2007 lines
54 KiB
C
Raw Normal View History

/*
* talitos - Freescale Integrated Security Engine (SEC) device driver
*
* Copyright (c) 2008 Freescale Semiconductor, Inc.
*
* Scatterlist Crypto API glue code copied from files with the following:
* Copyright (c) 2006-2007 Herbert Xu <herbert@gondor.apana.org.au>
*
* Crypto algorithm registration code copied from hifn driver:
* 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/rtnetlink.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/sha.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/skcipher.h>
#include <crypto/scatterwalk.h>
#include "talitos.h"
#define TALITOS_TIMEOUT 100000
#define TALITOS_MAX_DATA_LEN 65535
#define DESC_TYPE(desc_hdr) ((be32_to_cpu(desc_hdr) >> 3) & 0x1f)
#define PRIMARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 28) & 0xf)
#define SECONDARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 16) & 0xf)
/* descriptor pointer entry */
struct talitos_ptr {
__be16 len; /* length */
u8 j_extent; /* jump to sg link table and/or extent */
u8 eptr; /* extended address */
__be32 ptr; /* address */
};
/* descriptor */
struct talitos_desc {
__be32 hdr; /* header high bits */
__be32 hdr_lo; /* header low bits */
struct talitos_ptr ptr[7]; /* ptr/len pair array */
};
/**
* talitos_request - descriptor submission request
* @desc: descriptor pointer (kernel virtual)
* @dma_desc: descriptor's physical bus address
* @callback: whom to call when descriptor processing is done
* @context: caller context (optional)
*/
struct talitos_request {
struct talitos_desc *desc;
dma_addr_t dma_desc;
void (*callback) (struct device *dev, struct talitos_desc *desc,
void *context, int error);
void *context;
};
struct talitos_private {
struct device *dev;
struct of_device *ofdev;
void __iomem *reg;
int irq;
/* SEC version geometry (from device tree node) */
unsigned int num_channels;
unsigned int chfifo_len;
unsigned int exec_units;
unsigned int desc_types;
/* SEC Compatibility info */
unsigned long features;
/* next channel to be assigned next incoming descriptor */
atomic_t last_chan;
/* per-channel number of requests pending in channel h/w fifo */
atomic_t *submit_count;
/* per-channel request fifo */
struct talitos_request **fifo;
/*
* length of the request fifo
* fifo_len is chfifo_len rounded up to next power of 2
* so we can use bitwise ops to wrap
*/
unsigned int fifo_len;
/* per-channel index to next free descriptor request */
int *head;
/* per-channel index to next in-progress/done descriptor request */
int *tail;
/* per-channel request submission (head) and release (tail) locks */
spinlock_t *head_lock;
spinlock_t *tail_lock;
/* request callback tasklet */
struct tasklet_struct done_task;
/* list of registered algorithms */
struct list_head alg_list;
/* hwrng device */
struct hwrng rng;
};
/* .features flag */
#define TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT 0x00000001
#define TALITOS_FTR_HW_AUTH_CHECK 0x00000002
/*
* map virtual single (contiguous) pointer to h/w descriptor pointer
*/
static void map_single_talitos_ptr(struct device *dev,
struct talitos_ptr *talitos_ptr,
unsigned short len, void *data,
unsigned char extent,
enum dma_data_direction dir)
{
talitos_ptr->len = cpu_to_be16(len);
talitos_ptr->ptr = cpu_to_be32(dma_map_single(dev, data, len, dir));
talitos_ptr->j_extent = extent;
}
/*
* unmap bus single (contiguous) h/w descriptor pointer
*/
static void unmap_single_talitos_ptr(struct device *dev,
struct talitos_ptr *talitos_ptr,
enum dma_data_direction dir)
{
dma_unmap_single(dev, be32_to_cpu(talitos_ptr->ptr),
be16_to_cpu(talitos_ptr->len), dir);
}
static int reset_channel(struct device *dev, int ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
setbits32(priv->reg + TALITOS_CCCR(ch), TALITOS_CCCR_RESET);
while ((in_be32(priv->reg + TALITOS_CCCR(ch)) & TALITOS_CCCR_RESET)
&& --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset channel %d\n", ch);
return -EIO;
}
/* set done writeback and IRQ */
setbits32(priv->reg + TALITOS_CCCR_LO(ch), TALITOS_CCCR_LO_CDWE |
TALITOS_CCCR_LO_CDIE);
/* and ICCR writeback, if available */
if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
setbits32(priv->reg + TALITOS_CCCR_LO(ch),
TALITOS_CCCR_LO_IWSE);
return 0;
}
static int reset_device(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
setbits32(priv->reg + TALITOS_MCR, TALITOS_MCR_SWR);
