} else if (DIGITAL_SEL_RES_IS_NFC_DEP(sel_res)) {
nfc_proto = NFC_PROTO_NFC_DEP;
} else if (DIGITAL_SEL_RES_IS_T4T(sel_res)) {
rc = digital_in_send_rats(ddev, target);
if (rc)
goto exit;
/*
* Skip target_found and don't free it for now. This will be
* done when receiving the ATS
*/
goto exit_free_skb;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
} else {
rc = -EOPNOTSUPP;
goto exit;
}
rc = digital_target_found(ddev, target, nfc_proto);
exit:
kfree(target);
exit_free_skb:
dev_kfree_skb(resp);
if (rc)
digital_poll_next_tech(ddev);
}
static int digital_in_send_sel_req(struct nfc_digital_dev *ddev,
struct nfc_target *target,
struct digital_sdd_res *sdd_res)
{
struct sk_buff *skb;
struct digital_sel_req *sel_req;
u8 sel_cmd;
int rc;
skb = digital_skb_alloc(ddev, sizeof(struct digital_sel_req));
if (!skb)
return -ENOMEM;
skb_put(skb, sizeof(struct digital_sel_req));
sel_req = (struct digital_sel_req *)skb->data;
if (target->nfcid1_len <= 4)
sel_cmd = DIGITAL_CMD_SEL_REQ_CL1;
else if (target->nfcid1_len < 10)
sel_cmd = DIGITAL_CMD_SEL_REQ_CL2;
else
sel_cmd = DIGITAL_CMD_SEL_REQ_CL3;
sel_req->sel_cmd = sel_cmd;
sel_req->b2 = 0x70;
memcpy(sel_req->nfcid1, sdd_res->nfcid1, 4);
sel_req->bcc = sdd_res->bcc;
if (DIGITAL_DRV_CAPS_IN_CRC(ddev)) {
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A);
if (rc)
goto exit;
} else {
digital_skb_add_crc_a(skb);
}
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_sel_res,
target);
exit:
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_in_recv_sdd_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct nfc_target *target = arg;
struct digital_sdd_res *sdd_res;
int rc;
u8 offset, size;
u8 i, bcc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len < DIGITAL_SDD_RES_LEN) {
PROTOCOL_ERR("4.7.2.8");
rc = -EINVAL;
goto exit;
}
sdd_res = (struct digital_sdd_res *)resp->data;
for (i = 0, bcc = 0; i < 4; i++)
bcc ^= sdd_res->nfcid1[i];
if (bcc != sdd_res->bcc) {
PROTOCOL_ERR("4.7.2.6");
rc = -EINVAL;
goto exit;
}
if (sdd_res->nfcid1[0] == DIGITAL_SDD_RES_CT) {
offset = 1;
size = 3;
} else {
offset = 0;
size = 4;
}
memcpy(target->nfcid1 + target->nfcid1_len, sdd_res->nfcid1 + offset,
size);
target->nfcid1_len += size;
rc = digital_in_send_sel_req(ddev, target, sdd_res);
exit:
dev_kfree_skb(resp);
if (rc) {
kfree(target);
digital_poll_next_tech(ddev);
}
}
static int digital_in_send_sdd_req(struct nfc_digital_dev *ddev,
struct nfc_target *target)
{
int rc;
struct sk_buff *skb;
u8 sel_cmd;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_STANDARD);
if (rc)
return rc;
skb = digital_skb_alloc(ddev, 2);
if (!skb)
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
return -ENOMEM;
if (target->nfcid1_len == 0)
sel_cmd = DIGITAL_CMD_SEL_REQ_CL1;
else if (target->nfcid1_len == 3)
sel_cmd = DIGITAL_CMD_SEL_REQ_CL2;
else
sel_cmd = DIGITAL_CMD_SEL_REQ_CL3;
skb_put_u8(skb, sel_cmd);
skb_put_u8(skb, DIGITAL_SDD_REQ_SEL_PAR);
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_sdd_res,
target);
if (rc)
kfree_skb(skb);
return rc;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
}
