linux-stable/lib/rbtree.c

600 lines
15 KiB
C
Raw Normal View History

/*
Red Black Trees
(C) 1999 Andrea Arcangeli <andrea@suse.de>
(C) 2002 David Woodhouse <dwmw2@infradead.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
linux/lib/rbtree.c
*/
#include <linux/rbtree.h>
#include <linux/export.h>
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/*
* red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
*
* 1) A node is either red or black
* 2) The root is black
* 3) All leaves (NULL) are black
* 4) Both children of every red node are black
* 5) Every simple path from root to leaves contains the same number
* of black nodes.
*
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
* consecutive red nodes in a path and every red node is therefore followed by
* a black. So if B is the number of black nodes on every simple path (as per
* 5), then the longest possible path due to 4 is 2B.
*
* We shall indicate color with case, where black nodes are uppercase and red
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
* parentheses and have some accompanying text comment.
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
*/
#define RB_RED 0
#define RB_BLACK 1
#define rb_color(r) ((r)->__rb_parent_color & 1)
#define rb_is_red(r) (!rb_color(r))
#define rb_is_black(r) rb_color(r)
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
}
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
static inline void rb_set_parent_color(struct rb_node *rb,
struct rb_node *p, int color)
{
rb->__rb_parent_color = (unsigned long)p | color;
}
static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
return (struct rb_node *)red->__rb_parent_color;
}
static inline void
__rb_change_child(struct rb_node *old, struct rb_node *new,
struct rb_node *parent, struct rb_root *root)
{
if (parent) {
if (parent->rb_left == old)
parent->rb_left = new;
else
parent->rb_right = new;
} else
root->rb_node = new;
}
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/*
* Helper function for rotations:
* - old's parent and color get assigned to new
* - old gets assigned new as a parent and 'color' as a color.
*/
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
struct rb_root *root, int color)
{
struct rb_node *parent = rb_parent(old);
new->__rb_parent_color = old->__rb_parent_color;
rb_set_parent_color(old, new, color);
__rb_change_child(old, new, parent, root);
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
}
void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
while (true) {
/*
* Loop invariant: node is red
*
* If there is a black parent, we are done.
* Otherwise, take some corrective action as we don't
* want a red root or two consecutive red nodes.
*/
if (!parent) {
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
rb_set_parent_color(node, NULL, RB_BLACK);
break;
} else if (rb_is_black(parent))
break;
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
gparent = rb_red_parent(parent);
tmp = gparent->rb_right;
if (parent != tmp) { /* parent == gparent->rb_left */
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
if (tmp && rb_is_red(tmp)) {
/*
* Case 1 - color flips
*
* G g
* / \ / \
* p u --> P U
* / /
* n N
*
* However, since g's parent might be red, and
* 4) does not allow this, we need to recurse
* at g.
*/
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;
}
tmp = parent->rb_right;
if (node == tmp) {
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/*
* Case 2 - left rotate at parent
*
* G G
* / \ / \
* p U --> n U
* \ /
* n p
*
* This still leaves us in violation of 4), the
* continuation into Case 3 will fix that.
