linux-stable/crypto/rsa-pkcs1pad.c

380 lines
8.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RSA padding templates.
*
* Copyright (c) 2015 Intel Corporation
*/
#include <crypto/algapi.h>
#include <crypto/akcipher.h>
#include <crypto/internal/akcipher.h>
#include <crypto/internal/rsa.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
struct pkcs1pad_ctx {
struct crypto_akcipher *child;
unsigned int key_size;
};
struct pkcs1pad_inst_ctx {
struct crypto_akcipher_spawn spawn;
};
struct pkcs1pad_request {
struct scatterlist in_sg[2], out_sg[1];
uint8_t *in_buf, *out_buf;
struct akcipher_request child_req;
};
static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
return rsa_set_key(ctx->child, &ctx->key_size, RSA_PUB, key, keylen);
}
static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
return rsa_set_key(ctx->child, &ctx->key_size, RSA_PRIV, key, keylen);
}
static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
{
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
/*
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
* The maximum destination buffer size for the encrypt operation
* will be the same as for RSA, even though it's smaller for
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
* decrypt.
*/
return ctx->key_size;
}
static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
struct scatterlist *next)
{
int nsegs = next ? 2 : 1;
sg_init_table(sg, nsegs);
sg_set_buf(sg, buf, len);
if (next)
sg_chain(sg, nsegs, next);
}
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
static int pkcs1pad_encrypt_complete(struct akcipher_request *req, int err)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
unsigned int pad_len;
unsigned int len;
u8 *out_buf;
if (err)
goto out;
len = req_ctx->child_req.dst_len;
pad_len = ctx->key_size - len;
/* Four billion to one */
if (likely(!pad_len))
goto out;
out_buf = kzalloc(ctx->key_size, GFP_ATOMIC);
err = -ENOMEM;
if (!out_buf)
goto out;
sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
out_buf + pad_len, len);
sg_copy_from_buffer(req->dst,
sg_nents_for_len(req->dst, ctx->key_size),
out_buf, ctx->key_size);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:18:13 -07:00
kfree_sensitive(out_buf);
out:
req->dst_len = ctx->key_size;
kfree(req_ctx->in_buf);
return err;
}
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
static void pkcs1pad_encrypt_complete_cb(void *data, int err)
{
struct akcipher_request *req = data;
if (err == -EINPROGRESS)
goto out;
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
err = pkcs1pad_encrypt_complete(req, err);
out:
akcipher_request_complete(req, err);
}
static int pkcs1pad_encrypt(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
int err;
unsigned int i, ps_end;
if (!ctx->key_size)
return -EINVAL;
if (req->src_len > ctx->key_size - 11)
return -EOVERFLOW;
if (req->dst_len < ctx->key_size) {
req->dst_len = ctx->key_size;
return -EOVERFLOW;
}
req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
GFP_KERNEL);
if (!req_ctx->in_buf)
return -ENOMEM;
ps_end = ctx->key_size - req->src_len - 2;
req_ctx->in_buf[0] = 0x02;
for (i = 1; i < ps_end; i++)
req_ctx->in_buf[i] = get_random_u32_inclusive(1, 255);
req_ctx->in_buf[ps_end] = 0x00;
pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
ctx->key_size - 1 - req->src_len, req->src);
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
pkcs1pad_encrypt_complete_cb, req);
/* Reuse output buffer */
akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
req->dst, ctx->key_size - 1, req->dst_len);
err = crypto_akcipher_encrypt(&req_ctx->child_req);
if (err != -EINPROGRESS && err != -EBUSY)
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
return pkcs1pad_encrypt_complete(req, err);
return err;
}
static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
unsigned int dst_len;
unsigned int pos;
u8 *out_buf;
if (err)
goto done;
err = -EINVAL;
dst_len = req_ctx->child_req.dst_len;
if (dst_len < ctx->key_size - 1)
goto done;
out_buf = req_ctx->out_buf;
if (dst_len == ctx->key_size) {
if (out_buf[0] != 0x00)
/* Decrypted value had no leading 0 byte */
goto done;
dst_len--;
out_buf++;
}
if (out_buf[0] != 0x02)
goto done;
for (pos = 1; pos < dst_len; pos++)
if (out_buf[pos] == 0x00)
break;
if (pos < 9 || pos == dst_len)
goto done;
pos++;
err = 0;
if (req->dst_len < dst_len - pos)
err = -EOVERFLOW;
req->dst_len = dst_len - pos;
if (!err)
sg_copy_from_buffer(req->dst,
sg_nents_for_len(req->dst, req->dst_len),
out_buf + pos, req->dst_len);
done:
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:18:13 -07:00
kfree_sensitive(req_ctx->out_buf);
return err;
}
static void pkcs1pad_decrypt_complete_cb(void *data, int err)
{
struct akcipher_request *req = data;
if (err == -EINPROGRESS)
goto out;
err = pkcs1pad_decrypt_complete(req, err);
out:
akcipher_request_complete(req, err);
}
static int pkcs1pad_decrypt(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
int err;
if (!ctx->key_size || req->src_len != ctx->key_size)
return -EINVAL;
req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
if (!req_ctx->out_buf)
return -ENOMEM;
pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
ctx->key_size, NULL);
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
pkcs1pad_decrypt_complete_cb, req);
/* Reuse input buffer, output to a new buffer */
akcipher_request_set_crypt(&req_ctx->child_req, req->src,
req_ctx->out_sg, req->src_len,
ctx->key_size);
err = crypto_akcipher_decrypt(&req_ctx->child_req);
if (err != -EINPROGRESS && err != -EBUSY)
return pkcs1pad_decrypt_complete(req, err);
return err;
}
static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
{
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct crypto_akcipher *child_tfm;
child_tfm = crypto_spawn_akcipher(&ictx->spawn);
if (IS_ERR(child_tfm))
return PTR_ERR(child_tfm);
ctx->child = child_tfm;
akcipher_set_reqsize(tfm, sizeof(struct pkcs1pad_request) +
crypto_akcipher_reqsize(child_tfm));
return 0;
}
static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
{
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
crypto_free_akcipher(ctx->child);
}
static void pkcs1pad_free(struct akcipher_instance *inst)
{
struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
struct crypto_akcipher_spawn *spawn = &ctx->spawn;
crypto_drop_akcipher(spawn);
kfree(inst);
}
static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
{
u32 mask;
struct akcipher_instance *inst;
struct pkcs1pad_inst_ctx *ctx;
struct akcipher_alg *rsa_alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = akcipher_instance_ctx(inst);
err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) {
err = -EINVAL;
goto err_free_inst;
}
err = -ENAMETOOLONG;
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
if (snprintf(inst->alg.base.cra_name,
CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name,
CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
rsa_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
inst->alg.init = pkcs1pad_init_tfm;
inst->alg.exit = pkcs1pad_exit_tfm;
inst->alg.encrypt = pkcs1pad_encrypt;
inst->alg.decrypt = pkcs1pad_decrypt;
inst->alg.set_pub_key = pkcs1pad_set_pub_key;
inst->alg.set_priv_key = pkcs1pad_set_priv_key;
inst->alg.max_size = pkcs1pad_get_max_size;
inst->free = pkcs1pad_free;
err = akcipher_register_instance(tmpl, inst);
if (err) {
err_free_inst:
pkcs1pad_free(inst);
}
return err;
}
struct crypto_template rsa_pkcs1pad_tmpl = {
.name = "pkcs1pad",
.create = pkcs1pad_create,
.module = THIS_MODULE,
};
MODULE_ALIAS_CRYPTO("pkcs1pad");