static void digital_in_recv_sens_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
struct nfc_target *target = NULL;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len < sizeof(u16)) {
rc = -EIO;
goto exit;
}
target = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
if (!target) {
rc = -ENOMEM;
goto exit;
}
target->sens_res = __le16_to_cpu(*(__le16 *)resp->data);
if (!DIGITAL_SENS_RES_IS_VALID(target->sens_res)) {
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
PROTOCOL_ERR("4.6.3.3");
rc = -EINVAL;
goto exit;
}
if (DIGITAL_SENS_RES_IS_T1T(target->sens_res))
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
rc = digital_target_found(ddev, target, NFC_PROTO_JEWEL);
else
rc = digital_in_send_sdd_req(ddev, target);
exit:
dev_kfree_skb(resp);
if (rc) {
kfree(target);
digital_poll_next_tech(ddev);
}
}
int digital_in_send_sens_req(struct nfc_digital_dev *ddev, u8 rf_tech)
{
struct sk_buff *skb;
int rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH,
NFC_DIGITAL_RF_TECH_106A);
if (rc)
return rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_SHORT);
if (rc)
return rc;
skb = digital_skb_alloc(ddev, 1);
if (!skb)
return -ENOMEM;
skb_put_u8(skb, DIGITAL_CMD_SENS_REQ);
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_sens_res, NULL);
if (rc)
kfree_skb(skb);
return rc;
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:27 +02:00
int digital_in_recv_mifare_res(struct sk_buff *resp)
{
/* Successful READ command response is 16 data bytes + 2 CRC bytes long.
* Since the driver can't differentiate a ACK/NACK response from a valid
* READ response, the CRC calculation must be handled at digital level
* even if the driver supports it for this technology.
*/
if (resp->len == DIGITAL_MIFARE_READ_RES_LEN + DIGITAL_CRC_LEN) {
if (digital_skb_check_crc_a(resp)) {
PROTOCOL_ERR("9.4.1.2");
return -EIO;
}
return 0;
}
/* ACK response (i.e. successful WRITE). */
if (resp->len == 1 && resp->data[0] == DIGITAL_MIFARE_ACK_RES) {
resp->data[0] = 0;
return 0;
}
/* NACK and any other responses are treated as error. */
return -EIO;
}
static void digital_in_recv_attrib_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct nfc_target *target = arg;
struct digital_attrib_res *attrib_res;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len < sizeof(*attrib_res)) {
PROTOCOL_ERR("12.6.2");
rc = -EIO;
goto exit;
}
attrib_res = (struct digital_attrib_res *)resp->data;
if (attrib_res->mbli_did & 0x0f) {
PROTOCOL_ERR("12.6.2.1");
rc = -EIO;
goto exit;
}
rc = digital_target_found(ddev, target, NFC_PROTO_ISO14443_B);
exit:
dev_kfree_skb(resp);
kfree(target);
if (rc)
digital_poll_next_tech(ddev);
}
static int digital_in_send_attrib_req(struct nfc_digital_dev *ddev,
struct nfc_target *target,
struct digital_sensb_res *sensb_res)
{
struct digital_attrib_req *attrib_req;
struct sk_buff *skb;
int rc;
skb = digital_skb_alloc(ddev, sizeof(*attrib_req));
if (!skb)
return -ENOMEM;
attrib_req = skb_put(skb, sizeof(*attrib_req));
attrib_req->cmd = DIGITAL_CMD_ATTRIB_REQ;
memcpy(attrib_req->nfcid0, sensb_res->nfcid0,
sizeof(attrib_req->nfcid0));
attrib_req->param1 = DIGITAL_ATTRIB_P1_TR0_DEFAULT |