*/
parent->rb_right = tmp = node->rb_left;
node->rb_left = parent;
if (tmp)
rb_set_parent_color(tmp, parent,
RB_BLACK);
rb_set_parent_color(parent, node, RB_RED);
parent = node;
tmp = node->rb_right;
}
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/*
* Case 3 - right rotate at gparent
*
* G P
* / \ / \
* p U --> n g
* / \
* n U
*/
gparent->rb_left = tmp; /* == parent->rb_right */
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
parent->rb_right = gparent;
if (tmp)
rb_set_parent_color(tmp, gparent, RB_BLACK);
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
break;
} else {
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
tmp = gparent->rb_left;
if (tmp && rb_is_red(tmp)) {
/* Case 1 - color flips */
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;
}
tmp = parent->rb_left;
if (node == tmp) {
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/* Case 2 - right rotate at parent */
parent->rb_left = tmp = node->rb_right;
node->rb_right = parent;
if (tmp)
rb_set_parent_color(tmp, parent,
RB_BLACK);
rb_set_parent_color(parent, node, RB_RED);
parent = node;
tmp = node->rb_left;
}
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
/* Case 3 - left rotate at gparent */
gparent->rb_right = tmp; /* == parent->rb_left */
rbtree: low level optimizations in rb_insert_color() - Use the newly introduced rb_set_parent_color() function to flip the color of nodes whose parent is already known. - Optimize rb_parent() when the node is known to be red - there is no need to mask out the color in that case. - Flipping gparent's color to red requires us to fetch its rb_parent_color field, so we can reuse it as the parent value for the next loop iteration. - Do not use __rb_rotate_left() and __rb_rotate_right() to handle tree rotations: we already have pointers to all relevant nodes, and know their colors (either because we want to adjust it, or because we've tested it, or we can deduce it as black due to the node proximity to a known red node). So we can generate more efficient code by making use of the node pointers we already have, and setting both the parent and color attributes for nodes all at once. Also in Case 2, some node attributes don't have to be set because we know another tree rotation (Case 3) will always follow and override them. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:47 +00:00
parent->rb_left = gparent;
if (tmp)
rb_set_parent_color(tmp, gparent, RB_BLACK);
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
break;
}
}
}
EXPORT_SYMBOL(rb_insert_color);
static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
struct rb_root *root)
{
struct rb_node *sibling, *tmp1, *tmp2;
while (true) {
/*
* Loop invariant: all leaf paths going through node have a
* black node count that is 1 lower than other leaf paths.
*
* If node is red, we can flip it to black to adjust.
* If node is the root, all leaf paths go through it.
* Otherwise, we need to adjust the tree through color flips
* and tree rotations as per one of the 4 cases below.
*/
if (node && rb_is_red(node)) {
rb_set_parent_color(node, parent, RB_BLACK);
break;
} else if (!parent) {
break;
}
sibling = parent->rb_right;
if (node != sibling) { /* node == parent->rb_left */
if (rb_is_red(sibling)) {
/*
* Case 1 - left rotate at parent
*
* P S
* / \ / \
* N s --> p Sr
* / \ / \
* Sl Sr N Sl
*/
parent->rb_right = tmp1 = sibling->rb_left;
sibling->rb_left = parent;
rb_set_parent_color(tmp1, parent, RB_BLACK);
__rb_rotate_set_parents(parent, sibling, root,
RB_RED);
sibling = tmp1;
}
tmp1 = sibling->rb_right;
if (!tmp1 || rb_is_black(tmp1)) {
tmp2 = sibling->rb_left;
if (!tmp2 || rb_is_black(tmp2)) {
/*
* Case 2 - sibling color flip
* (p could be either color here)
*
* (p) (p)
* / \ / \
* N S --> N s
* / \ / \
* Sl Sr Sl Sr
*
* This leaves us violating 5), so
* recurse at p. If p is red, the
* recursion will just flip it to black
* and exit. If coming from Case 1,
* p is known to be red.
*/
rb_set_parent_color(sibling, parent,
RB_RED);
node = parent;
parent = rb_parent(node);
continue;
}
/*
* Case 3 - right rotate at sibling
* (p could be either color here)
*
* (p) (p)
* / \ / \
* N S --> N Sl
* / \ \
* sl Sr s
* \
* Sr
*/
sibling->rb_left = tmp1 = tmp2->rb_right;
tmp2->rb_right = sibling;
parent->rb_right = tmp2;
if (tmp1)
rb_set_parent_color(tmp1, sibling,
RB_BLACK);
tmp1 = sibling;
sibling = tmp2;
}
/*
* Case 4 - left rotate at parent + color flips
* (p and sl could be either color here.
