linux-stable/include/asm-generic/word-at-a-time.h

123 lines
2.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 17:43:17 +00:00
#ifndef _ASM_WORD_AT_A_TIME_H
#define _ASM_WORD_AT_A_TIME_H
#include <linux/bitops.h>
#include <linux/wordpart.h>
#include <asm/byteorder.h>
#ifdef __BIG_ENDIAN
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 17:43:17 +00:00
struct word_at_a_time {
const unsigned long high_bits, low_bits;
};
#define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0xfe) + 1, REPEAT_BYTE(0x7f) }
/* Bit set in the bytes that have a zero */
static inline long prep_zero_mask(unsigned long val, unsigned long rhs, const struct word_at_a_time *c)
{
unsigned long mask = (val & c->low_bits) + c->low_bits;
return ~(mask | rhs);
}
#define create_zero_mask(mask) (mask)
static inline long find_zero(unsigned long mask)
{
long byte = 0;
#ifdef CONFIG_64BIT
if (mask >> 32)
mask >>= 32;
else
byte = 4;
#endif
if (mask >> 16)
mask >>= 16;
else
byte += 2;
return (mask >> 8) ? byte : byte + 1;
}
word-at-a-time: use the same return type for has_zero regardless of endianness Compiling big-endian targets with Clang produces the diagnostic: fs/namei.c:2173:13: warning: use of bitwise '|' with boolean operands [-Wbitwise-instead-of-logical] } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ || fs/namei.c:2173:13: note: cast one or both operands to int to silence this warning It appears that when has_zero was introduced, two definitions were produced with different signatures (in particular different return types). Looking at the usage in hash_name() in fs/namei.c, I suspect that has_zero() is meant to be invoked twice per while loop iteration; using logical-or would not update `bdata` when `a` did not have zeros. So I think it's preferred to always return an unsigned long rather than a bool than update the while loop in hash_name() to use a logical-or rather than bitwise-or. [ Also changed powerpc version to do the same - Linus ] Link: https://github.com/ClangBuiltLinux/linux/issues/1832 Link: https://lore.kernel.org/lkml/20230801-bitwise-v1-1-799bec468dc4@google.com/ Fixes: 36126f8f2ed8 ("word-at-a-time: make the interfaces truly generic") Debugged-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-08-01 22:22:17 +00:00
static inline unsigned long has_zero(unsigned long val, unsigned long *data, const struct word_at_a_time *c)
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 17:43:17 +00:00
{
unsigned long rhs = val | c->low_bits;
*data = rhs;
return (val + c->high_bits) & ~rhs;
}
#ifndef zero_bytemask
#define zero_bytemask(mask) (~1ul << __fls(mask))
#endif
#else
/*
* The optimal byte mask counting is probably going to be something
* that is architecture-specific. If you have a reliably fast
* bit count instruction, that might be better than the multiply
* and shift, for example.
*/
struct word_at_a_time {
const unsigned long one_bits, high_bits;
};
#define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) }
#ifdef CONFIG_64BIT
/*
* Jan Achrenius on G+: microoptimized version of
* the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
* that works for the bytemasks without having to
* mask them first.
*/
static inline long count_masked_bytes(unsigned long mask)
{
return mask*0x0001020304050608ul >> 56;
}
#else /* 32-bit case */
/* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
static inline long count_masked_bytes(long mask)
{
/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
long a = (0x0ff0001+mask) >> 23;
/* Fix the 1 for 00 case */
return a & mask;
}
#endif
/* Return nonzero if it has a zero */
static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c)
{
unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits;
*bits = mask;
return mask;
}
static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c)
{
return bits;
}
static inline unsigned long create_zero_mask(unsigned long bits)
{
bits = (bits - 1) & ~bits;
return bits >> 7;
}
/* The mask we created is directly usable as a bytemask */
#define zero_bytemask(mask) (mask)
static inline unsigned long find_zero(unsigned long mask)
{
return count_masked_bytes(mask);
}
#endif /* __BIG_ENDIAN */
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 17:43:17 +00:00
#endif /* _ASM_WORD_AT_A_TIME_H */