540 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2017-2018 Netronome Systems, Inc. */
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <linux/bpf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <bpf/bpf.h>
#include <bpf/btf.h>
#include <bpf/hashmap.h>
#include <bpf/libbpf.h>
#include "main.h"
#define BATCH_LINE_LEN_MAX 65536
#define BATCH_ARG_NB_MAX 4096
const char *bin_name;
static int last_argc;
static char **last_argv;
static int (*last_do_help)(int argc, char **argv);
json_writer_t *json_wtr;
bool pretty_output;
bool json_output;
bool show_pinned;
bool block_mount;
tools: bpftool: make -d option print debug output from verifier The "-d" option is used to require all logs available for bpftool. So far it meant telling libbpf to print even debug-level information. But there is another source of info that can be made more verbose: when we attemt to load programs with bpftool, we can pass a log_level parameter to the verifier in order to control the amount of information that is printed to the console. Reuse the "-d" option to print all information the verifier can tell. At this time, this means logs related to BPF_LOG_LEVEL1, BPF_LOG_LEVEL2 and BPF_LOG_STATS. As mentioned in the discussion on the first version of this set, these macros are internal to the kernel (include/linux/bpf_verifier.h) and are not meant to be part of the stable user API, therefore we simply use the related constants to print whatever we can at this time, without trying to tell users what is log_level1 or what is statistics. Verifier logs are only used when loading programs for now (In the future: for loading BTF objects with bpftool? Although libbpf does not currently offer to print verifier info at debug level if no error occurred when loading BTF objects), so bpftool.rst and bpftool-prog.rst are the only man pages to get the update. v3: - Add details on log level and BTF loading at the end of commit log. v2: - Remove the possibility to select the log levels to use (v1 offered a combination of "log_level1", "log_level2" and "stats"). - The macros from kernel header bpf_verifier.h are not used (and therefore not moved to UAPI header). - In v1 this was a distinct option, but is now merged in the only "-d" switch to activate libbpf and verifier debug-level logs all at the same time. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-24 11:36:48 +01:00
bool verifier_logs;
bool relaxed_maps;
bpftool: Use syscall/loader program in "prog load" and "gen skeleton" command. Add -L flag to bpftool to use libbpf gen_trace facility and syscall/loader program for skeleton generation and program loading. "bpftool gen skeleton -L" command will generate a "light skeleton" or "loader skeleton" that is similar to existing skeleton, but has one major difference: $ bpftool gen skeleton lsm.o > lsm.skel.h $ bpftool gen skeleton -L lsm.o > lsm.lskel.h $ diff lsm.skel.h lsm.lskel.h @@ -5,34 +4,34 @@ #define __LSM_SKEL_H__ #include <stdlib.h> -#include <bpf/libbpf.h> +#include <bpf/bpf.h> The light skeleton does not use majority of libbpf infrastructure. It doesn't need libelf. It doesn't parse .o file. It only needs few sys_bpf wrappers. All of them are in bpf/bpf.h file. In future libbpf/bpf.c can be inlined into bpf.h, so not even libbpf.a would be needed to work with light skeleton. "bpftool prog load -L file.o" command is introduced for debugging of syscall/loader program generation. Just like the same command without -L it will try to load the programs from file.o into the kernel. It won't even try to pin them. "bpftool prog load -L -d file.o" command will provide additional debug messages on how syscall/loader program was generated. Also the execution of syscall/loader program will use bpf_trace_printk() for each step of loading BTF, creating maps, and loading programs. The user can do "cat /.../trace_pipe" for further debug. An example of fexit_sleep.lskel.h generated from progs/fexit_sleep.c: struct fexit_sleep { struct bpf_loader_ctx ctx; struct { struct bpf_map_desc bss; } maps; struct { struct bpf_prog_desc nanosleep_fentry; struct bpf_prog_desc nanosleep_fexit; } progs; struct { int nanosleep_fentry_fd; int nanosleep_fexit_fd; } links; struct fexit_sleep__bss { int pid; int fentry_cnt; int fexit_cnt; } *bss; }; Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-18-alexei.starovoitov@gmail.com
2021-05-13 17:36:19 -07:00
bool use_loader;
bool legacy_libbpf;
struct btf *base_btf;
struct hashmap *refs_table;
static void __noreturn clean_and_exit(int i)
{
if (json_output)
jsonw_destroy(&json_wtr);
exit(i);
}
void usage(void)
{
last_do_help(last_argc - 1, last_argv + 1);
clean_and_exit(-1);
}
static int do_help(int argc, char **argv)
{
if (json_output) {
jsonw_null(json_wtr);
return 0;
}
fprintf(stderr,
"Usage: %s [OPTIONS] OBJECT { COMMAND | help }\n"
" %s batch file FILE\n"
" %s version\n"
"\n"
2020-05-09 10:59:20 -07:00
" OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter }\n"
" " HELP_SPEC_OPTIONS " |\n"
" {-V|--version} }\n"
"",
bin_name, bin_name, bin_name);
return 0;
}
bpftool: Update versioning scheme, align on libbpf's version number Since the notion of versions was introduced for bpftool, it has been following the version number of the kernel (using the version number corresponding to the tree in which bpftool's sources are located). The rationale was that bpftool's features are loosely tied to BPF features in the kernel, and that we could defer versioning to the kernel repository itself. But this versioning scheme is confusing today, because a bpftool binary should be able to work with both older and newer kernels, even if some of its recent features won't be available on older systems. Furthermore, if bpftool is ported to other systems in the future, keeping a Linux-based version number is not a good option. Looking at other options, we could either have a totally independent scheme for bpftool, or we could align it on libbpf's version number (with an offset on the major version number, to avoid going backwards). The latter comes with a few drawbacks: - We may want bpftool releases in-between two libbpf versions. We can always append pre-release numbers to distinguish versions, although those won't look as "official" as something with a proper release number. But at the same time, having bpftool with version numbers that look "official" hasn't really been an issue so far. - If no new feature lands in bpftool for some time, we may move from e.g. 6.7.0 to 6.8.0 when libbpf levels up and have two different versions which are in fact the same. - Following libbpf's versioning scheme sounds better than kernel's, but ultimately it doesn't make too much sense either, because even though bpftool uses the lib a lot, its behaviour is not that much conditioned by the internal evolution of the library (or by new APIs that it may not use). Having an independent versioning scheme solves the above, but at the cost of heavier maintenance. Developers will likely forget to increase the numbers when adding features or bug fixes, and we would take the risk of having to send occasional "catch-up" patches just to update the version number. Based on these considerations, this patch aligns bpftool's version number on libbpf's. This is not a perfect solution, but 1) it's certainly an improvement over the current scheme, 2) the issues raised above are all minor at the moment, and 3) we can still move to an independent scheme in the future if we realise we need it. Given that libbpf is currently at version 0.7.0, and bpftool, before this patch, was at 5.16, we use an offset of 6 for the major version, bumping bpftool to 6.7.0. Libbpf does not export its patch number; leave bpftool's patch number at 0 for now. It remains possible to manually override the version number by setting BPFTOOL_VERSION when calling make. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220210104237.11649-3-quentin@isovalent.com
2022-02-10 10:42:37 +00:00
#ifndef BPFTOOL_VERSION
/* bpftool's major and minor version numbers are aligned on libbpf's. There is
* an offset of 6 for the version number, because bpftool's version was higher
* than libbpf's when we adopted this scheme. The patch number remains at 0
* for now. Set BPFTOOL_VERSION to override.