* After rotation, p becomes black, s acquires
* p's color, and sl keeps its color)
*
* (p) (s)
* / \ / \
* N S --> P Sr
* / \ / \
* (sl) sr N (sl)
*/
parent->rb_right = tmp2 = sibling->rb_left;
sibling->rb_left = parent;
rb_set_parent_color(tmp1, sibling, RB_BLACK);
if (tmp2)
rb_set_parent(tmp2, parent);
__rb_rotate_set_parents(parent, sibling, root,
RB_BLACK);
break;
} else {
sibling = parent->rb_left;
if (rb_is_red(sibling)) {
/* Case 1 - right rotate at parent */
parent->rb_left = tmp1 = sibling->rb_right;
sibling->rb_right = parent;
rb_set_parent_color(tmp1, parent, RB_BLACK);
__rb_rotate_set_parents(parent, sibling, root,
RB_RED);
sibling = tmp1;
}
tmp1 = sibling->rb_left;
if (!tmp1 || rb_is_black(tmp1)) {
tmp2 = sibling->rb_right;
if (!tmp2 || rb_is_black(tmp2)) {
/* Case 2 - sibling color flip */
rb_set_parent_color(sibling, parent,
RB_RED);
node = parent;
parent = rb_parent(node);
continue;
}
/* Case 3 - right rotate at sibling */
sibling->rb_right = tmp1 = tmp2->rb_left;
tmp2->rb_left = sibling;
parent->rb_left = tmp2;
if (tmp1)
rb_set_parent_color(tmp1, sibling,
RB_BLACK);
tmp1 = sibling;
sibling = tmp2;
}
/* Case 4 - left rotate at parent + color flips */
parent->rb_left = tmp2 = sibling->rb_right;
sibling->rb_right = parent;
rb_set_parent_color(tmp1, sibling, RB_BLACK);
if (tmp2)
rb_set_parent(tmp2, parent);
__rb_rotate_set_parents(parent, sibling, root,
RB_BLACK);
break;
}
}
}
void rb_erase(struct rb_node *node, struct rb_root *root)
{
struct rb_node *child = node->rb_right, *tmp = node->rb_left;
struct rb_node *parent;
int color;
if (!tmp) {
case1:
/* Case 1: node to erase has no more than 1 child (easy!) */
parent = rb_parent(node);
color = rb_color(node);
if (child)
rb_set_parent(child, parent);
__rb_change_child(node, child, parent, root);
} else if (!child) {
/* Still case 1, but this time the child is node->rb_left */
child = tmp;
goto case1;
} else {
struct rb_node *old = node, *left;
node = child;
while ((left = node->rb_left) != NULL)
node = left;
__rb_change_child(old, node, rb_parent(old), root);
child = node->rb_right;
parent = rb_parent(node);
color = rb_color(node);
if (parent == old) {
parent = node;
} else {
if (child)
rb_set_parent(child, parent);
parent->rb_left = child;
node->rb_right = old->rb_right;
rb_set_parent(old->rb_right, node);
}
node->__rb_parent_color = old->__rb_parent_color;
node->rb_left = old->rb_left;
rb_set_parent(old->rb_left, node);
}
if (color == RB_BLACK)
__rb_erase_color(child, parent, root);
}
EXPORT_SYMBOL(rb_erase);
static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
struct rb_node *parent;
up:
func(node, data);
parent = rb_parent(node);
if (!parent)
return;
if (node == parent->rb_left && parent->rb_right)
func(parent->rb_right, data);
else if (parent->rb_left)
func(parent->rb_left, data);
node = parent;
goto up;
}
/*
* after inserting @node into the tree, update the tree to account for
* both the new entry and any damage done by rebalance
*/
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
if (node->rb_left)
node = node->rb_left;
else if (node->rb_right)
node = node->rb_right;
rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_insert);
/*
* before removing the node, find the deepest node on the rebalance path
* that will still be there after @node gets removed
*/
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
struct rb_node *deepest;
if (!node->rb_right && !node->rb_left)
deepest = rb_parent(node);
else if (!node->rb_right)
deepest = node->rb_left;
else if (!node->rb_left)
deepest = node->rb_right;
else {
deepest = rb_next(node);
if (deepest->rb_right)
deepest = deepest->rb_right;
else if (rb_parent(deepest) != node)
deepest = rb_parent(deepest);
}
return deepest;
}
EXPORT_SYMBOL(rb_augment_erase_begin);
/*
* after removal, update the tree to account for the removed entry
* and any rebalance damage.
*/
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
if (node)
rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_erase_end);
/*
* This function returns the first node (in sort order) of the tree.
