linux-stable/fs/f2fs/namei.c

1245 lines
28 KiB
C
Raw Normal View History

/*
* fs/f2fs/namei.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/ctype.h>
#include <linux/dcache.h>
#include <linux/namei.h>
#include <linux/quotaops.h>
#include "f2fs.h"
#include "node.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/f2fs.h>
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
nid_t ino;
struct inode *inode;
bool nid_free = false;
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 13:59:50 +00:00
int xattr_size = 0;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err;
inode = new_inode(dir->i_sb);
if (!inode)
return ERR_PTR(-ENOMEM);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
if (!alloc_nid(sbi, &ino)) {
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_unlock_op(sbi);
err = -ENOSPC;
goto fail;
}
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_unlock_op(sbi);
nid_free = true;
inode_init_owner(inode, dir, mode);
inode->i_ino = ino;
inode->i_blocks = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime =
F2FS_I(inode)->i_crtime = current_time(inode);
inode->i_generation = sbi->s_next_generation++;
err = insert_inode_locked(inode);
if (err) {
err = -EINVAL;
goto fail;
}
if (f2fs_sb_has_project_quota(sbi->sb) &&
(F2FS_I(dir)->i_flags & FS_PROJINHERIT_FL))
F2FS_I(inode)->i_projid = F2FS_I(dir)->i_projid;
else
F2FS_I(inode)->i_projid = make_kprojid(&init_user_ns,
F2FS_DEF_PROJID);
err = dquot_initialize(inode);
if (err)
goto fail_drop;
err = dquot_alloc_inode(inode);
if (err)
goto fail_drop;
set_inode_flag(inode, FI_NEW_INODE);
/* If the directory encrypted, then we should encrypt the inode. */
if ((f2fs_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
f2fs_may_encrypt(inode))
f2fs_set_encrypted_inode(inode);
f2fs: enhance on-disk inode structure scalability This patch add new flag F2FS_EXTRA_ATTR storing in inode.i_inline to indicate that on-disk structure of current inode is extended. In order to extend, we changed the inode structure a bit: Original one: struct f2fs_inode { ... struct f2fs_extent i_ext; __le32 i_addr[DEF_ADDRS_PER_INODE]; __le32 i_nid[DEF_NIDS_PER_INODE]; } Extended one: struct f2fs_inode { ... struct f2fs_extent i_ext; union { struct { __le16 i_extra_isize; __le16 i_padding; __le32 i_extra_end[0]; }; __le32 i_addr[DEF_ADDRS_PER_INODE]; }; __le32 i_nid[DEF_NIDS_PER_INODE]; } Once F2FS_EXTRA_ATTR is set, we will steal four bytes in the head of i_addr field for storing i_extra_isize and i_padding. with i_extra_isize, we can calculate actual size of reserved space in i_addr, available attribute fields included in total extra attribute fields for current inode can be described as below: +--------------------+ | .i_mode | | ... | | .i_ext | +--------------------+ | .i_extra_isize |-----+ | .i_padding | | | .i_prjid | | | .i_atime_extra | | | .i_ctime_extra | | | .i_mtime_extra |<----+ | .i_inode_cs |<----- store blkaddr/inline from here | .i_xattr_cs | | ... | +--------------------+ | | | block address | | | +--------------------+ | .i_nid | +--------------------+ | node_footer | | (nid, ino, offset) | +--------------------+ Hence, with this patch, we would enhance scalability of f2fs inode for storing more newly added attribute. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-18 16:19:06 +00:00
if (f2fs_sb_has_extra_attr(sbi->sb)) {
set_inode_flag(inode, FI_EXTRA_ATTR);
F2FS_I(inode)->i_extra_isize = F2FS_TOTAL_EXTRA_ATTR_SIZE;
}
if (test_opt(sbi, INLINE_XATTR))
set_inode_flag(inode, FI_INLINE_XATTR);
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 13:59:50 +00:00
if (test_opt(sbi, INLINE_DATA) && f2fs_may_inline_data(inode))
set_inode_flag(inode, FI_INLINE_DATA);
if (f2fs_may_inline_dentry(inode))
set_inode_flag(inode, FI_INLINE_DENTRY);
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 13:59:50 +00:00
if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) {
f2fs_bug_on(sbi, !f2fs_has_extra_attr(inode));
if (f2fs_has_inline_xattr(inode))
xattr_size = F2FS_OPTION(sbi).inline_xattr_size;
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 13:59:50 +00:00
/* Otherwise, will be 0 */
} else if (f2fs_has_inline_xattr(inode) ||
f2fs_has_inline_dentry(inode)) {
xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
}
F2FS_I(inode)->i_inline_xattr_size = xattr_size;
f2fs_init_extent_tree(inode, NULL);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
F2FS_I(inode)->i_flags =
f2fs_mask_flags(mode, F2FS_I(dir)->i_flags & F2FS_FL_INHERITED);
if (S_ISDIR(inode->i_mode))
F2FS_I(inode)->i_flags |= FS_INDEX_FL;
if (F2FS_I(inode)->i_flags & FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
trace_f2fs_new_inode(inode, 0);
return inode;
fail:
trace_f2fs_new_inode(inode, err);
make_bad_inode(inode);
if (nid_free)
set_inode_flag(inode, FI_FREE_NID);
iput(inode);
return ERR_PTR(err);
fail_drop:
trace_f2fs_new_inode(inode, err);
dquot_drop(inode);
inode->i_flags |= S_NOQUOTA;
if (nid_free)
set_inode_flag(inode, FI_FREE_NID);
clear_nlink(inode);
unlock_new_inode(inode);
iput(inode);
return ERR_PTR(err);
}
static int is_extension_exist(const unsigned char *s, const char *sub)
{
size_t slen = strlen(s);
size_t sublen = strlen(sub);
int i;
/*
* filename format of multimedia file should be defined as:
* "filename + '.' + extension + (optional: '.' + temp extension)".