while ((in_be32(priv->reg + TALITOS_MCR) & TALITOS_MCR_SWR)
&& --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset device\n");
return -EIO;
}
return 0;
}
/*
* Reset and initialize the device
*/
static int init_device(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int ch, err;
/*
* Master reset
* errata documentation: warning: certain SEC interrupts
* are not fully cleared by writing the MCR:SWR bit,
* set bit twice to completely reset
*/
err = reset_device(dev);
if (err)
return err;
err = reset_device(dev);
if (err)
return err;
/* reset channels */
for (ch = 0; ch < priv->num_channels; ch++) {
err = reset_channel(dev, ch);
if (err)
return err;
}
/* enable channel done and error interrupts */
setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT);
setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT);
/* disable integrity check error interrupts (use writeback instead) */
if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
setbits32(priv->reg + TALITOS_MDEUICR_LO,
TALITOS_MDEUICR_LO_ICE);
return 0;
}
/**
* talitos_submit - submits a descriptor to the device for processing
* @dev: the SEC device to be used
* @desc: the descriptor to be processed by the device
* @callback: whom to call when processing is complete
* @context: a handle for use by caller (optional)
*
* desc must contain valid dma-mapped (bus physical) address pointers.
* callback must check err and feedback in descriptor header
* for device processing status.
*/
static int talitos_submit(struct device *dev, struct talitos_desc *desc,
void (*callback)(struct device *dev,
struct talitos_desc *desc,
void *context, int error),
void *context)
{
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_request *request;
unsigned long flags, ch;
int head;
/* select done notification */
desc->hdr |= DESC_HDR_DONE_NOTIFY;
/* emulate SEC's round-robin channel fifo polling scheme */
ch = atomic_inc_return(&priv->last_chan) & (priv->num_channels - 1);
spin_lock_irqsave(&priv->head_lock[ch], flags);
if (!atomic_inc_not_zero(&priv->submit_count[ch])) {
/* h/w fifo is full */
spin_unlock_irqrestore(&priv->head_lock[ch], flags);
return -EAGAIN;
}
head = priv->head[ch];
request = &priv->fifo[ch][head];
/* map descriptor and save caller data */
request->dma_desc = dma_map_single(dev, desc, sizeof(*desc),
DMA_BIDIRECTIONAL);
request->callback = callback;
request->context = context;
/* increment fifo head */
priv->head[ch] = (priv->head[ch] + 1) & (priv->fifo_len - 1);
smp_wmb();
request->desc = desc;
/* GO! */
wmb();
out_be32(priv->reg + TALITOS_FF_LO(ch), request->dma_desc);
spin_unlock_irqrestore(&priv->head_lock[ch], flags);
return -EINPROGRESS;
}
/*
* process what was done, notify callback of error if not
*/
static void flush_channel(struct device *dev, int ch, int error, int reset_ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_request *request, saved_req;
unsigned long flags;
int tail, status;
spin_lock_irqsave(&priv->tail_lock[ch], flags);
tail = priv->tail[ch];
while (priv->fifo[ch][tail].desc) {
request = &priv->fifo[ch][tail];
/* descriptors with their done bits set don't get the error */
rmb();
if ((request->desc->hdr & DESC_HDR_DONE) == DESC_HDR_DONE)
status = 0;
else
if (!error)
break;
else
status = error;
dma_unmap_single(dev, request->dma_desc,
sizeof(struct talitos_desc),
DMA_BIDIRECTIONAL);
/* copy entries so we can call callback outside lock */
saved_req.desc = request->desc;
saved_req.callback = request->callback;
saved_req.context = request->context;
/* release request entry in fifo */
smp_wmb();
request->desc = NULL;
/* increment fifo tail */
priv->tail[ch] = (tail + 1) & (priv->fifo_len - 1);
spin_unlock_irqrestore(&priv->tail_lock[ch], flags);
atomic_dec(&priv->submit_count[ch]);
saved_req.callback(dev, saved_req.desc, saved_req.context,
status);
/* channel may resume processing in single desc error case */
if (error && !reset_ch && status == error)
return;
spin_lock_irqsave(&priv->tail_lock[ch], flags);
tail = priv->tail[ch];
}
spin_unlock_irqrestore(&priv->tail_lock[ch], flags);
}
/*
* process completed requests for channels that have done status
*/
static void talitos_done(unsigned long data)
{
struct device *dev = (struct device *)data;
struct talitos_private *priv = dev_get_drvdata(dev);
int ch;
for (ch = 0; ch < priv->num_channels; ch++)
flush_channel(dev, ch, 0, 0);
/* At this point, all completed channels have been processed.