*/
#define BPFTOOL_MAJOR_VERSION (LIBBPF_MAJOR_VERSION + 6)
#define BPFTOOL_MINOR_VERSION LIBBPF_MINOR_VERSION
#define BPFTOOL_PATCH_VERSION 0
#endif
static int do_version(int argc, char **argv)
{
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
#ifdef HAVE_LIBBFD_SUPPORT
const bool has_libbfd = true;
#else
const bool has_libbfd = false;
#endif
#ifdef BPFTOOL_WITHOUT_SKELETONS
const bool has_skeletons = false;
#else
const bool has_skeletons = true;
#endif
if (json_output) {
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
jsonw_start_object(json_wtr); /* root object */
jsonw_name(json_wtr, "version");
bpftool: Update versioning scheme, align on libbpf's version number Since the notion of versions was introduced for bpftool, it has been following the version number of the kernel (using the version number corresponding to the tree in which bpftool's sources are located). The rationale was that bpftool's features are loosely tied to BPF features in the kernel, and that we could defer versioning to the kernel repository itself. But this versioning scheme is confusing today, because a bpftool binary should be able to work with both older and newer kernels, even if some of its recent features won't be available on older systems. Furthermore, if bpftool is ported to other systems in the future, keeping a Linux-based version number is not a good option. Looking at other options, we could either have a totally independent scheme for bpftool, or we could align it on libbpf's version number (with an offset on the major version number, to avoid going backwards). The latter comes with a few drawbacks: - We may want bpftool releases in-between two libbpf versions. We can always append pre-release numbers to distinguish versions, although those won't look as "official" as something with a proper release number. But at the same time, having bpftool with version numbers that look "official" hasn't really been an issue so far. - If no new feature lands in bpftool for some time, we may move from e.g. 6.7.0 to 6.8.0 when libbpf levels up and have two different versions which are in fact the same. - Following libbpf's versioning scheme sounds better than kernel's, but ultimately it doesn't make too much sense either, because even though bpftool uses the lib a lot, its behaviour is not that much conditioned by the internal evolution of the library (or by new APIs that it may not use). Having an independent versioning scheme solves the above, but at the cost of heavier maintenance. Developers will likely forget to increase the numbers when adding features or bug fixes, and we would take the risk of having to send occasional "catch-up" patches just to update the version number. Based on these considerations, this patch aligns bpftool's version number on libbpf's. This is not a perfect solution, but 1) it's certainly an improvement over the current scheme, 2) the issues raised above are all minor at the moment, and 3) we can still move to an independent scheme in the future if we realise we need it. Given that libbpf is currently at version 0.7.0, and bpftool, before this patch, was at 5.16, we use an offset of 6 for the major version, bumping bpftool to 6.7.0. Libbpf does not export its patch number; leave bpftool's patch number at 0 for now. It remains possible to manually override the version number by setting BPFTOOL_VERSION when calling make. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220210104237.11649-3-quentin@isovalent.com
2022-02-10 10:42:37 +00:00
#ifdef BPFTOOL_VERSION
jsonw_printf(json_wtr, "\"%s\"", BPFTOOL_VERSION);
bpftool: Update versioning scheme, align on libbpf's version number Since the notion of versions was introduced for bpftool, it has been following the version number of the kernel (using the version number corresponding to the tree in which bpftool's sources are located). The rationale was that bpftool's features are loosely tied to BPF features in the kernel, and that we could defer versioning to the kernel repository itself. But this versioning scheme is confusing today, because a bpftool binary should be able to work with both older and newer kernels, even if some of its recent features won't be available on older systems. Furthermore, if bpftool is ported to other systems in the future, keeping a Linux-based version number is not a good option. Looking at other options, we could either have a totally independent scheme for bpftool, or we could align it on libbpf's version number (with an offset on the major version number, to avoid going backwards). The latter comes with a few drawbacks: - We may want bpftool releases in-between two libbpf versions. We can always append pre-release numbers to distinguish versions, although those won't look as "official" as something with a proper release number. But at the same time, having bpftool with version numbers that look "official" hasn't really been an issue so far. - If no new feature lands in bpftool for some time, we may move from e.g. 6.7.0 to 6.8.0 when libbpf levels up and have two different versions which are in fact the same. - Following libbpf's versioning scheme sounds better than kernel's, but ultimately it doesn't make too much sense either, because even though bpftool uses the lib a lot, its behaviour is not that much conditioned by the internal evolution of the library (or by new APIs that it may not use). Having an independent versioning scheme solves the above, but at the cost of heavier maintenance. Developers will likely forget to increase the numbers when adding features or bug fixes, and we would take the risk of having to send occasional "catch-up" patches just to update the version number. Based on these considerations, this patch aligns bpftool's version number on libbpf's. This is not a perfect solution, but 1) it's certainly an improvement over the current scheme, 2) the issues raised above are all minor at the moment, and 3) we can still move to an independent scheme in the future if we realise we need it. Given that libbpf is currently at version 0.7.0, and bpftool, before this patch, was at 5.16, we use an offset of 6 for the major version, bumping bpftool to 6.7.0. Libbpf does not export its patch number; leave bpftool's patch number at 0 for now. It remains possible to manually override the version number by setting BPFTOOL_VERSION when calling make. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220210104237.11649-3-quentin@isovalent.com
2022-02-10 10:42:37 +00:00
#else
jsonw_printf(json_wtr, "\"%d.%d.%d\"", BPFTOOL_MAJOR_VERSION,
BPFTOOL_MINOR_VERSION, BPFTOOL_PATCH_VERSION);
#endif
jsonw_name(json_wtr, "libbpf_version");