*/
struct rb_node *rb_first(const struct rb_root *root)
{
struct rb_node *n;
n = root->rb_node;
if (!n)
return NULL;
while (n->rb_left)
n = n->rb_left;
return n;
}
EXPORT_SYMBOL(rb_first);
struct rb_node *rb_last(const struct rb_root *root)
{
struct rb_node *n;
n = root->rb_node;
if (!n)
return NULL;
while (n->rb_right)
n = n->rb_right;
return n;
}
EXPORT_SYMBOL(rb_last);
struct rb_node *rb_next(const struct rb_node *node)
{
struct rb_node *parent;
rbtree: empty nodes have no color Empty nodes have no color. We can make use of this property to simplify the code emitted by the RB_EMPTY_NODE and RB_CLEAR_NODE macros. Also, we can get rid of the rb_init_node function which had been introduced by commit 88d19cf37952 ("timers: Add rb_init_node() to allow for stack allocated rb nodes") to avoid some issue with the empty node's color not being initialized. I'm not sure what the RB_EMPTY_NODE checks in rb_prev() / rb_next() are doing there, though. axboe introduced them in commit 10fd48f2376d ("rbtree: fixed reversed RB_EMPTY_NODE and rb_next/prev"). The way I see it, the 'empty node' abstraction is only used by rbtree users to flag nodes that they haven't inserted in any rbtree, so asking the predecessor or successor of such nodes doesn't make any sense. One final rb_init_node() caller was recently added in sysctl code to implement faster sysctl name lookups. This code doesn't make use of RB_EMPTY_NODE at all, and from what I could see it only called rb_init_node() under the mistaken assumption that such initialization was required before node insertion. [sfr@canb.auug.org.au: fix net/ceph/osd_client.c build] Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: John Stultz <john.stultz@linaro.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:32 +00:00
if (RB_EMPTY_NODE(node))
return NULL;
/*
* If we have a right-hand child, go down and then left as far
* as we can.
*/
if (node->rb_right) {
node = node->rb_right;
while (node->rb_left)
node=node->rb_left;
return (struct rb_node *)node;
}
/*
* No right-hand children. Everything down and left is smaller than us,
* so any 'next' node must be in the general direction of our parent.
* Go up the tree; any time the ancestor is a right-hand child of its
* parent, keep going up. First time it's a left-hand child of its
* parent, said parent is our 'next' node.
*/
while ((parent = rb_parent(node)) && node == parent->rb_right)
node = parent;
return parent;
}
EXPORT_SYMBOL(rb_next);
struct rb_node *rb_prev(const struct rb_node *node)
{
struct rb_node *parent;
rbtree: empty nodes have no color Empty nodes have no color. We can make use of this property to simplify the code emitted by the RB_EMPTY_NODE and RB_CLEAR_NODE macros. Also, we can get rid of the rb_init_node function which had been introduced by commit 88d19cf37952 ("timers: Add rb_init_node() to allow for stack allocated rb nodes") to avoid some issue with the empty node's color not being initialized. I'm not sure what the RB_EMPTY_NODE checks in rb_prev() / rb_next() are doing there, though. axboe introduced them in commit 10fd48f2376d ("rbtree: fixed reversed RB_EMPTY_NODE and rb_next/prev"). The way I see it, the 'empty node' abstraction is only used by rbtree users to flag nodes that they haven't inserted in any rbtree, so asking the predecessor or successor of such nodes doesn't make any sense. One final rb_init_node() caller was recently added in sysctl code to implement faster sysctl name lookups. This code doesn't make use of RB_EMPTY_NODE at all, and from what I could see it only called rb_init_node() under the mistaken assumption that such initialization was required before node insertion. [sfr@canb.auug.org.au: fix net/ceph/osd_client.c build] Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: John Stultz <john.stultz@linaro.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:30:32 +00:00
if (RB_EMPTY_NODE(node))
return NULL;
/*
* If we have a left-hand child, go down and then right as far
* as we can.
*/
if (node->rb_left) {
node = node->rb_left;
while (node->rb_right)
node=node->rb_right;
return (struct rb_node *)node;
}
/*
* No left-hand children. Go up till we find an ancestor which
* is a right-hand child of its parent.
*/
while ((parent = rb_parent(node)) && node == parent->rb_left)
node = parent;
return parent;
}
EXPORT_SYMBOL(rb_prev);
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
struct rb_root *root)
{
struct rb_node *parent = rb_parent(victim);
/* Set the surrounding nodes to point to the replacement */
__rb_change_child(victim, new, parent, root);
if (victim->rb_left)
rb_set_parent(victim->rb_left, new);
if (victim->rb_right)
rb_set_parent(victim->rb_right, new);
/* Copy the pointers/colour from the victim to the replacement */
*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);