* Unmask done interrupts for channels completed later on.
*/
setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT);
setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT);
}
/*
* locate current (offending) descriptor
*/
static struct talitos_desc *current_desc(struct device *dev, int ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int tail = priv->tail[ch];
dma_addr_t cur_desc;
cur_desc = in_be32(priv->reg + TALITOS_CDPR_LO(ch));
while (priv->fifo[ch][tail].dma_desc != cur_desc) {
tail = (tail + 1) & (priv->fifo_len - 1);
if (tail == priv->tail[ch]) {
dev_err(dev, "couldn't locate current descriptor\n");
return NULL;
}
}
return priv->fifo[ch][tail].desc;
}
/*
* user diagnostics; report root cause of error based on execution unit status
*/
static void report_eu_error(struct device *dev, int ch,
struct talitos_desc *desc)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int i;
switch (desc->hdr & DESC_HDR_SEL0_MASK) {
case DESC_HDR_SEL0_AFEU:
dev_err(dev, "AFEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_AFEUISR),
in_be32(priv->reg + TALITOS_AFEUISR_LO));
break;
case DESC_HDR_SEL0_DEU:
dev_err(dev, "DEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_DEUISR),
in_be32(priv->reg + TALITOS_DEUISR_LO));
break;
case DESC_HDR_SEL0_MDEUA:
case DESC_HDR_SEL0_MDEUB:
dev_err(dev, "MDEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_MDEUISR),
in_be32(priv->reg + TALITOS_MDEUISR_LO));
break;
case DESC_HDR_SEL0_RNG:
dev_err(dev, "RNGUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_RNGUISR),
in_be32(priv->reg + TALITOS_RNGUISR_LO));
break;
case DESC_HDR_SEL0_PKEU:
dev_err(dev, "PKEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_PKEUISR),
in_be32(priv->reg + TALITOS_PKEUISR_LO));
break;
case DESC_HDR_SEL0_AESU:
dev_err(dev, "AESUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_AESUISR),
in_be32(priv->reg + TALITOS_AESUISR_LO));
break;
case DESC_HDR_SEL0_CRCU:
dev_err(dev, "CRCUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_CRCUISR),
in_be32(priv->reg + TALITOS_CRCUISR_LO));
break;
case DESC_HDR_SEL0_KEU:
dev_err(dev, "KEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_KEUISR),
in_be32(priv->reg + TALITOS_KEUISR_LO));
break;
}
switch (desc->hdr & DESC_HDR_SEL1_MASK) {
case DESC_HDR_SEL1_MDEUA:
case DESC_HDR_SEL1_MDEUB:
dev_err(dev, "MDEUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_MDEUISR),
in_be32(priv->reg + TALITOS_MDEUISR_LO));
break;
case DESC_HDR_SEL1_CRCU:
dev_err(dev, "CRCUISR 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_CRCUISR),
in_be32(priv->reg + TALITOS_CRCUISR_LO));
break;
}
for (i = 0; i < 8; i++)
dev_err(dev, "DESCBUF 0x%08x_%08x\n",
in_be32(priv->reg + TALITOS_DESCBUF(ch) + 8*i),
in_be32(priv->reg + TALITOS_DESCBUF_LO(ch) + 8*i));
}
/*
* recover from error interrupts
*/
static void talitos_error(unsigned long data, u32 isr, u32 isr_lo)
{
struct device *dev = (struct device *)data;
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
int ch, error, reset_dev = 0, reset_ch = 0;
u32 v, v_lo;
for (ch = 0; ch < priv->num_channels; ch++) {
/* skip channels without errors */
if (!(isr & (1 << (ch * 2 + 1))))
continue;
error = -EINVAL;
v = in_be32(priv->reg + TALITOS_CCPSR(ch));
v_lo = in_be32(priv->reg + TALITOS_CCPSR_LO(ch));
if (v_lo & TALITOS_CCPSR_LO_DOF) {
dev_err(dev, "double fetch fifo overflow error\n");
error = -EAGAIN;
reset_ch = 1;
}
if (v_lo & TALITOS_CCPSR_LO_SOF) {
/* h/w dropped descriptor */
dev_err(dev, "single fetch fifo overflow error\n");
error = -EAGAIN;
}
if (v_lo & TALITOS_CCPSR_LO_MDTE)