DIGITAL_ATTRIB_P1_TR1_DEFAULT;
attrib_req->param2 = DIGITAL_ATTRIB_P2_LISTEN_POLL_1 |
DIGITAL_ATTRIB_P2_POLL_LISTEN_1 |
DIGITAL_ATTRIB_P2_MAX_FRAME_256;
attrib_req->param3 = sensb_res->proto_info[1] & 0x07;
attrib_req->param4 = DIGITAL_ATTRIB_P4_DID(0);
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_attrib_res,
target);
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_in_recv_sensb_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct nfc_target *target = NULL;
struct digital_sensb_res *sensb_res;
u8 fsci;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len != sizeof(*sensb_res)) {
PROTOCOL_ERR("5.6.2.1");
rc = -EIO;
goto exit;
}
sensb_res = (struct digital_sensb_res *)resp->data;
if (sensb_res->cmd != DIGITAL_CMD_SENSB_RES) {
PROTOCOL_ERR("5.6.2");
rc = -EIO;
goto exit;
}
if (!(sensb_res->proto_info[1] & BIT(0))) {
PROTOCOL_ERR("5.6.2.12");
rc = -EIO;
goto exit;
}
if (sensb_res->proto_info[1] & BIT(3)) {
PROTOCOL_ERR("5.6.2.16");
rc = -EIO;
goto exit;
}
fsci = DIGITAL_SENSB_FSCI(sensb_res->proto_info[1]);
if (fsci >= 8)
ddev->target_fsc = DIGITAL_ATS_MAX_FSC;
else
ddev->target_fsc = digital_ats_fsc[fsci];
target = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
if (!target) {
rc = -ENOMEM;
goto exit;
}
rc = digital_in_send_attrib_req(ddev, target, sensb_res);
exit:
dev_kfree_skb(resp);
if (rc) {
kfree(target);
digital_poll_next_tech(ddev);
}
}
int digital_in_send_sensb_req(struct nfc_digital_dev *ddev, u8 rf_tech)
{
struct digital_sensb_req *sensb_req;
struct sk_buff *skb;
int rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH,
NFC_DIGITAL_RF_TECH_106B);
if (rc)
return rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCB);
if (rc)
return rc;
skb = digital_skb_alloc(ddev, sizeof(*sensb_req));
if (!skb)
return -ENOMEM;
sensb_req = skb_put(skb, sizeof(*sensb_req));
sensb_req->cmd = DIGITAL_CMD_SENSB_REQ;
sensb_req->afi = 0x00; /* All families and sub-families */
sensb_req->param = DIGITAL_SENSB_N(0);
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_sensb_res,
NULL);
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_in_recv_sensf_res(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
int rc;
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:29 +02:00
u8 proto;
struct nfc_target target;
struct digital_sensf_res *sensf_res;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (resp->len < DIGITAL_SENSF_RES_MIN_LENGTH) {
rc = -EIO;
goto exit;
}
if (!DIGITAL_DRV_CAPS_IN_CRC(ddev)) {
rc = digital_skb_check_crc_f(resp);
if (rc) {
PROTOCOL_ERR("6.4.1.8");
goto exit;
}
}
skb_pull(resp, 1);
memset(&target, 0, sizeof(struct nfc_target));
sensf_res = (struct digital_sensf_res *)resp->data;
memcpy(target.sensf_res, sensf_res, resp->len);
target.sensf_res_len = resp->len;
memcpy(target.nfcid2, sensf_res->nfcid2, NFC_NFCID2_MAXSIZE);
target.nfcid2_len = NFC_NFCID2_MAXSIZE;
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 17:55:29 +02:00
if (target.nfcid2[0] == DIGITAL_SENSF_NFCID2_NFC_DEP_B1 &&
target.nfcid2[1] == DIGITAL_SENSF_NFCID2_NFC_DEP_B2)
proto = NFC_PROTO_NFC_DEP;
else
proto = NFC_PROTO_FELICA;
