60 lines
2.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
#ifndef __CMA_H__
#define __CMA_H__
#include <linux/init.h>
#include <linux/types.h>
#include <linux/numa.h>
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
/*
* There is always at least global CMA area and a few optional
* areas configured in kernel .config.
*/
#ifdef CONFIG_CMA_AREAS
#define MAX_CMA_AREAS (1 + CONFIG_CMA_AREAS)
#endif
#define CMA_MAX_NAME 64
cma: factor out minimum alignment requirement Patch series "mm: enforce pageblock_order < MAX_ORDER". Having pageblock_order >= MAX_ORDER seems to be able to happen in corner cases and some parts of the kernel are not prepared for it. For example, Aneesh has shown [1] that such kernels can be compiled on ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right during boot. We can get pageblock_order >= MAX_ORDER when the default hugetlb size is bigger than the maximum allocation granularity of the buddy, in which case we are no longer talking about huge pages but instead gigantic pages. Having pageblock_order >= MAX_ORDER can only make alloc_contig_range() of such gigantic pages more likely to succeed. Reliable use of gigantic pages either requires boot time allcoation or CMA, no need to overcomplicate some places in the kernel to optimize for corner cases that are broken in other areas of the kernel. This patch (of 2): Let's enforce pageblock_order < MAX_ORDER and simplify. Especially patch #1 can be regarded a cleanup before: [PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range alignment. [2] [1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com [2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Rob Herring <robh@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: John Garry via iommu <iommu@lists.linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:43:17 -07:00
/*
* the buddy -- especially pageblock merging and alloc_contig_range()
cma: factor out minimum alignment requirement Patch series "mm: enforce pageblock_order < MAX_ORDER". Having pageblock_order >= MAX_ORDER seems to be able to happen in corner cases and some parts of the kernel are not prepared for it. For example, Aneesh has shown [1] that such kernels can be compiled on ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right during boot. We can get pageblock_order >= MAX_ORDER when the default hugetlb size is bigger than the maximum allocation granularity of the buddy, in which case we are no longer talking about huge pages but instead gigantic pages. Having pageblock_order >= MAX_ORDER can only make alloc_contig_range() of such gigantic pages more likely to succeed. Reliable use of gigantic pages either requires boot time allcoation or CMA, no need to overcomplicate some places in the kernel to optimize for corner cases that are broken in other areas of the kernel. This patch (of 2): Let's enforce pageblock_order < MAX_ORDER and simplify. Especially patch #1 can be regarded a cleanup before: [PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range alignment. [2] [1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com [2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Rob Herring <robh@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: John Garry via iommu <iommu@lists.linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:43:17 -07:00
* -- can deal with only some pageblocks of a higher-order page being
* MIGRATE_CMA, we can use pageblock_nr_pages.
*/
#define CMA_MIN_ALIGNMENT_PAGES pageblock_nr_pages
cma: factor out minimum alignment requirement Patch series "mm: enforce pageblock_order < MAX_ORDER". Having pageblock_order >= MAX_ORDER seems to be able to happen in corner cases and some parts of the kernel are not prepared for it. For example, Aneesh has shown [1] that such kernels can be compiled on ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right during boot. We can get pageblock_order >= MAX_ORDER when the default hugetlb size is bigger than the maximum allocation granularity of the buddy, in which case we are no longer talking about huge pages but instead gigantic pages. Having pageblock_order >= MAX_ORDER can only make alloc_contig_range() of such gigantic pages more likely to succeed. Reliable use of gigantic pages either requires boot time allcoation or CMA, no need to overcomplicate some places in the kernel to optimize for corner cases that are broken in other areas of the kernel. This patch (of 2): Let's enforce pageblock_order < MAX_ORDER and simplify. Especially patch #1 can be regarded a cleanup before: [PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range alignment. [2] [1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com [2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Rob Herring <robh@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: John Garry via iommu <iommu@lists.linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:43:17 -07:00
#define CMA_MIN_ALIGNMENT_BYTES (PAGE_SIZE * CMA_MIN_ALIGNMENT_PAGES)
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
struct cma;
extern unsigned long totalcma_pages;
extern phys_addr_t cma_get_base(const struct cma *cma);
extern unsigned long cma_get_size(const struct cma *cma);
extern const char *cma_get_name(const struct cma *cma);
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
extern int __init cma_declare_contiguous_nid(phys_addr_t base,
phys_addr_t size, phys_addr_t limit,
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma,
int nid);
static inline int __init cma_declare_contiguous(phys_addr_t base,
phys_addr_t size, phys_addr_t limit,
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma)
{
return cma_declare_contiguous_nid(base, size, limit, alignment,
order_per_bit, fixed, name, res_cma, NUMA_NO_NODE);
}
extern int cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
unsigned int order_per_bit,
const char *name,
struct cma **res_cma);
extern struct page *cma_alloc(struct cma *cma, unsigned long count, unsigned int align,
bool no_warn);
extern bool cma_pages_valid(struct cma *cma, const struct page *pages, unsigned long count);
extern bool cma_release(struct cma *cma, const struct page *pages, unsigned long count);
extern int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data);
extern void cma_reserve_pages_on_error(struct cma *cma);
CMA: generalize CMA reserved area management functionality Currently, there are two users on CMA functionality, one is the DMA subsystem and the other is the KVM on powerpc. They have their own code to manage CMA reserved area even if they looks really similar. From my guess, it is caused by some needs on bitmap management. KVM side wants to maintain bitmap not for 1 page, but for more size. Eventually it use bitmap where one bit represents 64 pages. When I implement CMA related patches, I should change those two places to apply my change and it seem to be painful to me. I want to change this situation and reduce future code management overhead through this patch. This change could also help developer who want to use CMA in their new feature development, since they can use CMA easily without copying & pasting this reserved area management code. In previous patches, we have prepared some features to generalize CMA reserved area management and now it's time to do it. This patch moves core functions to mm/cma.c and change DMA APIs to use these functions. There is no functional change in DMA APIs. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexander Graf <agraf@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gleb Natapov <gleb@kernel.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 16:05:25 -07:00
#endif