jsonw_printf(json_wtr, "\"%d.%d\"",
libbpf_major_version(), libbpf_minor_version());
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
jsonw_name(json_wtr, "features");
jsonw_start_object(json_wtr); /* features */
jsonw_bool_field(json_wtr, "libbfd", has_libbfd);
bpftool: Add current libbpf_strict mode to version output + bpftool --legacy --version bpftool v5.15.0 features: libbfd, skeletons + bpftool --version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --legacy --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy version bpftool v5.15.0 features: libbfd, skeletons + bpftool version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --json --legacy version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":false,"skeletons":true}} + bpftool --json version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":true,"skeletons":true}} Suggested-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20211116000448.2918854-1-sdf@google.com
2021-11-15 16:04:48 -08:00
jsonw_bool_field(json_wtr, "libbpf_strict", !legacy_libbpf);
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
jsonw_bool_field(json_wtr, "skeletons", has_skeletons);
jsonw_end_object(json_wtr); /* features */
jsonw_end_object(json_wtr); /* root object */
} else {
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
unsigned int nb_features = 0;
bpftool: Update versioning scheme, align on libbpf's version number Since the notion of versions was introduced for bpftool, it has been following the version number of the kernel (using the version number corresponding to the tree in which bpftool's sources are located). The rationale was that bpftool's features are loosely tied to BPF features in the kernel, and that we could defer versioning to the kernel repository itself. But this versioning scheme is confusing today, because a bpftool binary should be able to work with both older and newer kernels, even if some of its recent features won't be available on older systems. Furthermore, if bpftool is ported to other systems in the future, keeping a Linux-based version number is not a good option. Looking at other options, we could either have a totally independent scheme for bpftool, or we could align it on libbpf's version number (with an offset on the major version number, to avoid going backwards). The latter comes with a few drawbacks: - We may want bpftool releases in-between two libbpf versions. We can always append pre-release numbers to distinguish versions, although those won't look as "official" as something with a proper release number. But at the same time, having bpftool with version numbers that look "official" hasn't really been an issue so far. - If no new feature lands in bpftool for some time, we may move from e.g. 6.7.0 to 6.8.0 when libbpf levels up and have two different versions which are in fact the same. - Following libbpf's versioning scheme sounds better than kernel's, but ultimately it doesn't make too much sense either, because even though bpftool uses the lib a lot, its behaviour is not that much conditioned by the internal evolution of the library (or by new APIs that it may not use). Having an independent versioning scheme solves the above, but at the cost of heavier maintenance. Developers will likely forget to increase the numbers when adding features or bug fixes, and we would take the risk of having to send occasional "catch-up" patches just to update the version number. Based on these considerations, this patch aligns bpftool's version number on libbpf's. This is not a perfect solution, but 1) it's certainly an improvement over the current scheme, 2) the issues raised above are all minor at the moment, and 3) we can still move to an independent scheme in the future if we realise we need it. Given that libbpf is currently at version 0.7.0, and bpftool, before this patch, was at 5.16, we use an offset of 6 for the major version, bumping bpftool to 6.7.0. Libbpf does not export its patch number; leave bpftool's patch number at 0 for now. It remains possible to manually override the version number by setting BPFTOOL_VERSION when calling make. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220210104237.11649-3-quentin@isovalent.com
2022-02-10 10:42:37 +00:00
#ifdef BPFTOOL_VERSION
printf("%s v%s\n", bin_name, BPFTOOL_VERSION);
bpftool: Update versioning scheme, align on libbpf's version number Since the notion of versions was introduced for bpftool, it has been following the version number of the kernel (using the version number corresponding to the tree in which bpftool's sources are located). The rationale was that bpftool's features are loosely tied to BPF features in the kernel, and that we could defer versioning to the kernel repository itself. But this versioning scheme is confusing today, because a bpftool binary should be able to work with both older and newer kernels, even if some of its recent features won't be available on older systems. Furthermore, if bpftool is ported to other systems in the future, keeping a Linux-based version number is not a good option. Looking at other options, we could either have a totally independent scheme for bpftool, or we could align it on libbpf's version number (with an offset on the major version number, to avoid going backwards). The latter comes with a few drawbacks: - We may want bpftool releases in-between two libbpf versions. We can always append pre-release numbers to distinguish versions, although those won't look as "official" as something with a proper release number. But at the same time, having bpftool with version numbers that look "official" hasn't really been an issue so far. - If no new feature lands in bpftool for some time, we may move from e.g. 6.7.0 to 6.8.0 when libbpf levels up and have two different versions which are in fact the same. - Following libbpf's versioning scheme sounds better than kernel's, but ultimately it doesn't make too much sense either, because even though bpftool uses the lib a lot, its behaviour is not that much conditioned by the internal evolution of the library (or by new APIs that it may not use). Having an independent versioning scheme solves the above, but at the cost of heavier maintenance. Developers will likely forget to increase the numbers when adding features or bug fixes, and we would take the risk of having to send occasional "catch-up" patches just to update the version number. Based on these considerations, this patch aligns bpftool's version number on libbpf's. This is not a perfect solution, but 1) it's certainly an improvement over the current scheme, 2) the issues raised above are all minor at the moment, and 3) we can still move to an independent scheme in the future if we realise we need it. Given that libbpf is currently at version 0.7.0, and bpftool, before this patch, was at 5.16, we use an offset of 6 for the major version, bumping bpftool to 6.7.0. Libbpf does not export its patch number; leave bpftool's patch number at 0 for now. It remains possible to manually override the version number by setting BPFTOOL_VERSION when calling make. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220210104237.11649-3-quentin@isovalent.com