*/
if (slen < sublen + 2)
return 0;
for (i = 1; i < slen - sublen; i++) {
if (s[i] != '.')
continue;
if (!strncasecmp(s + i + 1, sub, sublen))
return 1;
}
return 0;
}
/*
* Set multimedia files as cold files for hot/cold data separation
*/
static inline void set_file_temperature(struct f2fs_sb_info *sbi, struct inode *inode,
const unsigned char *name)
{
__u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list;
int i, cold_count, hot_count;
down_read(&sbi->sb_lock);
cold_count = le32_to_cpu(sbi->raw_super->extension_count);
hot_count = sbi->raw_super->hot_ext_count;
for (i = 0; i < cold_count + hot_count; i++) {
if (!is_extension_exist(name, extlist[i]))
continue;
if (i < cold_count)
file_set_cold(inode);
else
file_set_hot(inode);
break;
}
up_read(&sbi->sb_lock);
}
int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
bool hot, bool set)
{
__u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list;
int cold_count = le32_to_cpu(sbi->raw_super->extension_count);
int hot_count = sbi->raw_super->hot_ext_count;
int total_count = cold_count + hot_count;
int start, count;
int i;
if (set) {
if (total_count == F2FS_MAX_EXTENSION)
return -EINVAL;
} else {
if (!hot && !cold_count)
return -EINVAL;
if (hot && !hot_count)
return -EINVAL;
}
if (hot) {
start = cold_count;
count = total_count;
} else {
start = 0;
count = cold_count;
}
for (i = start; i < count; i++) {
if (strcmp(name, extlist[i]))
continue;
if (set)
return -EINVAL;
memcpy(extlist[i], extlist[i + 1],
F2FS_EXTENSION_LEN * (total_count - i - 1));
memset(extlist[total_count - 1], 0, F2FS_EXTENSION_LEN);
if (hot)
sbi->raw_super->hot_ext_count = hot_count - 1;
else
sbi->raw_super->extension_count =
cpu_to_le32(cold_count - 1);
return 0;
}
if (!set)
return -EINVAL;
if (hot) {
strncpy(extlist[count], name, strlen(name));
sbi->raw_super->hot_ext_count = hot_count + 1;
} else {
char buf[F2FS_MAX_EXTENSION][F2FS_EXTENSION_LEN];
memcpy(buf, &extlist[cold_count],
F2FS_EXTENSION_LEN * hot_count);
memset(extlist[cold_count], 0, F2FS_EXTENSION_LEN);
strncpy(extlist[cold_count], name, strlen(name));
memcpy(&extlist[cold_count + 1], buf,
F2FS_EXTENSION_LEN * hot_count);
sbi->raw_super->extension_count = cpu_to_le32(cold_count + 1);
}
return 0;
}
static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode;
nid_t ino = 0;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = dquot_initialize(dir);
if (err)
return err;
inode = f2fs_new_inode(dir, mode);
if (IS_ERR(inode))
return PTR_ERR(inode);
if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
set_file_temperature(sbi, inode, dentry->d_name.name);
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
ino = inode->i_ino;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
err = f2fs_add_link(dentry, inode);
if (err)
goto out;
f2fs_unlock_op(sbi);
alloc_nid_done(sbi, ino);
d_instantiate(dentry, inode);
unlock_new_inode(inode);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
f2fs_balance_fs(sbi, true);
return 0;
out:
handle_failed_inode(inode);
return err;
}
static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = fscrypt_prepare_link(old_dentry, dir, dentry);
if (err)
return err;
if (is_inode_flag_set(dir, FI_PROJ_INHERIT) &&
(!projid_eq(F2FS_I(dir)->i_projid,
F2FS_I(old_dentry->d_inode)->i_projid)))
return -EXDEV;
err = dquot_initialize(dir);
if (err)
return err;
f2fs_balance_fs(sbi, true);
inode->i_ctime = current_time(inode);
ihold(inode);
set_inode_flag(inode, FI_INC_LINK);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
err = f2fs_add_link(dentry, inode);
if (err)
goto out;
f2fs_unlock_op(sbi);
d_instantiate(dentry, inode);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
return 0;
out:
clear_inode_flag(inode, FI_INC_LINK);
iput(inode);
f2fs_unlock_op(sbi);
return err;
}
struct dentry *f2fs_get_parent(struct dentry *child)
{
struct qstr dotdot = QSTR_INIT("..", 2);
struct page *page;
unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot, &page);
if (!ino) {
if (IS_ERR(page))
return ERR_CAST(page);
return ERR_PTR(-ENOENT);
}
return d_obtain_alias(f2fs_iget(child->d_sb, ino));
}
static int __recover_dot_dentries(struct inode *dir, nid_t pino)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct qstr dot = QSTR_INIT(".", 1);
struct qstr dotdot = QSTR_INIT("..", 2);
struct f2fs_dir_entry *de;
struct page *page;
int err = 0;
if (f2fs_readonly(sbi->sb)) {
f2fs_msg(sbi->sb, KERN_INFO,