rc = digital_target_found(ddev, &target, proto);
exit:
dev_kfree_skb(resp);
if (rc)
digital_poll_next_tech(ddev);
}
int digital_in_send_sensf_req(struct nfc_digital_dev *ddev, u8 rf_tech)
{
struct digital_sensf_req *sensf_req;
struct sk_buff *skb;
int rc;
u8 size;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH, rf_tech);
if (rc)
return rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCF);
if (rc)
return rc;
size = sizeof(struct digital_sensf_req);
skb = digital_skb_alloc(ddev, size);
if (!skb)
return -ENOMEM;
skb_put(skb, size);
sensf_req = (struct digital_sensf_req *)skb->data;
sensf_req->cmd = DIGITAL_CMD_SENSF_REQ;
sensf_req->sc1 = 0xFF;
sensf_req->sc2 = 0xFF;
sensf_req->rc = 0;
sensf_req->tsn = 0;
*(u8 *)skb_push(skb, 1) = size + 1;
if (!DIGITAL_DRV_CAPS_IN_CRC(ddev))
digital_skb_add_crc_f(skb);
rc = digital_in_send_cmd(ddev, skb, 30, digital_in_recv_sensf_res,
NULL);
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_in_recv_iso15693_inv_res(struct nfc_digital_dev *ddev,
void *arg, struct sk_buff *resp)
{
struct digital_iso15693_inv_res *res;
struct nfc_target *target = NULL;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto out_free_skb;
}
if (resp->len != sizeof(*res)) {
rc = -EIO;
goto out_free_skb;
}
res = (struct digital_iso15693_inv_res *)resp->data;
if (!DIGITAL_ISO15693_RES_IS_VALID(res->flags)) {
PROTOCOL_ERR("ISO15693 - 10.3.1");
rc = -EINVAL;
goto out_free_skb;
}
target = kzalloc(sizeof(*target), GFP_KERNEL);
if (!target) {
rc = -ENOMEM;
goto out_free_skb;
}
target->is_iso15693 = 1;
target->iso15693_dsfid = res->dsfid;
memcpy(target->iso15693_uid, &res->uid, sizeof(target->iso15693_uid));
rc = digital_target_found(ddev, target, NFC_PROTO_ISO15693);
kfree(target);
out_free_skb:
dev_kfree_skb(resp);
if (rc)
digital_poll_next_tech(ddev);
}
int digital_in_send_iso15693_inv_req(struct nfc_digital_dev *ddev, u8 rf_tech)
{
struct digital_iso15693_inv_req *req;
struct sk_buff *skb;
int rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH,
NFC_DIGITAL_RF_TECH_ISO15693);
if (rc)
return rc;
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_ISO15693_INVENTORY);
if (rc)
return rc;
skb = digital_skb_alloc(ddev, sizeof(*req));
if (!skb)
return -ENOMEM;
skb_put(skb, sizeof(*req) - sizeof(req->mask)); /* No mask */
req = (struct digital_iso15693_inv_req *)skb->data;
/* Single sub-carrier, high data rate, no AFI, single slot
* Inventory command
*/
req->flags = DIGITAL_ISO15693_REQ_FLAG_DATA_RATE |
DIGITAL_ISO15693_REQ_FLAG_INVENTORY |
DIGITAL_ISO15693_REQ_FLAG_NB_SLOTS;
req->cmd = DIGITAL_CMD_ISO15693_INVENTORY_REQ;
req->mask_len = 0;
rc = digital_in_send_cmd(ddev, skb, 30,
digital_in_recv_iso15693_inv_res, NULL);
if (rc)
kfree_skb(skb);
return rc;
}
static int digital_tg_send_sel_res(struct nfc_digital_dev *ddev)
{
struct sk_buff *skb;
int rc;
skb = digital_skb_alloc(ddev, 1);
if (!skb)
return -ENOMEM;
skb_put_u8(skb, DIGITAL_SEL_RES_NFC_DEP);
if (!DIGITAL_DRV_CAPS_TG_CRC(ddev))
digital_skb_add_crc_a(skb);
rc = digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_ANTICOL_COMPLETE);
if (rc) {
kfree_skb(skb);
return rc;
}