2022-02-10 10:42:37 +00:00
#else
printf("%s v%d.%d.%d\n", bin_name, BPFTOOL_MAJOR_VERSION,
BPFTOOL_MINOR_VERSION, BPFTOOL_PATCH_VERSION);
#endif
printf("using libbpf %s\n", libbpf_version_string());
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
printf("features:");
if (has_libbfd) {
printf(" libbfd");
nb_features++;
}
bpftool: Add current libbpf_strict mode to version output + bpftool --legacy --version bpftool v5.15.0 features: libbfd, skeletons + bpftool --version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --legacy --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy version bpftool v5.15.0 features: libbfd, skeletons + bpftool version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --json --legacy version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":false,"skeletons":true}} + bpftool --json version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":true,"skeletons":true}} Suggested-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20211116000448.2918854-1-sdf@google.com
2021-11-15 16:04:48 -08:00
if (!legacy_libbpf) {
printf("%s libbpf_strict", nb_features++ ? "," : "");
nb_features++;
}
tools: bpftool: Print optional built-in features along with version Bpftool has a number of features that can be included or left aside during compilation. This includes: - Support for libbfd, providing the disassembler for JIT-compiled programs. - Support for BPF skeletons, used for profiling programs or iterating on the PIDs of processes associated with BPF objects. In order to make it easy for users to understand what features were compiled for a given bpftool binary, print the status of the two features above when showing the version number for bpftool ("bpftool -V" or "bpftool version"). Document this in the main manual page. Example invocations: $ bpftool version ./bpftool v5.9.0-rc1 features: libbfd, skeletons $ bpftool -p version { "version": "5.9.0-rc1", "features": { "libbfd": true, "skeletons": true } } Some other parameters are optional at compilation ("DISASM_FOUR_ARGS_SIGNATURE", LIBCAP support) but they do not impact significantly bpftool's behaviour from a user's point of view, so their status is not reported. Available commands and supported program types depend on the version number, and are therefore not reported either. Note that they are already available, albeit without JSON, via bpftool's help messages. v3: - Use a simple list instead of boolean values for plain output. v2: - Fix JSON (object instead or array for the features). Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200909162500.17010-2-quentin@isovalent.com
2020-09-09 17:24:58 +01:00
if (has_skeletons)
printf("%s skeletons", nb_features++ ? "," : "");
printf("\n");
}
return 0;
}
int cmd_select(const struct cmd *cmds, int argc, char **argv,
int (*help)(int argc, char **argv))
{
unsigned int i;
last_argc = argc;
last_argv = argv;
last_do_help = help;
if (argc < 1 && cmds[0].func)
return cmds[0].func(argc, argv);
for (i = 0; cmds[i].cmd; i++) {
if (is_prefix(*argv, cmds[i].cmd)) {
if (!cmds[i].func) {
p_err("command '%s' is not supported in bootstrap mode",
cmds[i].cmd);
return -1;
}
return cmds[i].func(argc - 1, argv + 1);
}
}
help(argc - 1, argv + 1);
return -1;
}
bool is_prefix(const char *pfx, const char *str)
{
if (!pfx)
return false;
if (strlen(str) < strlen(pfx))
return false;
return !memcmp(str, pfx, strlen(pfx));
}
/* Last argument MUST be NULL pointer */
int detect_common_prefix(const char *arg, ...)
{
unsigned int count = 0;
const char *ref;
char msg[256];
va_list ap;
snprintf(msg, sizeof(msg), "ambiguous prefix: '%s' could be '", arg);
va_start(ap, arg);
while ((ref = va_arg(ap, const char *))) {
if (!is_prefix(arg, ref))
continue;
count++;
if (count > 1)
strncat(msg, "' or '", sizeof(msg) - strlen(msg) - 1);
strncat(msg, ref, sizeof(msg) - strlen(msg) - 1);
}
va_end(ap);
strncat(msg, "'", sizeof(msg) - strlen(msg) - 1);
if (count >= 2) {
p_err("%s", msg);
return -1;
}
return 0;
}
void fprint_hex(FILE *f, void *arg, unsigned int n, const char *sep)
{
unsigned char *data = arg;
unsigned int i;
for (i = 0; i < n; i++) {
const char *pfx = "";
if (!i)
/* nothing */;
else if (!(i % 16))
fprintf(f, "\n");
else if (!(i % 8))
fprintf(f, " ");
else
pfx = sep;
fprintf(f, "%s%02hhx", i ? pfx : "", data[i]);
}
}
/* Split command line into argument vector. */
static int make_args(char *line, char *n_argv[], int maxargs, int cmd_nb)
{
static const char ws[] = " \t\r\n";
char *cp = line;
int n_argc = 0;
while (*cp) {
/* Skip leading whitespace. */
cp += strspn(cp, ws);
if (*cp == '\0')
break;
if (n_argc >= (maxargs - 1)) {
p_err("too many arguments to command %d", cmd_nb);
return -1;
}
/* Word begins with quote. */
if (*cp == '\'' || *cp == '"') {
char quote = *cp++;
n_argv[n_argc++] = cp;
/* Find ending quote. */
cp = strchr(cp, quote);
if (!cp) {
p_err("unterminated quoted string in command %d",
cmd_nb);
return -1;
}
} else {
n_argv[n_argc++] = cp;
/* Find end of word. */
cp += strcspn(cp, ws);
if (*cp == '\0')
break;
}
/* Separate words. */
*cp++ = 0;
}
n_argv[n_argc] = NULL;
return n_argc;
}
static int do_batch(int argc, char **argv);
static const struct cmd cmds[] = {
{ "help", do_help },
{ "batch", do_batch },
{ "prog", do_prog },
{ "map", do_map },
{ "link", do_link },
{ "cgroup", do_cgroup },