"skip recovering inline_dots inode (ino:%lu, pino:%u) "
"in readonly mountpoint", dir->i_ino, pino);
return 0;
}
err = dquot_initialize(dir);
if (err)
return err;
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
de = f2fs_find_entry(dir, &dot, &page);
if (de) {
f2fs_put_page(page, 0);
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
goto out;
} else {
err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
if (err)
goto out;
}
de = f2fs_find_entry(dir, &dotdot, &page);
if (de)
f2fs_put_page(page, 0);
else if (IS_ERR(page))
err = PTR_ERR(page);
else
err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
out:
if (!err)
clear_inode_flag(dir, FI_INLINE_DOTS);
f2fs_unlock_op(sbi);
return err;
}
static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct inode *inode = NULL;
struct f2fs_dir_entry *de;
struct page *page;
struct dentry *new;
nid_t ino = -1;
int err = 0;
unsigned int root_ino = F2FS_ROOT_INO(F2FS_I_SB(dir));
trace_f2fs_lookup_start(dir, dentry, flags);
err = fscrypt_prepare_lookup(dir, dentry, flags);
if (err)
goto out;
if (dentry->d_name.len > F2FS_NAME_LEN) {
err = -ENAMETOOLONG;
goto out;
}
de = f2fs_find_entry(dir, &dentry->d_name, &page);
if (!de) {
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto out;
}
goto out_splice;
}
ino = le32_to_cpu(de->ino);
f2fs_put_page(page, 0);
inode = f2fs_iget(dir->i_sb, ino);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out;
}
if ((dir->i_ino == root_ino) && f2fs_has_inline_dots(dir)) {
err = __recover_dot_dentries(dir, root_ino);
if (err)
goto out_iput;
}
if (f2fs_has_inline_dots(inode)) {
err = __recover_dot_dentries(inode, dir->i_ino);
if (err)
goto out_iput;
}
if (f2fs_encrypted_inode(dir) &&
(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
!fscrypt_has_permitted_context(dir, inode)) {
f2fs_msg(inode->i_sb, KERN_WARNING,
"Inconsistent encryption contexts: %lu/%lu",
dir->i_ino, inode->i_ino);
err = -EPERM;
goto out_iput;
}
out_splice:
new = d_splice_alias(inode, dentry);
if (IS_ERR(new))
err = PTR_ERR(new);
trace_f2fs_lookup_end(dir, dentry, ino, err);
return new;
out_iput:
iput(inode);
out:
trace_f2fs_lookup_end(dir, dentry, ino, err);
return ERR_PTR(err);
}
static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode = d_inode(dentry);
struct f2fs_dir_entry *de;
struct page *page;
int err = -ENOENT;
trace_f2fs_unlink_enter(dir, dentry);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = dquot_initialize(dir);
if (err)
return err;
err = dquot_initialize(inode);
if (err)
return err;
de = f2fs_find_entry(dir, &dentry->d_name, &page);
if (!de) {
if (IS_ERR(page))
err = PTR_ERR(page);
goto fail;
}
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
err = acquire_orphan_inode(sbi);
if (err) {
f2fs_unlock_op(sbi);
f2fs_put_page(page, 0);
goto fail;
}
f2fs_delete_entry(de, page, dir, inode);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_unlock_op(sbi);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
fail:
trace_f2fs_unlink_exit(inode, err);
return err;
}
static const char *f2fs_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
const char *link = page_get_link(dentry, inode, done);
if (!IS_ERR(link) && !*link) {
/* this is broken symlink case */
do_delayed_call(done);
clear_delayed_call(done);
link = ERR_PTR(-ENOENT);
}
return link;
}
static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
const char *symname)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode;
size_t len = strlen(symname);
struct fscrypt_str disk_link;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize,
&disk_link);
if (err)
return err;
err = dquot_initialize(dir);
if (err)
return err;
inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
if (IS_ERR(inode))
return PTR_ERR(inode);
if (IS_ENCRYPTED(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &f2fs_dblock_aops;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
err = f2fs_add_link(dentry, inode);
if (err)
goto out_handle_failed_inode;
f2fs_unlock_op(sbi);
alloc_nid_done(sbi, inode->i_ino);
err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link);
if (err)
goto err_out;
err = page_symlink(inode, disk_link.name, disk_link.len);
err_out:
d_instantiate(dentry, inode);
unlock_new_inode(inode);
/*
* Let's flush symlink data in order to avoid broken symlink as much as
* possible. Nevertheless, fsyncing is the best way, but there is no
* way to get a file descriptor in order to flush that.