rc = digital_tg_send_cmd(ddev, skb, 300, digital_tg_recv_atr_req,
NULL);
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_tg_recv_sel_req(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (!DIGITAL_DRV_CAPS_TG_CRC(ddev)) {
rc = digital_skb_check_crc_a(resp);
if (rc) {
PROTOCOL_ERR("4.4.1.3");
goto exit;
}
}
/* Silently ignore SEL_REQ content and send a SEL_RES for NFC-DEP */
rc = digital_tg_send_sel_res(ddev);
exit:
if (rc)
digital_poll_next_tech(ddev);
dev_kfree_skb(resp);
}
static int digital_tg_send_sdd_res(struct nfc_digital_dev *ddev)
{
struct sk_buff *skb;
struct digital_sdd_res *sdd_res;
int rc, i;
skb = digital_skb_alloc(ddev, sizeof(struct digital_sdd_res));
if (!skb)
return -ENOMEM;
skb_put(skb, sizeof(struct digital_sdd_res));
sdd_res = (struct digital_sdd_res *)skb->data;
sdd_res->nfcid1[0] = 0x08;
get_random_bytes(sdd_res->nfcid1 + 1, 3);
sdd_res->bcc = 0;
for (i = 0; i < 4; i++)
sdd_res->bcc ^= sdd_res->nfcid1[i];
rc = digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A);
if (rc) {
kfree_skb(skb);
return rc;
}
rc = digital_tg_send_cmd(ddev, skb, 300, digital_tg_recv_sel_req,
NULL);
if (rc)
kfree_skb(skb);
return rc;
}
static void digital_tg_recv_sdd_req(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
u8 *sdd_req;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
sdd_req = resp->data;
if (resp->len < 2 || sdd_req[0] != DIGITAL_CMD_SEL_REQ_CL1 ||
sdd_req[1] != DIGITAL_SDD_REQ_SEL_PAR) {
rc = -EINVAL;
goto exit;
}
rc = digital_tg_send_sdd_res(ddev);
exit:
if (rc)
digital_poll_next_tech(ddev);
dev_kfree_skb(resp);
}
static int digital_tg_send_sens_res(struct nfc_digital_dev *ddev)
{
struct sk_buff *skb;
u8 *sens_res;
int rc;
skb = digital_skb_alloc(ddev, 2);
if (!skb)
return -ENOMEM;
sens_res = skb_put(skb, 2);
sens_res[0] = (DIGITAL_SENS_RES_NFC_DEP >> 8) & 0xFF;
sens_res[1] = DIGITAL_SENS_RES_NFC_DEP & 0xFF;
rc = digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_STANDARD);
if (rc) {
kfree_skb(skb);
return rc;
}
rc = digital_tg_send_cmd(ddev, skb, 300, digital_tg_recv_sdd_req,
NULL);
if (rc)
kfree_skb(skb);
return rc;
}
void digital_tg_recv_sens_req(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
u8 sens_req;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
sens_req = resp->data[0];
if (!resp->len || (sens_req != DIGITAL_CMD_SENS_REQ &&
sens_req != DIGITAL_CMD_ALL_REQ)) {
rc = -EINVAL;
goto exit;
}
rc = digital_tg_send_sens_res(ddev);
exit:
if (rc)
digital_poll_next_tech(ddev);
dev_kfree_skb(resp);
}
static void digital_tg_recv_atr_or_sensf_req(struct nfc_digital_dev *ddev,
void *arg, struct sk_buff *resp)
{
if (!IS_ERR(resp) && (resp->len >= 2) &&
(resp->data[1] == DIGITAL_CMD_SENSF_REQ))
digital_tg_recv_sensf_req(ddev, arg, resp);
else
digital_tg_recv_atr_req(ddev, arg, resp);
return;
}
static int digital_tg_send_sensf_res(struct nfc_digital_dev *ddev,
struct digital_sensf_req *sensf_req)
{
struct sk_buff *skb;
u8 size;
int rc;
struct digital_sensf_res *sensf_res;
size = sizeof(struct digital_sensf_res);
if (sensf_req->rc == DIGITAL_SENSF_REQ_RC_NONE)
size -= sizeof(sensf_res->rd);
skb = digital_skb_alloc(ddev, size);