dev_err(dev, "master data transfer error\n");
if (v_lo & TALITOS_CCPSR_LO_SGDLZ)
dev_err(dev, "s/g data length zero error\n");
if (v_lo & TALITOS_CCPSR_LO_FPZ)
dev_err(dev, "fetch pointer zero error\n");
if (v_lo & TALITOS_CCPSR_LO_IDH)
dev_err(dev, "illegal descriptor header error\n");
if (v_lo & TALITOS_CCPSR_LO_IEU)
dev_err(dev, "invalid execution unit error\n");
if (v_lo & TALITOS_CCPSR_LO_EU)
report_eu_error(dev, ch, current_desc(dev, ch));
if (v_lo & TALITOS_CCPSR_LO_GB)
dev_err(dev, "gather boundary error\n");
if (v_lo & TALITOS_CCPSR_LO_GRL)
dev_err(dev, "gather return/length error\n");
if (v_lo & TALITOS_CCPSR_LO_SB)
dev_err(dev, "scatter boundary error\n");
if (v_lo & TALITOS_CCPSR_LO_SRL)
dev_err(dev, "scatter return/length error\n");
flush_channel(dev, ch, error, reset_ch);
if (reset_ch) {
reset_channel(dev, ch);
} else {
setbits32(priv->reg + TALITOS_CCCR(ch),
TALITOS_CCCR_CONT);
setbits32(priv->reg + TALITOS_CCCR_LO(ch), 0);
while ((in_be32(priv->reg + TALITOS_CCCR(ch)) &
TALITOS_CCCR_CONT) && --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to restart channel %d\n",
ch);
reset_dev = 1;
}
}
}
if (reset_dev || isr & ~TALITOS_ISR_CHERR || isr_lo) {
dev_err(dev, "done overflow, internal time out, or rngu error: "
"ISR 0x%08x_%08x\n", isr, isr_lo);
/* purge request queues */
for (ch = 0; ch < priv->num_channels; ch++)
flush_channel(dev, ch, -EIO, 1);
/* reset and reinitialize the device */
init_device(dev);
}
}
static irqreturn_t talitos_interrupt(int irq, void *data)
{
struct device *dev = data;
struct talitos_private *priv = dev_get_drvdata(dev);
u32 isr, isr_lo;
isr = in_be32(priv->reg + TALITOS_ISR);
isr_lo = in_be32(priv->reg + TALITOS_ISR_LO);
/* Acknowledge interrupt */
out_be32(priv->reg + TALITOS_ICR, isr);
out_be32(priv->reg + TALITOS_ICR_LO, isr_lo);
if (unlikely((isr & ~TALITOS_ISR_CHDONE) || isr_lo))
talitos_error((unsigned long)data, isr, isr_lo);
else
if (likely(isr & TALITOS_ISR_CHDONE)) {
/* mask further done interrupts. */
clrbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_DONE);
/* done_task will unmask done interrupts at exit */
tasklet_schedule(&priv->done_task);
}
return (isr || isr_lo) ? IRQ_HANDLED : IRQ_NONE;
}
/*
* hwrng
*/
static int talitos_rng_data_present(struct hwrng *rng, int wait)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
u32 ofl;
int i;
for (i = 0; i < 20; i++) {
ofl = in_be32(priv->reg + TALITOS_RNGUSR_LO) &
TALITOS_RNGUSR_LO_OFL;
if (ofl || !wait)
break;
udelay(10);
}
return !!ofl;
}
static int talitos_rng_data_read(struct hwrng *rng, u32 *data)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
/* rng fifo requires 64-bit accesses */
*data = in_be32(priv->reg + TALITOS_RNGU_FIFO);
*data = in_be32(priv->reg + TALITOS_RNGU_FIFO_LO);
return sizeof(u32);
}
static int talitos_rng_init(struct hwrng *rng)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
setbits32(priv->reg + TALITOS_RNGURCR_LO, TALITOS_RNGURCR_LO_SR);
while (!(in_be32(priv->reg + TALITOS_RNGUSR_LO) & TALITOS_RNGUSR_LO_RD)
&& --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset rng hw\n");
return -ENODEV;
}
/* start generating */
setbits32(priv->reg + TALITOS_RNGUDSR_LO, 0);
return 0;
}
static int talitos_register_rng(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
priv->rng.name = dev_driver_string(dev),
priv->rng.init = talitos_rng_init,
priv->rng.data_present = talitos_rng_data_present,
priv->rng.data_read = talitos_rng_data_read,
priv->rng.priv = (unsigned long)dev;
return hwrng_register(&priv->rng);
}
static void talitos_unregister_rng(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