*
* Note that, it needs to do dir->fsync to make this recoverable.
* If the symlink path is stored into inline_data, there is no
* performance regression.
*/
if (!err) {
filemap_write_and_wait_range(inode->i_mapping, 0,
disk_link.len - 1);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
} else {
f2fs_unlink(dir, dentry);
}
f2fs_balance_fs(sbi, true);
goto out_free_encrypted_link;
out_handle_failed_inode:
handle_failed_inode(inode);
out_free_encrypted_link:
if (disk_link.name != (unsigned char *)symname)
kfree(disk_link.name);
return err;
}
static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = dquot_initialize(dir);
if (err)
return err;
inode = f2fs_new_inode(dir, S_IFDIR | mode);
if (IS_ERR(inode))
return PTR_ERR(inode);
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
inode_nohighmem(inode);
set_inode_flag(inode, FI_INC_LINK);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
err = f2fs_add_link(dentry, inode);
if (err)
goto out_fail;
f2fs_unlock_op(sbi);
alloc_nid_done(sbi, inode->i_ino);
d_instantiate(dentry, inode);
unlock_new_inode(inode);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
f2fs_balance_fs(sbi, true);
return 0;
out_fail:
clear_inode_flag(inode, FI_INC_LINK);
handle_failed_inode(inode);
return err;
}
static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
if (f2fs_empty_dir(inode))
return f2fs_unlink(dir, dentry);
return -ENOTEMPTY;
}
static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode;
int err = 0;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
err = dquot_initialize(dir);
if (err)
return err;
inode = f2fs_new_inode(dir, mode);
if (IS_ERR(inode))
return PTR_ERR(inode);
init_special_inode(inode, inode->i_mode, rdev);
inode->i_op = &f2fs_special_inode_operations;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_lock_op(sbi);
err = f2fs_add_link(dentry, inode);
if (err)
goto out;
f2fs_unlock_op(sbi);
alloc_nid_done(sbi, inode->i_ino);
d_instantiate(dentry, inode);
unlock_new_inode(inode);
if (IS_DIRSYNC(dir))
f2fs_sync_fs(sbi->sb, 1);
f2fs_balance_fs(sbi, true);
return 0;
out:
handle_failed_inode(inode);
return err;
}
static int __f2fs_tmpfile(struct inode *dir, struct dentry *dentry,
umode_t mode, struct inode **whiteout)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct inode *inode;
int err;
err = dquot_initialize(dir);
if (err)
return err;
inode = f2fs_new_inode(dir, mode);
if (IS_ERR(inode))
return PTR_ERR(inode);
if (whiteout) {
init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
inode->i_op = &f2fs_special_inode_operations;
} else {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
}
f2fs_lock_op(sbi);
err = acquire_orphan_inode(sbi);
if (err)
goto out;
err = f2fs_do_tmpfile(inode, dir);
if (err)
goto release_out;
/*
* add this non-linked tmpfile to orphan list, in this way we could
* remove all unused data of tmpfile after abnormal power-off.
*/
add_orphan_inode(inode);
alloc_nid_done(sbi, inode->i_ino);
if (whiteout) {
f2fs_i_links_write(inode, false);
*whiteout = inode;
} else {
d_tmpfile(dentry, inode);
}
/* link_count was changed by d_tmpfile as well. */
f2fs_unlock_op(sbi);
unlock_new_inode(inode);
f2fs_balance_fs(sbi, true);
return 0;
release_out:
release_orphan_inode(sbi);
out:
handle_failed_inode(inode);
return err;
}
static int f2fs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
if (f2fs_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) {
int err = fscrypt_get_encryption_info(dir);
if (err)
return err;
}
return __f2fs_tmpfile(dir, dentry, mode, NULL);
}
static int f2fs_create_whiteout(struct inode *dir, struct inode **whiteout)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(dir))))
return -EIO;
return __f2fs_tmpfile(dir, NULL, S_IFCHR | WHITEOUT_MODE, whiteout);
}
static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
struct inode *old_inode = d_inode(old_dentry);
struct inode *new_inode = d_inode(new_dentry);
struct inode *whiteout = NULL;
struct page *old_dir_page;
struct page *old_page, *new_page = NULL;
struct f2fs_dir_entry *old_dir_entry = NULL;
struct f2fs_dir_entry *old_entry;
struct f2fs_dir_entry *new_entry;