if (!skb)
return -ENOMEM;
skb_put(skb, size);
sensf_res = (struct digital_sensf_res *)skb->data;
memset(sensf_res, 0, size);
sensf_res->cmd = DIGITAL_CMD_SENSF_RES;
sensf_res->nfcid2[0] = DIGITAL_SENSF_NFCID2_NFC_DEP_B1;
sensf_res->nfcid2[1] = DIGITAL_SENSF_NFCID2_NFC_DEP_B2;
get_random_bytes(&sensf_res->nfcid2[2], 6);
switch (sensf_req->rc) {
case DIGITAL_SENSF_REQ_RC_SC:
sensf_res->rd[0] = sensf_req->sc1;
sensf_res->rd[1] = sensf_req->sc2;
break;
case DIGITAL_SENSF_REQ_RC_AP:
sensf_res->rd[0] = DIGITAL_SENSF_RES_RD_AP_B1;
sensf_res->rd[1] = DIGITAL_SENSF_RES_RD_AP_B2;
break;
}
*(u8 *)skb_push(skb, sizeof(u8)) = size + 1;
if (!DIGITAL_DRV_CAPS_TG_CRC(ddev))
digital_skb_add_crc_f(skb);
rc = digital_tg_send_cmd(ddev, skb, 300,
digital_tg_recv_atr_or_sensf_req, NULL);
if (rc)
kfree_skb(skb);
return rc;
}
void digital_tg_recv_sensf_req(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct digital_sensf_req *sensf_req;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
goto exit;
}
if (!DIGITAL_DRV_CAPS_TG_CRC(ddev)) {
rc = digital_skb_check_crc_f(resp);
if (rc) {
PROTOCOL_ERR("6.4.1.8");
goto exit;
}
}
if (resp->len != sizeof(struct digital_sensf_req) + 1) {
rc = -EINVAL;
goto exit;
}
skb_pull(resp, 1);
sensf_req = (struct digital_sensf_req *)resp->data;
if (sensf_req->cmd != DIGITAL_CMD_SENSF_REQ) {
rc = -EINVAL;
goto exit;
}
rc = digital_tg_send_sensf_res(ddev, sensf_req);
exit:
if (rc)
digital_poll_next_tech(ddev);
dev_kfree_skb(resp);
}
static int digital_tg_config_nfca(struct nfc_digital_dev *ddev)
{
int rc;
rc = digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH,
NFC_DIGITAL_RF_TECH_106A);
if (rc)
return rc;
return digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_NFC_DEP);
}
int digital_tg_listen_nfca(struct nfc_digital_dev *ddev, u8 rf_tech)
{
int rc;
rc = digital_tg_config_nfca(ddev);
if (rc)
return rc;
return digital_tg_listen(ddev, 300, digital_tg_recv_sens_req, NULL);
}
static int digital_tg_config_nfcf(struct nfc_digital_dev *ddev, u8 rf_tech)
{
int rc;
rc = digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH, rf_tech);
if (rc)
return rc;
return digital_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCF_NFC_DEP);
}
int digital_tg_listen_nfcf(struct nfc_digital_dev *ddev, u8 rf_tech)
{
int rc;
rc = digital_tg_config_nfcf(ddev, rf_tech);
if (rc)
return rc;
return digital_tg_listen(ddev, 300, digital_tg_recv_sensf_req, NULL);
}
void digital_tg_recv_md_req(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
u8 rf_tech;
int rc;
if (IS_ERR(resp)) {
resp = NULL;
goto exit_free_skb;
}
rc = ddev->ops->tg_get_rf_tech(ddev, &rf_tech);
if (rc)
goto exit_free_skb;
switch (rf_tech) {
case NFC_DIGITAL_RF_TECH_106A:
rc = digital_tg_config_nfca(ddev);
if (rc)
goto exit_free_skb;
digital_tg_recv_sens_req(ddev, arg, resp);
break;
case NFC_DIGITAL_RF_TECH_212F:
case NFC_DIGITAL_RF_TECH_424F:
rc = digital_tg_config_nfcf(ddev, rf_tech);
if (rc)
goto exit_free_skb;
digital_tg_recv_sensf_req(ddev, arg, resp);
break;
default:
goto exit_free_skb;
}
return;
exit_free_skb:
digital_poll_next_tech(ddev);
dev_kfree_skb(resp);
}