hwrng_unregister(&priv->rng);
}
/*
* crypto alg
*/
#define TALITOS_CRA_PRIORITY 3000
#define TALITOS_MAX_KEY_SIZE 64
#define TALITOS_MAX_IV_LENGTH 16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define MD5_DIGEST_SIZE 16
struct talitos_ctx {
struct device *dev;
__be32 desc_hdr_template;
u8 key[TALITOS_MAX_KEY_SIZE];
u8 iv[TALITOS_MAX_IV_LENGTH];
unsigned int keylen;
unsigned int enckeylen;
unsigned int authkeylen;
unsigned int authsize;
};
static int aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
return 0;
}
static int aead_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct rtattr *rta = (void *)key;
struct crypto_authenc_key_param *param;
unsigned int authkeylen;
unsigned int enckeylen;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < enckeylen)
goto badkey;
authkeylen = keylen - enckeylen;
if (keylen > TALITOS_MAX_KEY_SIZE)
goto badkey;
memcpy(&ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->enckeylen = enckeylen;
ctx->authkeylen = authkeylen;
return 0;
badkey:
crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*
* talitos_edesc - s/w-extended descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @dma_len: length of dma mapped link_tbl space
* @dma_link_tbl: bus physical address of link_tbl
* @desc: h/w descriptor
* @link_tbl: input and output h/w link tables (if {src,dst}_nents > 1)
*
* if decrypting (with authcheck), or either one of src_nents or dst_nents
* is greater than 1, an integrity check value is concatenated to the end
* of link_tbl data
*/
struct talitos_edesc {
int src_nents;
int dst_nents;
int src_is_chained;
int dst_is_chained;
int dma_len;
dma_addr_t dma_link_tbl;
struct talitos_desc desc;
struct talitos_ptr link_tbl[0];
};
static int talitos_map_sg(struct device *dev, struct scatterlist *sg,
unsigned int nents, enum dma_data_direction dir,
int chained)
{
if (unlikely(chained))
while (sg) {
dma_map_sg(dev, sg, 1, dir);
sg = scatterwalk_sg_next(sg);
}
else
dma_map_sg(dev, sg, nents, dir);
return nents;
}
static void talitos_unmap_sg_chain(struct device *dev, struct scatterlist *sg,
enum dma_data_direction dir)
{
while (sg) {
dma_unmap_sg(dev, sg, 1, dir);
sg = scatterwalk_sg_next(sg);
}
}
static void talitos_sg_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct scatterlist *src,
struct scatterlist *dst)
{
unsigned int src_nents = edesc->src_nents ? : 1;
unsigned int dst_nents = edesc->dst_nents ? : 1;
if (src != dst) {
if (edesc->src_is_chained)
talitos_unmap_sg_chain(dev, src, DMA_TO_DEVICE);
else
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
if (edesc->dst_is_chained)
talitos_unmap_sg_chain(dev, dst, DMA_FROM_DEVICE);
else
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else
if (edesc->src_is_chained)
talitos_unmap_sg_chain(dev, src, DMA_BIDIRECTIONAL);
else
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
static void ipsec_esp_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct aead_request *areq)
{
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6], DMA_FROM_DEVICE);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[3], DMA_TO_DEVICE);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[0], DMA_TO_DEVICE);
dma_unmap_sg(dev, areq->assoc, 1, DMA_TO_DEVICE);
talitos_sg_unmap(dev, edesc, areq->src, areq->dst);
if (edesc->dma_len)
dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
DMA_BIDIRECTIONAL);
}
/*
* ipsec_esp descriptor callbacks
*/
static void ipsec_esp_encrypt_done(struct device *dev,
struct talitos_desc *desc, void *context,
int err)
{
struct aead_request *areq = context;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_edesc *edesc;