tools/bpftool: add perf subcommand The new command "bpftool perf [show | list]" will traverse all processes under /proc, and if any fd is associated with a perf event, it will print out related perf event information. Documentation is also added. Below is an example to show the results using bcc commands. Running the following 4 bcc commands: kprobe: trace.py '__x64_sys_nanosleep' kretprobe: trace.py 'r::__x64_sys_nanosleep' tracepoint: trace.py 't:syscalls:sys_enter_nanosleep' uprobe: trace.py 'p:/home/yhs/a.out:main' The bpftool command line and result: $ bpftool perf pid 21711 fd 5: prog_id 5 kprobe func __x64_sys_write offset 0 pid 21765 fd 5: prog_id 7 kretprobe func __x64_sys_nanosleep offset 0 pid 21767 fd 5: prog_id 8 tracepoint sys_enter_nanosleep pid 21800 fd 5: prog_id 9 uprobe filename /home/yhs/a.out offset 1159 $ bpftool -j perf [{"pid":21711,"fd":5,"prog_id":5,"fd_type":"kprobe","func":"__x64_sys_write","offset":0}, \ {"pid":21765,"fd":5,"prog_id":7,"fd_type":"kretprobe","func":"__x64_sys_nanosleep","offset":0}, \ {"pid":21767,"fd":5,"prog_id":8,"fd_type":"tracepoint","tracepoint":"sys_enter_nanosleep"}, \ {"pid":21800,"fd":5,"prog_id":9,"fd_type":"uprobe","filename":"/home/yhs/a.out","offset":1159}] $ bpftool prog 5: kprobe name probe___x64_sys tag e495a0c82f2c7a8d gpl loaded_at 2018-05-15T04:46:37-0700 uid 0 xlated 200B not jited memlock 4096B map_ids 4 7: kprobe name probe___x64_sys tag f2fdee479a503abf gpl loaded_at 2018-05-15T04:48:32-0700 uid 0 xlated 200B not jited memlock 4096B map_ids 7 8: tracepoint name tracepoint__sys tag 5390badef2395fcf gpl loaded_at 2018-05-15T04:48:48-0700 uid 0 xlated 200B not jited memlock 4096B map_ids 8 9: kprobe name probe_main_1 tag 0a87bdc2e2953b6d gpl loaded_at 2018-05-15T04:49:52-0700 uid 0 xlated 200B not jited memlock 4096B map_ids 9 $ ps ax | grep "python ./trace.py" 21711 pts/0 T 0:03 python ./trace.py __x64_sys_write 21765 pts/0 S+ 0:00 python ./trace.py r::__x64_sys_nanosleep 21767 pts/2 S+ 0:00 python ./trace.py t:syscalls:sys_enter_nanosleep 21800 pts/3 S+ 0:00 python ./trace.py p:/home/yhs/a.out:main 22374 pts/1 S+ 0:00 grep --color=auto python ./trace.py Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-24 11:21:58 -07:00
{ "perf", do_perf },
tools/bpf: bpftool: add net support Add "bpftool net" support. Networking devices are enumerated to dump device index/name associated with xdp progs. For each networking device, tc classes and qdiscs are enumerated in order to check their bpf filters. In addition, root handle and clsact ingress/egress are also checked for bpf filters. Not all filter information is printed out. Only ifindex, kind, filter name, prog_id and tag are printed out, which are good enough to show attachment information. If the filter action is a bpf action, its bpf program id, bpf name and tag will be printed out as well. For example, $ ./bpftool net xdp [ ifindex 2 devname eth0 prog_id 198 ] tc_filters [ ifindex 2 kind qdisc_htb name prefix_matcher.o:[cls_prefix_matcher_htb] prog_id 111727 tag d08fe3b4319bc2fd act [] ifindex 2 kind qdisc_clsact_ingress name fbflow_icmp prog_id 130246 tag 3f265c7f26db62c9 act [] ifindex 2 kind qdisc_clsact_egress name prefix_matcher.o:[cls_prefix_matcher_clsact] prog_id 111726 tag 99a197826974c876 ifindex 2 kind qdisc_clsact_egress name cls_fg_dscp prog_id 108619 tag dc4630674fd72dcc act [] ifindex 2 kind qdisc_clsact_egress name fbflow_egress prog_id 130245 tag 72d2d830d6888d2c ] $ ./bpftool -jp net [{ "xdp": [{ "ifindex": 2, "devname": "eth0", "prog_id": 198 } ], "tc_filters": [{ "ifindex": 2, "kind": "qdisc_htb", "name": "prefix_matcher.o:[cls_prefix_matcher_htb]", "prog_id": 111727, "tag": "d08fe3b4319bc2fd", "act": [] },{ "ifindex": 2, "kind": "qdisc_clsact_ingress", "name": "fbflow_icmp", "prog_id": 130246, "tag": "3f265c7f26db62c9", "act": [] },{ "ifindex": 2, "kind": "qdisc_clsact_egress", "name": "prefix_matcher.o:[cls_prefix_matcher_clsact]", "prog_id": 111726, "tag": "99a197826974c876" },{ "ifindex": 2, "kind": "qdisc_clsact_egress", "name": "cls_fg_dscp", "prog_id": 108619, "tag": "dc4630674fd72dcc", "act": [] },{ "ifindex": 2, "kind": "qdisc_clsact_egress", "name": "fbflow_egress", "prog_id": 130245, "tag": "72d2d830d6888d2c" } ] } ] Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-09-05 16:58:06 -07:00
{ "net", do_net },
tools: bpftool: add basic probe capability, probe syscall availability Add a new component and command for bpftool, in order to probe the system to dump a set of eBPF-related parameters so that users can know what features are available on the system. Parameters are dumped in plain or JSON output (with -j/-p options). The current patch introduces probing of one simple parameter: availability of the bpf() system call. Later commits will add other probes. Sample output: # bpftool feature probe kernel Scanning system call availability... bpf() syscall is available # bpftool --json --pretty feature probe kernel { "syscall_config": { "have_bpf_syscall": true } } The optional "kernel" keyword enforces probing of the current system, which is the only possible behaviour at this stage. It can be safely omitted. The feature comes with the relevant man page, but bash completion will come in a dedicated commit. v3: - Do not probe kernel version. Contrarily to what is written below for v2, we can have the kernel version retrieved in libbpf instead of bpftool (in the patch adding probing for program types). v2: - Remove C-style macros output from this patch. - Even though kernel version is no longer needed for testing kprobes availability, note that we still collect it in this patch so that bpftool gets able to probe (in next patches) older kernels as well. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 15:27:50 +00:00
{ "feature", do_feature },
{ "btf", do_btf },
bpftool: Add skeleton codegen command Add `bpftool gen skeleton` command, which takes in compiled BPF .o object file and dumps a BPF skeleton struct and related code to work with that skeleton. Skeleton itself is tailored to a specific structure of provided BPF object file, containing accessors (just plain struct fields) for every map and program, as well as dedicated space for bpf_links. If BPF program is using global variables, corresponding structure definitions of compatible memory layout are emitted as well, making it possible to initialize and subsequently read/update global variables values using simple and clear C syntax for accessing fields. This skeleton majorly improves usability of opening/loading/attaching of BPF object, as well as interacting with it throughout the lifetime of loaded BPF object. Generated skeleton struct has the following structure: struct <object-name> { /* used by libbpf's skeleton API */ struct bpf_object_skeleton *skeleton; /* bpf_object for libbpf APIs */ struct bpf_object *obj; struct { /* for every defined map in BPF object: */ struct bpf_map *<map-name>; } maps; struct { /* for every program in BPF object: */ struct bpf_program *<program-name>; } progs; struct { /* for every program in BPF object: */ struct bpf_link *<program-name>; } links; /* for every present global data section: */ struct <object-name>__<one of bss, data, or rodata> { /* memory layout of corresponding data section, * with every defined variable represented as a struct field * with exactly the same type, but without const/volatile * modifiers, e.g.: */ int *my_var_1; ... } *<one of bss, data, or rodata>; }; This provides great usability