f2fs: fix to delete old dirent in converted inline directory in ->rename When doing test with fstests/generic/068 in inline_dentry enabled f2fs, following oops dmesg will be reported: ------------[ cut here ]------------ WARNING: CPU: 5 PID: 11841 at fs/inode.c:273 drop_nlink+0x49/0x50() Modules linked in: f2fs(O) ip6table_filter ip6_tables ebtable_nat ebtables nf_conntrack_ipv4 nf_defrag_ipv4 xt_state CPU: 5 PID: 11841 Comm: fsstress Tainted: G O 4.5.0-rc1 #45 Hardware name: Hewlett-Packard HP Z220 CMT Workstation/1790, BIOS K51 v01.61 05/16/2013 0000000000000111 ffff88009cdf7ae8 ffffffff813e5944 0000000000002e41 0000000000000000 0000000000000111 0000000000000000 ffff88009cdf7b28 ffffffff8106a587 ffff88009cdf7b58 ffff8804078fe180 ffff880374a64e00 Call Trace: [<ffffffff813e5944>] dump_stack+0x48/0x64 [<ffffffff8106a587>] warn_slowpath_common+0x97/0xe0 [<ffffffff8106a5ea>] warn_slowpath_null+0x1a/0x20 [<ffffffff81231039>] drop_nlink+0x49/0x50 [<ffffffffa07b95b4>] f2fs_rename2+0xe04/0x10c0 [f2fs] [<ffffffff81231ff1>] ? lock_two_nondirectories+0x81/0x90 [<ffffffff813f454d>] ? lockref_get+0x1d/0x30 [<ffffffff81220f70>] vfs_rename+0x2e0/0x640 [<ffffffff8121f9db>] ? lookup_dcache+0x3b/0xd0 [<ffffffff810b8e41>] ? update_fast_ctr+0x21/0x40 [<ffffffff8134ff12>] ? security_path_rename+0xa2/0xd0 [<ffffffff81224af6>] SYSC_renameat2+0x4b6/0x540 [<ffffffff810ba8ed>] ? trace_hardirqs_off+0xd/0x10 [<ffffffff810022ba>] ? exit_to_usermode_loop+0x7a/0xd0 [<ffffffff817e0ade>] ? int_ret_from_sys_call+0x52/0x9f [<ffffffff810bdc90>] ? trace_hardirqs_on_caller+0x100/0x1c0 [<ffffffff81224b8e>] SyS_renameat2+0xe/0x10 [<ffffffff8121f08e>] SyS_rename+0x1e/0x20 [<ffffffff817e0957>] entry_SYSCALL_64_fastpath+0x12/0x6f ---[ end trace 2b31e17995404e42 ]--- This is because: in the same inline directory, when we renaming one file from source name to target name which is not existed, once space of inline dentry is not enough, inline conversion will be triggered, after that all data in inline dentry will be moved to normal dentry page. After attaching the new entry in coverted dentry page, still we try to remove old entry in original inline dentry, since old entry has been moved, so it obviously doesn't make any effect, result in remaining old entry in converted dentry page. Now, we have two valid dentries pointed to the same inode which has nlink value of 1, deleting them both, above warning appears. This issue can be reproduced easily as below steps: 1. mount f2fs with inline_dentry option 2. mkdir dir 3. touch 180 files named [001-180] in dir 4. rename dir/180 dir/181 5. rm dir/180 dir/181 Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-17 08:47:05 +00:00
bool is_old_inline = f2fs_has_inline_dentry(old_dir);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
int err = -ENOENT;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
if (is_inode_flag_set(new_dir, FI_PROJ_INHERIT) &&
(!projid_eq(F2FS_I(new_dir)->i_projid,
F2FS_I(old_dentry->d_inode)->i_projid)))
return -EXDEV;
err = dquot_initialize(old_dir);
if (err)
goto out;
err = dquot_initialize(new_dir);
if (err)
goto out;
if (new_inode) {
err = dquot_initialize(new_inode);
if (err)
goto out;
}
old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
if (!old_entry) {
if (IS_ERR(old_page))
err = PTR_ERR(old_page);
goto out;
}
if (S_ISDIR(old_inode->i_mode)) {
old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
if (!old_dir_entry) {
if (IS_ERR(old_dir_page))
err = PTR_ERR(old_dir_page);
goto out_old;
}
}
if (flags & RENAME_WHITEOUT) {
err = f2fs_create_whiteout(old_dir, &whiteout);
if (err)
goto out_dir;
}
if (new_inode) {
err = -ENOTEMPTY;
if (old_dir_entry && !f2fs_empty_dir(new_inode))
goto out_whiteout;
err = -ENOENT;
new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
&new_page);
if (!new_entry) {
if (IS_ERR(new_page))
err = PTR_ERR(new_page);
goto out_whiteout;
}
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
err = acquire_orphan_inode(sbi);
if (err)
goto put_out_dir;
f2fs_set_link(new_dir, new_entry, new_page, old_inode);
new_inode->i_ctime = current_time(new_inode);
down_write(&F2FS_I(new_inode)->i_sem);
if (old_dir_entry)
f2fs_i_links_write(new_inode, false);
f2fs_i_links_write(new_inode, false);
up_write(&F2FS_I(new_inode)->i_sem);
if (!new_inode->i_nlink)
add_orphan_inode(new_inode);
else
release_orphan_inode(sbi);
} else {
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
err = f2fs_add_link(new_dentry, old_inode);
if (err) {
f2fs_unlock_op(sbi);
goto out_whiteout;
}
if (old_dir_entry)
f2fs_i_links_write(new_dir, true);