struct scatterlist *sg;
void *icvdata;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, areq);
/* copy the generated ICV to dst */
if (edesc->dma_len) {
icvdata = &edesc->link_tbl[edesc->src_nents +
edesc->dst_nents + 2];
sg = sg_last(areq->dst, edesc->dst_nents);
memcpy((char *)sg_virt(sg) + sg->length - ctx->authsize,
icvdata, ctx->authsize);
}
kfree(edesc);
aead_request_complete(areq, err);
}
static void ipsec_esp_decrypt_swauth_done(struct device *dev,
struct talitos_desc *desc,
void *context, int err)
{
struct aead_request *req = context;
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_edesc *edesc;
struct scatterlist *sg;
void *icvdata;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, req);
if (!err) {
/* auth check */
if (edesc->dma_len)
icvdata = &edesc->link_tbl[edesc->src_nents +
edesc->dst_nents + 2];
else
icvdata = &edesc->link_tbl[0];
sg = sg_last(req->dst, edesc->dst_nents ? : 1);
err = memcmp(icvdata, (char *)sg_virt(sg) + sg->length -
ctx->authsize, ctx->authsize) ? -EBADMSG : 0;
}
kfree(edesc);
aead_request_complete(req, err);
}
static void ipsec_esp_decrypt_hwauth_done(struct device *dev,
struct talitos_desc *desc,
void *context, int err)
{
struct aead_request *req = context;
struct talitos_edesc *edesc;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, req);
/* check ICV auth status */
if (!err && ((desc->hdr_lo & DESC_HDR_LO_ICCR1_MASK) !=
DESC_HDR_LO_ICCR1_PASS))
err = -EBADMSG;
kfree(edesc);
aead_request_complete(req, err);
}
/*
* convert scatterlist to SEC h/w link table format
* stop at cryptlen bytes
*/
static int sg_to_link_tbl(struct scatterlist *sg, int sg_count,
int cryptlen, struct talitos_ptr *link_tbl_ptr)
{
int n_sg = sg_count;
while (n_sg--) {
link_tbl_ptr->ptr = cpu_to_be32(sg_dma_address(sg));
link_tbl_ptr->len = cpu_to_be16(sg_dma_len(sg));
link_tbl_ptr->j_extent = 0;
link_tbl_ptr++;
cryptlen -= sg_dma_len(sg);
sg = scatterwalk_sg_next(sg);
}
/* adjust (decrease) last one (or two) entry's len to cryptlen */
link_tbl_ptr--;
while (be16_to_cpu(link_tbl_ptr->len) <= (-cryptlen)) {
/* Empty this entry, and move to previous one */
cryptlen += be16_to_cpu(link_tbl_ptr->len);
link_tbl_ptr->len = 0;
sg_count--;
link_tbl_ptr--;
}
link_tbl_ptr->len = cpu_to_be16(be16_to_cpu(link_tbl_ptr->len)
+ cryptlen);
/* tag end of link table */
link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
return sg_count;
}
/*
* fill in and submit ipsec_esp descriptor
*/
static int ipsec_esp(struct talitos_edesc *edesc, struct aead_request *areq,
u8 *giv, u64 seq,
void (*callback) (struct device *dev,
struct talitos_desc *desc,
void *context, int error))
{
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct talitos_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
struct talitos_desc *desc = &edesc->desc;
unsigned int cryptlen = areq->cryptlen;
unsigned int authsize = ctx->authsize;
unsigned int ivsize;
int sg_count, ret;
int sg_link_tbl_len;
/* hmac key */
map_single_talitos_ptr(dev, &desc->ptr[0], ctx->authkeylen, &ctx->key,
0, DMA_TO_DEVICE);
/* hmac data */
map_single_talitos_ptr(dev, &desc->ptr[1], sg_virt(areq->src) -
sg_virt(areq->assoc), sg_virt(areq->assoc), 0,
DMA_TO_DEVICE);
/* cipher iv */
ivsize = crypto_aead_ivsize(aead);
map_single_talitos_ptr(dev, &desc->ptr[2], ivsize, giv ?: areq->iv, 0,
DMA_TO_DEVICE);
/* cipher key */
map_single_talitos_ptr(dev, &desc->ptr[3], ctx->enckeylen,
(char *)&ctx->key + ctx->authkeylen, 0,
DMA_TO_DEVICE);
/*
* cipher in
* map and adjust cipher len to aead request cryptlen.