improvements: - no need to look up maps and programs by name, instead just my_obj->maps.my_map or my_obj->progs.my_prog would give necessary bpf_map/bpf_program pointers, which user can pass to existing libbpf APIs; - pre-defined places for bpf_links, which will be automatically populated for program types that libbpf knows how to attach automatically (currently tracepoints, kprobe/kretprobe, raw tracepoint and tracing programs). On tearing down skeleton, all active bpf_links will be destroyed (meaning BPF programs will be detached, if they are attached). For cases in which libbpf doesn't know how to auto-attach BPF program, user can manually create link after loading skeleton and they will be auto-detached on skeleton destruction: my_obj->links.my_fancy_prog = bpf_program__attach_cgroup_whatever( my_obj->progs.my_fancy_prog, <whatever extra param); - it's extremely easy and convenient to work with global data from userspace now. Both for read-only and read/write variables, it's possible to pre-initialize them before skeleton is loaded: skel = my_obj__open(raw_embed_data); my_obj->rodata->my_var = 123; my_obj__load(skel); /* 123 will be initialization value for my_var */ After load, if kernel supports mmap() for BPF arrays, user can still read (and write for .bss and .data) variables values, but at that point it will be directly mmap()-ed to BPF array, backing global variables. This allows to seamlessly exchange data with BPF side. From userspace program's POV, all the pointers and memory contents stay the same, but mapped kernel memory changes to point to created map. If kernel doesn't yet support mmap() for BPF arrays, it's still possible to use those data section structs to pre-initialize .bss, .data, and .rodata, but after load their pointers will be reset to NULL, allowing user code to gracefully handle this condition, if necessary. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191214014341.3442258-14-andriin@fb.com
2019-12-13 17:43:37 -08:00
{ "gen", do_gen },
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 10:16:56 -07:00
{ "struct_ops", do_struct_ops },
2020-05-09 10:59:20 -07:00
{ "iter", do_iter },
{ "version", do_version },
{ 0 }
};
static int do_batch(int argc, char **argv)
{
char buf[BATCH_LINE_LEN_MAX], contline[BATCH_LINE_LEN_MAX];
char *n_argv[BATCH_ARG_NB_MAX];
unsigned int lines = 0;
int n_argc;
FILE *fp;
char *cp;
int err = 0;
int i;
if (argc < 2) {
p_err("too few parameters for batch");
return -1;
} else if (!is_prefix(*argv, "file")) {
p_err("expected 'file', got: %s", *argv);
return -1;
} else if (argc > 2) {
p_err("too many parameters for batch");
return -1;
}
NEXT_ARG();
if (!strcmp(*argv, "-"))
fp = stdin;
else
fp = fopen(*argv, "r");
if (!fp) {
p_err("Can't open file (%s): %s", *argv, strerror(errno));
return -1;
}
if (json_output)
jsonw_start_array(json_wtr);
while (fgets(buf, sizeof(buf), fp)) {
cp = strchr(buf, '#');
if (cp)
*cp = '\0';
if (strlen(buf) == sizeof(buf) - 1) {
errno = E2BIG;
break;
}
/* Append continuation lines if any (coming after a line ending
* with '\' in the batch file).
*/
while ((cp = strstr(buf, "\\\n")) != NULL) {
if (!fgets(contline, sizeof(contline), fp) ||
strlen(contline) == 0) {
p_err("missing continuation line on command %d",
lines);
err = -1;
goto err_close;
}
cp = strchr(contline, '#');
if (cp)
*cp = '\0';
if (strlen(buf) + strlen(contline) + 1 > sizeof(buf)) {
p_err("command %d is too long", lines);
err = -1;
goto err_close;
}
buf[strlen(buf) - 2] = '\0';
strcat(buf, contline);
}
n_argc = make_args(buf, n_argv, BATCH_ARG_NB_MAX, lines);
if (!n_argc)
continue;
if (n_argc < 0) {
err = n_argc;
goto err_close;
}
if (json_output) {
jsonw_start_object(json_wtr);
jsonw_name(json_wtr, "command");
jsonw_start_array(json_wtr);
for (i = 0; i < n_argc; i++)
jsonw_string(json_wtr, n_argv[i]);
jsonw_end_array(json_wtr);
jsonw_name(json_wtr, "output");
}
err = cmd_select(cmds, n_argc, n_argv, do_help);
if (json_output)
jsonw_end_object(json_wtr);
if (err)
goto err_close;
lines++;
}
if (errno && errno != ENOENT) {
p_err("reading batch file failed: %s", strerror(errno));
err = -1;
} else {
if (!json_output)
printf("processed %d commands\n", lines);
}
err_close:
if (fp != stdin)
fclose(fp);
if (json_output)
jsonw_end_array(json_wtr);
return err;
}
int main(int argc, char **argv)
{
static const struct option options[] = {
{ "json", no_argument, NULL, 'j' },
{ "help", no_argument, NULL, 'h' },
{ "pretty", no_argument, NULL, 'p' },
{ "version", no_argument, NULL, 'V' },
{ "bpffs", no_argument, NULL, 'f' },
{ "mapcompat", no_argument, NULL, 'm' },
{ "nomount", no_argument, NULL, 'n' },
{ "debug", no_argument, NULL, 'd' },
bpftool: Use syscall/loader program in "prog load" and "gen skeleton" command. Add -L flag to bpftool to use libbpf gen_trace facility and syscall/loader program for skeleton generation and program loading. "bpftool gen skeleton -L" command will generate a "light skeleton" or "loader skeleton" that is similar to existing skeleton, but has one major difference: $ bpftool gen skeleton lsm.o > lsm.skel.h $ bpftool gen skeleton -L lsm.o > lsm.lskel.h $ diff lsm.skel.h lsm.lskel.h @@ -5,34 +4,34 @@ #define __LSM_SKEL_H__ #include <stdlib.h> -#include <bpf/libbpf.h> +#include <bpf/bpf.h> The light skeleton does not use majority of libbpf infrastructure. It doesn't need libelf. It doesn't parse .o file. It only needs few sys_bpf wrappers. All of them are in bpf/bpf.h file. In future libbpf/bpf.c can be inlined into bpf.h, so not even libbpf.a would be needed to work with light skeleton. "bpftool prog load -L file.o" command is introduced for debugging of syscall/loader program generation. Just like the same command without -L it will try to load the programs from file.o into the kernel. It won't even try to pin them. "bpftool prog load -L -d file.o" command will provide additional debug messages on how syscall/loader program was generated. Also the execution of syscall/loader program will use bpf_trace_printk() for each step of loading BTF, creating maps, and loading programs. The user can do "cat /.../trace_pipe" for further debug. An example of fexit_sleep.lskel.h generated from progs/fexit_sleep.c: struct fexit_sleep { struct bpf_loader_ctx ctx; struct { struct bpf_map_desc bss; } maps; struct { struct bpf_prog_desc nanosleep_fentry; struct bpf_prog_desc nanosleep_fexit; } progs; struct { int nanosleep_fentry_fd; int nanosleep_fexit_fd; } links; struct fexit_sleep__bss { int pid; int fentry_cnt; int fexit_cnt; } *bss; }; Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-18-alexei.starovoitov@gmail.com
2021-05-13 17:36:19 -07:00
{ "use-loader", no_argument, NULL, 'L' },