f2fs: fix to delete old dirent in converted inline directory in ->rename When doing test with fstests/generic/068 in inline_dentry enabled f2fs, following oops dmesg will be reported: ------------[ cut here ]------------ WARNING: CPU: 5 PID: 11841 at fs/inode.c:273 drop_nlink+0x49/0x50() Modules linked in: f2fs(O) ip6table_filter ip6_tables ebtable_nat ebtables nf_conntrack_ipv4 nf_defrag_ipv4 xt_state CPU: 5 PID: 11841 Comm: fsstress Tainted: G O 4.5.0-rc1 #45 Hardware name: Hewlett-Packard HP Z220 CMT Workstation/1790, BIOS K51 v01.61 05/16/2013 0000000000000111 ffff88009cdf7ae8 ffffffff813e5944 0000000000002e41 0000000000000000 0000000000000111 0000000000000000 ffff88009cdf7b28 ffffffff8106a587 ffff88009cdf7b58 ffff8804078fe180 ffff880374a64e00 Call Trace: [<ffffffff813e5944>] dump_stack+0x48/0x64 [<ffffffff8106a587>] warn_slowpath_common+0x97/0xe0 [<ffffffff8106a5ea>] warn_slowpath_null+0x1a/0x20 [<ffffffff81231039>] drop_nlink+0x49/0x50 [<ffffffffa07b95b4>] f2fs_rename2+0xe04/0x10c0 [f2fs] [<ffffffff81231ff1>] ? lock_two_nondirectories+0x81/0x90 [<ffffffff813f454d>] ? lockref_get+0x1d/0x30 [<ffffffff81220f70>] vfs_rename+0x2e0/0x640 [<ffffffff8121f9db>] ? lookup_dcache+0x3b/0xd0 [<ffffffff810b8e41>] ? update_fast_ctr+0x21/0x40 [<ffffffff8134ff12>] ? security_path_rename+0xa2/0xd0 [<ffffffff81224af6>] SYSC_renameat2+0x4b6/0x540 [<ffffffff810ba8ed>] ? trace_hardirqs_off+0xd/0x10 [<ffffffff810022ba>] ? exit_to_usermode_loop+0x7a/0xd0 [<ffffffff817e0ade>] ? int_ret_from_sys_call+0x52/0x9f [<ffffffff810bdc90>] ? trace_hardirqs_on_caller+0x100/0x1c0 [<ffffffff81224b8e>] SyS_renameat2+0xe/0x10 [<ffffffff8121f08e>] SyS_rename+0x1e/0x20 [<ffffffff817e0957>] entry_SYSCALL_64_fastpath+0x12/0x6f ---[ end trace 2b31e17995404e42 ]--- This is because: in the same inline directory, when we renaming one file from source name to target name which is not existed, once space of inline dentry is not enough, inline conversion will be triggered, after that all data in inline dentry will be moved to normal dentry page. After attaching the new entry in coverted dentry page, still we try to remove old entry in original inline dentry, since old entry has been moved, so it obviously doesn't make any effect, result in remaining old entry in converted dentry page. Now, we have two valid dentries pointed to the same inode which has nlink value of 1, deleting them both, above warning appears. This issue can be reproduced easily as below steps: 1. mount f2fs with inline_dentry option 2. mkdir dir 3. touch 180 files named [001-180] in dir 4. rename dir/180 dir/181 5. rm dir/180 dir/181 Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-17 08:47:05 +00:00
/*
* old entry and new entry can locate in the same inline
* dentry in inode, when attaching new entry in inline dentry,
* it could force inline dentry conversion, after that,
* old_entry and old_page will point to wrong address, in
* order to avoid this, let's do the check and update here.
*/
if (is_old_inline && !f2fs_has_inline_dentry(old_dir)) {
f2fs_put_page(old_page, 0);
old_page = NULL;
old_entry = f2fs_find_entry(old_dir,
&old_dentry->d_name, &old_page);
if (!old_entry) {
err = -ENOENT;
if (IS_ERR(old_page))
err = PTR_ERR(old_page);
f2fs: fix to delete old dirent in converted inline directory in ->rename When doing test with fstests/generic/068 in inline_dentry enabled f2fs, following oops dmesg will be reported: ------------[ cut here ]------------ WARNING: CPU: 5 PID: 11841 at fs/inode.c:273 drop_nlink+0x49/0x50() Modules linked in: f2fs(O) ip6table_filter ip6_tables ebtable_nat ebtables nf_conntrack_ipv4 nf_defrag_ipv4 xt_state CPU: 5 PID: 11841 Comm: fsstress Tainted: G O 4.5.0-rc1 #45 Hardware name: Hewlett-Packard HP Z220 CMT Workstation/1790, BIOS K51 v01.61 05/16/2013 0000000000000111 ffff88009cdf7ae8 ffffffff813e5944 0000000000002e41 0000000000000000 0000000000000111 0000000000000000 ffff88009cdf7b28 ffffffff8106a587 ffff88009cdf7b58 ffff8804078fe180 ffff880374a64e00 Call Trace: [<ffffffff813e5944>] dump_stack+0x48/0x64 [<ffffffff8106a587>] warn_slowpath_common+0x97/0xe0 [<ffffffff8106a5ea>] warn_slowpath_null+0x1a/0x20 [<ffffffff81231039>] drop_nlink+0x49/0x50 [<ffffffffa07b95b4>] f2fs_rename2+0xe04/0x10c0 [f2fs] [<ffffffff81231ff1>] ? lock_two_nondirectories+0x81/0x90 [<ffffffff813f454d>] ? lockref_get+0x1d/0x30 [<ffffffff81220f70>] vfs_rename+0x2e0/0x640 [<ffffffff8121f9db>] ? lookup_dcache+0x3b/0xd0 [<ffffffff810b8e41>] ? update_fast_ctr+0x21/0x40 [<ffffffff8134ff12>] ? security_path_rename+0xa2/0xd0 [<ffffffff81224af6>] SYSC_renameat2+0x4b6/0x540 [<ffffffff810ba8ed>] ? trace_hardirqs_off+0xd/0x10 [<ffffffff810022ba>] ? exit_to_usermode_loop+0x7a/0xd0 [<ffffffff817e0ade>] ? int_ret_from_sys_call+0x52/0x9f [<ffffffff810bdc90>] ? trace_hardirqs_on_caller+0x100/0x1c0 [<ffffffff81224b8e>] SyS_renameat2+0xe/0x10 [<ffffffff8121f08e>] SyS_rename+0x1e/0x20 [<ffffffff817e0957>] entry_SYSCALL_64_fastpath+0x12/0x6f ---[ end trace 2b31e17995404e42 ]--- This is because: in the same inline directory, when we renaming one file from source name to target name which is not existed, once space of inline dentry is not enough, inline conversion will be triggered, after that all data in inline dentry will be moved to normal dentry page. After attaching the new entry in coverted dentry page, still we try to remove old entry in original inline dentry, since old entry has been moved, so it obviously doesn't make any effect, result in remaining old entry in converted dentry page. Now, we have two valid dentries pointed to the same inode which has nlink value of 1, deleting them both, above warning appears. This issue can be reproduced easily as below steps: 1. mount f2fs with inline_dentry option 2. mkdir dir 3. touch 180 files named [001-180] in dir 4. rename dir/180 dir/181 5. rm dir/180 dir/181 Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-17 08:47:05 +00:00
f2fs_unlock_op(sbi);
goto out_whiteout;
}
}
}
down_write(&F2FS_I(old_inode)->i_sem);
if (!old_dir_entry || whiteout)
file_lost_pino(old_inode);
else
F2FS_I(old_inode)->i_pino = new_dir->i_ino;
up_write(&F2FS_I(old_inode)->i_sem);
old_inode->i_ctime = current_time(old_inode);
f2fs_mark_inode_dirty_sync(old_inode, false);
f2fs_delete_entry(old_entry, old_page, old_dir, NULL);
if (whiteout) {
whiteout->i_state |= I_LINKABLE;
set_inode_flag(whiteout, FI_INC_LINK);
err = f2fs_add_link(old_dentry, whiteout);
if (err)
goto put_out_dir;
whiteout->i_state &= ~I_LINKABLE;
iput(whiteout);
}
if (old_dir_entry) {
if (old_dir != new_dir && !whiteout)
f2fs_set_link(old_inode, old_dir_entry,
old_dir_page, new_dir);
else
f2fs_put_page(old_dir_page, 0);
f2fs_i_links_write(old_dir, false);
}
if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
add_ino_entry(sbi, new_dir->i_ino, TRANS_DIR_INO);
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 10:08:30 +00:00
f2fs_unlock_op(sbi);
if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
f2fs_sync_fs(sbi->sb, 1);
return 0;
put_out_dir:
f2fs_unlock_op(sbi);
if (new_page)
f2fs_put_page(new_page, 0);
out_whiteout:
if (whiteout)
iput(whiteout);
out_dir:
if (old_dir_entry)
f2fs_put_page(old_dir_page, 0);
out_old:
f2fs_put_page(old_page, 0);
out:
return err;
}
static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
struct inode *old_inode = d_inode(old_dentry);
struct inode *new_inode = d_inode(new_dentry);
struct page *old_dir_page, *new_dir_page;
struct page *old_page, *new_page;
struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL;
struct f2fs_dir_entry *old_entry, *new_entry;
int old_nlink = 0, new_nlink = 0;
int err = -ENOENT;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
if ((is_inode_flag_set(new_dir, FI_PROJ_INHERIT) &&
!projid_eq(F2FS_I(new_dir)->i_projid,
F2FS_I(old_dentry->d_inode)->i_projid)) ||
(is_inode_flag_set(new_dir, FI_PROJ_INHERIT) &&
!projid_eq(F2FS_I(old_dir)->i_projid,
F2FS_I(new_dentry->d_inode)->i_projid)))
return -EXDEV;
err = dquot_initialize(old_dir);
if (err)
goto out;
err = dquot_initialize(new_dir);
if (err)
goto out;
old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
if (!old_entry) {
if (IS_ERR(old_page))
err = PTR_ERR(old_page);
goto out;
}
new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page);
if (!new_entry) {
if (IS_ERR(new_page))
err = PTR_ERR(new_page);
goto out_old;
}
/* prepare for updating ".." directory entry info later */
if (old_dir != new_dir) {
if (S_ISDIR(old_inode->i_mode)) {
old_dir_entry = f2fs_parent_dir(old_inode,
&old_dir_page);
if (!old_dir_entry) {
if (IS_ERR(old_dir_page))
err = PTR_ERR(old_dir_page);
goto out_new;
}
}
if (S_ISDIR(new_inode->i_mode)) {
new_dir_entry = f2fs_parent_dir(new_inode,
&new_dir_page);
if (!new_dir_entry) {
if (IS_ERR(new_dir_page))
err = PTR_ERR(new_dir_page);
goto out_old_dir;
}
}
}
/*
* If cross rename between file and directory those are not
* in the same directory, we will inc nlink of file's parent
* later, so we should check upper boundary of its nlink.