* extent is bytes of HMAC postpended to ciphertext,
* typically 12 for ipsec
*/
desc->ptr[4].len = cpu_to_be16(cryptlen);
desc->ptr[4].j_extent = authsize;
sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE,
edesc->src_is_chained);
if (sg_count == 1) {
desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->src));
} else {
sg_link_tbl_len = cryptlen;
if (edesc->desc.hdr & DESC_HDR_MODE1_MDEU_CICV)
sg_link_tbl_len = cryptlen + authsize;
sg_count = sg_to_link_tbl(areq->src, sg_count, sg_link_tbl_len,
&edesc->link_tbl[0]);
if (sg_count > 1) {
desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP;
desc->ptr[4].ptr = cpu_to_be32(edesc->dma_link_tbl);
dma_sync_single_for_device(dev, edesc->dma_link_tbl,
edesc->dma_len,
DMA_BIDIRECTIONAL);
} else {
/* Only one segment now, so no link tbl needed */
desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->
src));
}
}
/* cipher out */
desc->ptr[5].len = cpu_to_be16(cryptlen);
desc->ptr[5].j_extent = authsize;
if (areq->src != areq->dst)
sg_count = talitos_map_sg(dev, areq->dst,
edesc->dst_nents ? : 1,
DMA_FROM_DEVICE,
edesc->dst_is_chained);
if (sg_count == 1) {
desc->ptr[5].ptr = cpu_to_be32(sg_dma_address(areq->dst));
} else {
struct talitos_ptr *link_tbl_ptr =
&edesc->link_tbl[edesc->src_nents + 1];
desc->ptr[5].ptr = cpu_to_be32((struct talitos_ptr *)
edesc->dma_link_tbl +
edesc->src_nents + 1);
sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen,
link_tbl_ptr);
/* Add an entry to the link table for ICV data */
link_tbl_ptr += sg_count - 1;
link_tbl_ptr->j_extent = 0;
sg_count++;
link_tbl_ptr++;
link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
link_tbl_ptr->len = cpu_to_be16(authsize);
/* icv data follows link tables */
link_tbl_ptr->ptr = cpu_to_be32((struct talitos_ptr *)
edesc->dma_link_tbl +
edesc->src_nents +
edesc->dst_nents + 2);
desc->ptr[5].j_extent |= DESC_PTR_LNKTBL_JUMP;
dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
edesc->dma_len, DMA_BIDIRECTIONAL);
}
/* iv out */
map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv, 0,
DMA_FROM_DEVICE);
ret = talitos_submit(dev, desc, callback, areq);
if (ret != -EINPROGRESS) {
ipsec_esp_unmap(dev, edesc, areq);
kfree(edesc);
}
return ret;
}
/*
* derive number of elements in scatterlist
*/
static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
{
struct scatterlist *sg = sg_list;
int sg_nents = 0;
*chained = 0;
while (nbytes > 0) {
sg_nents++;
nbytes -= sg->length;
if (!sg_is_last(sg) && (sg + 1)->length == 0)
*chained = 1;
sg = scatterwalk_sg_next(sg);
}
return sg_nents;
}
/*
* allocate and map the extended descriptor
*/
static struct talitos_edesc *talitos_edesc_alloc(struct device *dev,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int cryptlen,
unsigned int authsize,
int icv_stashing,
u32 cryptoflags)
{
struct talitos_edesc *edesc;
int src_nents, dst_nents, alloc_len, dma_len;
int src_chained, dst_chained = 0;
gfp_t flags = cryptoflags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
if (cryptlen + authsize > TALITOS_MAX_DATA_LEN) {
dev_err(dev, "length exceeds h/w max limit\n");
return ERR_PTR(-EINVAL);
}
src_nents = sg_count(src, cryptlen + authsize, &src_chained);
src_nents = (src_nents == 1) ? 0 : src_nents;
if (dst == src) {
dst_nents = src_nents;
} else {
dst_nents = sg_count(dst, cryptlen + authsize, &dst_chained);
dst_nents = (dst_nents == 1) ? 0 : dst_nents;
}
/*
* allocate space for base edesc plus the link tables,
* allowing for two separate entries for ICV and generated ICV (+ 2),
* and the ICV data itself
*/
alloc_len = sizeof(struct talitos_edesc);
if (src_nents || dst_nents) {
dma_len = (src_nents + dst_nents + 2) *
sizeof(struct talitos_ptr) + authsize;
alloc_len += dma_len;
} else {
dma_len = 0;
alloc_len += icv_stashing ? authsize : 0;
}
edesc = kmalloc(alloc_len, GFP_DMA | flags);
if (!edesc) {
dev_err(dev, "could not allocate edescriptor\n");
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->src_is_chained = src_chained;