{ "base-btf", required_argument, NULL, 'B' },
{ "legacy", no_argument, NULL, 'l' },
{ 0 }
};
bpftool: Add current libbpf_strict mode to version output + bpftool --legacy --version bpftool v5.15.0 features: libbfd, skeletons + bpftool --version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --legacy --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy version bpftool v5.15.0 features: libbfd, skeletons + bpftool version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --json --legacy version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":false,"skeletons":true}} + bpftool --json version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":true,"skeletons":true}} Suggested-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20211116000448.2918854-1-sdf@google.com
2021-11-15 16:04:48 -08:00
bool version_requested = false;
int opt, ret;
setlinebuf(stdout);
bpftool: Clear errno after libcap's checks When bpftool is linked against libcap, the library runs a "constructor" function to compute the number of capabilities of the running kernel [0], at the beginning of the execution of the program. As part of this, it performs multiple calls to prctl(). Some of these may fail, and set errno to a non-zero value: # strace -e prctl ./bpftool version prctl(PR_CAPBSET_READ, CAP_MAC_OVERRIDE) = 1 prctl(PR_CAPBSET_READ, 0x30 /* CAP_??? */) = -1 EINVAL (Invalid argument) prctl(PR_CAPBSET_READ, CAP_CHECKPOINT_RESTORE) = 1 prctl(PR_CAPBSET_READ, 0x2c /* CAP_??? */) = -1 EINVAL (Invalid argument) prctl(PR_CAPBSET_READ, 0x2a /* CAP_??? */) = -1 EINVAL (Invalid argument) prctl(PR_CAPBSET_READ, 0x29 /* CAP_??? */) = -1 EINVAL (Invalid argument) ** fprintf added at the top of main(): we have errno == 1 ./bpftool v7.0.0 using libbpf v1.0 features: libbfd, libbpf_strict, skeletons +++ exited with 0 +++ This has been addressed in libcap 2.63 [1], but until this version is available everywhere, we can fix it on bpftool side. Let's clean errno at the beginning of the main() function, to make sure that these checks do not interfere with the batch mode, where we error out if errno is set after a bpftool command. [0] https://git.kernel.org/pub/scm/libs/libcap/libcap.git/tree/libcap/cap_alloc.c?h=libcap-2.65#n20 [1] https://git.kernel.org/pub/scm/libs/libcap/libcap.git/commit/?id=f25a1b7e69f7b33e6afb58b3e38f3450b7d2d9a0 Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220815162205.45043-1-quentin@isovalent.com
2022-08-15 17:22:05 +01:00
#ifdef USE_LIBCAP
/* Libcap < 2.63 hooks before main() to compute the number of
* capabilities of the running kernel, and doing so it calls prctl()
* which may fail and set errno to non-zero.
* Let's reset errno to make sure this does not interfere with the
* batch mode.
*/
errno = 0;
#endif
last_do_help = do_help;
pretty_output = false;
json_output = false;
show_pinned = false;
block_mount = false;
bin_name = "bpftool";
opterr = 0;
while ((opt = getopt_long(argc, argv, "VhpjfLmndB:l",
options, NULL)) >= 0) {
switch (opt) {
case 'V':
bpftool: Add current libbpf_strict mode to version output + bpftool --legacy --version bpftool v5.15.0 features: libbfd, skeletons + bpftool --version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --legacy --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy version bpftool v5.15.0 features: libbfd, skeletons + bpftool version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --json --legacy version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":false,"skeletons":true}} + bpftool --json version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":true,"skeletons":true}} Suggested-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20211116000448.2918854-1-sdf@google.com
2021-11-15 16:04:48 -08:00
version_requested = true;
break;
case 'h':
return do_help(argc, argv);
case 'p':
pretty_output = true;
/* fall through */
case 'j':
if (!json_output) {
json_wtr = jsonw_new(stdout);
if (!json_wtr) {
p_err("failed to create JSON writer");
return -1;
}
json_output = true;
}
jsonw_pretty(json_wtr, pretty_output);
break;
case 'f':
show_pinned = true;
break;
case 'm':
relaxed_maps = true;
break;
case 'n':
block_mount = true;
break;
case 'd':
libbpf_set_print(print_all_levels);
tools: bpftool: make -d option print debug output from verifier The "-d" option is used to require all logs available for bpftool. So far it meant telling libbpf to print even debug-level information. But there is another source of info that can be made more verbose: when we attemt to load programs with bpftool, we can pass a log_level parameter to the verifier in order to control the amount of information that is printed to the console. Reuse the "-d" option to print all information the verifier can tell. At this time, this means logs related to BPF_LOG_LEVEL1, BPF_LOG_LEVEL2 and BPF_LOG_STATS. As mentioned in the discussion on the first version of this set, these macros are internal to the kernel (include/linux/bpf_verifier.h) and are not meant to be part of the stable user API, therefore we simply use the related constants to print whatever we can at this time, without trying to tell users what is log_level1 or what is statistics. Verifier logs are only used when loading programs for now (In the future: for loading BTF objects with bpftool? Although libbpf does not currently offer to print verifier info at debug level if no error occurred when loading BTF objects), so bpftool.rst and bpftool-prog.rst are the only man pages to get the update. v3: - Add details on log level and BTF loading at the end of commit log. v2: - Remove the possibility to select the log levels to use (v1 offered a combination of "log_level1", "log_level2" and "stats"). - The macros from kernel header bpf_verifier.h are not used (and therefore not moved to UAPI header). - In v1 this was a distinct option, but is now merged in the only "-d" switch to activate libbpf and verifier debug-level logs all at the same time. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-24 11:36:48 +01:00
verifier_logs = true;
break;
case 'B':
base_btf = btf__parse(optarg, NULL);
if (libbpf_get_error(base_btf)) {
p_err("failed to parse base BTF at '%s': %ld\n",
optarg, libbpf_get_error(base_btf));
base_btf = NULL;
return -1;
}
break;