*/
if ((!old_dir_entry || !new_dir_entry) &&
old_dir_entry != new_dir_entry) {
old_nlink = old_dir_entry ? -1 : 1;
new_nlink = -old_nlink;
err = -EMLINK;
if ((old_nlink > 0 && old_dir->i_nlink >= F2FS_LINK_MAX) ||
(new_nlink > 0 && new_dir->i_nlink >= F2FS_LINK_MAX))
goto out_new_dir;
}
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
/* update ".." directory entry info of old dentry */
if (old_dir_entry)
f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir);
/* update ".." directory entry info of new dentry */
if (new_dir_entry)
f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir);
/* update directory entry info of old dir inode */
f2fs_set_link(old_dir, old_entry, old_page, new_inode);
down_write(&F2FS_I(old_inode)->i_sem);
file_lost_pino(old_inode);
up_write(&F2FS_I(old_inode)->i_sem);
old_dir->i_ctime = current_time(old_dir);
if (old_nlink) {
down_write(&F2FS_I(old_dir)->i_sem);
f2fs_i_links_write(old_dir, old_nlink > 0);
up_write(&F2FS_I(old_dir)->i_sem);
}
f2fs_mark_inode_dirty_sync(old_dir, false);
/* update directory entry info of new dir inode */
f2fs_set_link(new_dir, new_entry, new_page, old_inode);
down_write(&F2FS_I(new_inode)->i_sem);
file_lost_pino(new_inode);
up_write(&F2FS_I(new_inode)->i_sem);
new_dir->i_ctime = current_time(new_dir);
if (new_nlink) {
down_write(&F2FS_I(new_dir)->i_sem);
f2fs_i_links_write(new_dir, new_nlink > 0);
up_write(&F2FS_I(new_dir)->i_sem);
}
f2fs_mark_inode_dirty_sync(new_dir, false);
if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) {
add_ino_entry(sbi, old_dir->i_ino, TRANS_DIR_INO);
add_ino_entry(sbi, new_dir->i_ino, TRANS_DIR_INO);
}
f2fs_unlock_op(sbi);
if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
f2fs_sync_fs(sbi->sb, 1);
return 0;
out_new_dir:
if (new_dir_entry) {
f2fs_put_page(new_dir_page, 0);
}
out_old_dir:
if (old_dir_entry) {
f2fs_put_page(old_dir_page, 0);
}
out_new:
f2fs_put_page(new_page, 0);
out_old:
f2fs_put_page(old_page, 0);
out:
return err;
}
static int f2fs_rename2(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
int err;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry,
flags);
if (err)
return err;
if (flags & RENAME_EXCHANGE) {
return f2fs_cross_rename(old_dir, old_dentry,
new_dir, new_dentry);
}
/*
* VFS has already handled the new dentry existence case,
* here, we just deal with "RENAME_NOREPLACE" as regular rename.
*/
return f2fs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
}
static const char *f2fs_encrypted_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct page *page;
const char *target;
if (!dentry)
return ERR_PTR(-ECHILD);
page = read_mapping_page(inode->i_mapping, 0, NULL);
if (IS_ERR(page))
return ERR_CAST(page);
target = fscrypt_get_symlink(inode, page_address(page),
inode->i_sb->s_blocksize, done);
put_page(page);
return target;
}
const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
.get_link = f2fs_encrypted_get_link,
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
.listxattr = f2fs_listxattr,
#endif
};
const struct inode_operations f2fs_dir_inode_operations = {
.create = f2fs_create,
.lookup = f2fs_lookup,
.link = f2fs_link,
.unlink = f2fs_unlink,
.symlink = f2fs_symlink,
.mkdir = f2fs_mkdir,
.rmdir = f2fs_rmdir,
.mknod = f2fs_mknod,
.rename = f2fs_rename2,
.tmpfile = f2fs_tmpfile,
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
.get_acl = f2fs_get_acl,
.set_acl = f2fs_set_acl,
#ifdef CONFIG_F2FS_FS_XATTR
.listxattr = f2fs_listxattr,
#endif
};
const struct inode_operations f2fs_symlink_inode_operations = {
.get_link = f2fs_get_link,
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
.listxattr = f2fs_listxattr,
#endif
};
const struct inode_operations f2fs_special_inode_operations = {
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
.get_acl = f2fs_get_acl,
.set_acl = f2fs_set_acl,
#ifdef CONFIG_F2FS_FS_XATTR
.listxattr = f2fs_listxattr,
#endif
};