bpftool: Use syscall/loader program in "prog load" and "gen skeleton" command. Add -L flag to bpftool to use libbpf gen_trace facility and syscall/loader program for skeleton generation and program loading. "bpftool gen skeleton -L" command will generate a "light skeleton" or "loader skeleton" that is similar to existing skeleton, but has one major difference: $ bpftool gen skeleton lsm.o > lsm.skel.h $ bpftool gen skeleton -L lsm.o > lsm.lskel.h $ diff lsm.skel.h lsm.lskel.h @@ -5,34 +4,34 @@ #define __LSM_SKEL_H__ #include <stdlib.h> -#include <bpf/libbpf.h> +#include <bpf/bpf.h> The light skeleton does not use majority of libbpf infrastructure. It doesn't need libelf. It doesn't parse .o file. It only needs few sys_bpf wrappers. All of them are in bpf/bpf.h file. In future libbpf/bpf.c can be inlined into bpf.h, so not even libbpf.a would be needed to work with light skeleton. "bpftool prog load -L file.o" command is introduced for debugging of syscall/loader program generation. Just like the same command without -L it will try to load the programs from file.o into the kernel. It won't even try to pin them. "bpftool prog load -L -d file.o" command will provide additional debug messages on how syscall/loader program was generated. Also the execution of syscall/loader program will use bpf_trace_printk() for each step of loading BTF, creating maps, and loading programs. The user can do "cat /.../trace_pipe" for further debug. An example of fexit_sleep.lskel.h generated from progs/fexit_sleep.c: struct fexit_sleep { struct bpf_loader_ctx ctx; struct { struct bpf_map_desc bss; } maps; struct { struct bpf_prog_desc nanosleep_fentry; struct bpf_prog_desc nanosleep_fexit; } progs; struct { int nanosleep_fentry_fd; int nanosleep_fexit_fd; } links; struct fexit_sleep__bss { int pid; int fentry_cnt; int fexit_cnt; } *bss; }; Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-18-alexei.starovoitov@gmail.com
2021-05-13 17:36:19 -07:00
case 'L':
use_loader = true;
break;
case 'l':
legacy_libbpf = true;
break;
default:
p_err("unrecognized option '%s'", argv[optind - 1]);
if (json_output)
clean_and_exit(-1);
else
usage();
}
}
if (!legacy_libbpf) {
libbpf: deprecate legacy BPF map definitions Enact deprecation of legacy BPF map definition in SEC("maps") ([0]). For the definitions themselves introduce LIBBPF_STRICT_MAP_DEFINITIONS flag for libbpf strict mode. If it is set, error out on any struct bpf_map_def-based map definition. If not set, libbpf will print out a warning for each legacy BPF map to raise awareness that it goes away. For any use of BPF_ANNOTATE_KV_PAIR() macro providing a legacy way to associate BTF key/value type information with legacy BPF map definition, warn through libbpf's pr_warn() error message (but don't fail BPF object open). BPF-side struct bpf_map_def is marked as deprecated. User-space struct bpf_map_def has to be used internally in libbpf, so it is left untouched. It should be enough for bpf_map__def() to be marked deprecated to raise awareness that it goes away. bpftool is an interesting case that utilizes libbpf to open BPF ELF object to generate skeleton. As such, even though bpftool itself uses full on strict libbpf mode (LIBBPF_STRICT_ALL), it has to relax it a bit for BPF map definition handling to minimize unnecessary disruptions. So opt-out of LIBBPF_STRICT_MAP_DEFINITIONS for bpftool. User's code that will later use generated skeleton will make its own decision whether to enforce LIBBPF_STRICT_MAP_DEFINITIONS or not. There are few tests in selftests/bpf that are consciously using legacy BPF map definitions to test libbpf functionality. For those, temporary opt out of LIBBPF_STRICT_MAP_DEFINITIONS mode for the duration of those tests. [0] Closes: https://github.com/libbpf/libbpf/issues/272 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20220120060529.1890907-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-19 22:05:28 -08:00
/* Allow legacy map definitions for skeleton generation.
* It will still be rejected if users use LIBBPF_STRICT_ALL
* mode for loading generated skeleton.
*/
libbpf_set_strict_mode(LIBBPF_STRICT_ALL & ~LIBBPF_STRICT_MAP_DEFINITIONS);
}
argc -= optind;
argv += optind;
if (argc < 0)
usage();
bpftool: Add current libbpf_strict mode to version output + bpftool --legacy --version bpftool v5.15.0 features: libbfd, skeletons + bpftool --version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --legacy --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --help Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool Usage: bpftool [OPTIONS] OBJECT { COMMAND | help } bpftool batch file FILE bpftool version OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter } OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} | {-l|--legacy} | {-V|--version} } + bpftool --legacy version bpftool v5.15.0 features: libbfd, skeletons + bpftool version bpftool v5.15.0 features: libbfd, libbpf_strict, skeletons + bpftool --json --legacy version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":false,"skeletons":true}} + bpftool --json version {"version":"5.15.0","features":{"libbfd":true,"libbpf_strict":true,"skeletons":true}} Suggested-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20211116000448.2918854-1-sdf@google.com
2021-11-15 16:04:48 -08:00
if (version_requested)
return do_version(argc, argv);
ret = cmd_select(cmds, argc, argv, do_help);
if (json_output)
jsonw_destroy(&json_wtr);
btf__free(base_btf);
tools: bpftool: show filenames of pinned objects Added support to show filenames of pinned objects. For example: root@test# ./bpftool prog 3: tracepoint name tracepoint__irq tag f677a7dd722299a3 loaded_at Oct 26/11:39 uid 0 xlated 160B not jited memlock 4096B map_ids 4 pinned /sys/fs/bpf/softirq_prog 4: tracepoint name tracepoint__irq tag ea5dc530d00b92b6 loaded_at Oct 26/11:39 uid 0 xlated 392B not jited memlock 4096B map_ids 4,6 root@test# ./bpftool --json --pretty prog [{ "id": 3, "type": "tracepoint", "name": "tracepoint__irq", "tag": "f677a7dd722299a3", "loaded_at": "Oct 26/11:39", "uid": 0, "bytes_xlated": 160, "jited": false, "bytes_memlock": 4096, "map_ids": [4 ], "pinned": ["/sys/fs/bpf/softirq_prog" ] },{ "id": 4, "type": "tracepoint", "name": "tracepoint__irq", "tag": "ea5dc530d00b92b6", "loaded_at": "Oct 26/11:39", "uid": 0, "bytes_xlated": 392, "jited": false, "bytes_memlock": 4096, "map_ids": [4,6 ], "pinned": [] } ] root@test# ./bpftool map 4: hash name start flags 0x0 key 4B value 16B max_entries 10240 memlock 1003520B pinned /sys/fs/bpf/softirq_map1 5: hash name iptr flags 0x0 key 4B value 8B max_entries 10240 memlock 921600B root@test# ./bpftool --json --pretty map [{ "id": 4, "type": "hash", "name": "start", "flags": 0, "bytes_key": 4, "bytes_value": 16, "max_entries": 10240, "bytes_memlock": 1003520, "pinned": ["/sys/fs/bpf/softirq_map1" ] },{ "id": 5, "type": "hash", "name": "iptr", "flags": 0, "bytes_key": 4, "bytes_value": 8, "max_entries": 10240, "bytes_memlock": 921600, "pinned": [] } ] Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 13:55:48 +09:00
return ret;
}