edesc->dst_is_chained = dst_chained;
edesc->dma_len = dma_len;
edesc->dma_link_tbl = dma_map_single(dev, &edesc->link_tbl[0],
edesc->dma_len, DMA_BIDIRECTIONAL);
return edesc;
}
static struct talitos_edesc *aead_edesc_alloc(struct aead_request *areq,
int icv_stashing)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst,
areq->cryptlen, ctx->authsize, icv_stashing,
areq->base.flags);
}
static int aead_encrypt(struct aead_request *req)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_edesc *edesc;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, 0);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* set encrypt */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_encrypt_done);
}
static int aead_decrypt(struct aead_request *req)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
unsigned int authsize = ctx->authsize;
struct talitos_private *priv = dev_get_drvdata(ctx->dev);
struct talitos_edesc *edesc;
struct scatterlist *sg;
void *icvdata;
req->cryptlen -= authsize;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, 1);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
if ((priv->features & TALITOS_FTR_HW_AUTH_CHECK) &&
((!edesc->src_nents && !edesc->dst_nents) ||
priv->features & TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT)) {
/* decrypt and check the ICV */
edesc->desc.hdr = ctx->desc_hdr_template |
DESC_HDR_DIR_INBOUND |
DESC_HDR_MODE1_MDEU_CICV;
/* reset integrity check result bits */
edesc->desc.hdr_lo = 0;
return ipsec_esp(edesc, req, NULL, 0,
ipsec_esp_decrypt_hwauth_done);
}
/* Have to check the ICV with software */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
/* stash incoming ICV for later cmp with ICV generated by the h/w */
if (edesc->dma_len)
icvdata = &edesc->link_tbl[edesc->src_nents +
edesc->dst_nents + 2];
else
icvdata = &edesc->link_tbl[0];
sg = sg_last(req->src, edesc->src_nents ? : 1);
memcpy(icvdata, (char *)sg_virt(sg) + sg->length - ctx->authsize,
ctx->authsize);
return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_decrypt_swauth_done);
}
static int aead_givencrypt(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_edesc *edesc;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(areq, 0);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* set encrypt */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
/* avoid consecutive packets going out with same IV */
*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
return ipsec_esp(edesc, areq, req->giv, req->seq,
ipsec_esp_encrypt_done);
}
static int ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct ablkcipher_alg *alg = crypto_ablkcipher_alg(cipher);
if (keylen > TALITOS_MAX_KEY_SIZE)
goto badkey;
if (keylen < alg->min_keysize || keylen > alg->max_keysize)
goto badkey;
memcpy(&ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
badkey:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static void common_nonsnoop_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct ablkcipher_request *areq)
{
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE);
talitos_sg_unmap(dev, edesc, areq->src, areq->dst);
if (edesc->dma_len)
dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
DMA_BIDIRECTIONAL);
}
static void ablkcipher_done(struct device *dev,
struct talitos_desc *desc, void *context,
int err)
{
struct ablkcipher_request *areq = context;
struct talitos_edesc *edesc;
edesc = container_of(desc, struct talitos_edesc, desc);
common_nonsnoop_unmap(dev, edesc, areq);
kfree(edesc);
areq->base.complete(&areq->base, err);
}
static int common_nonsnoop(struct talitos_edesc *edesc,
struct ablkcipher_request *areq,
u8 *giv,
void (*callback) (struct device *dev,
struct talitos_desc *desc,
void *context, int error))
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct device *dev = ctx->dev;
struct talitos_desc *desc = &edesc->desc;
unsigned int cryptlen = areq->nbytes;
unsigned int ivsize;
int sg_count, ret;
/* first DWORD empty */
desc->ptr[0].len = 0;
desc->ptr[0].ptr = 0;
desc->ptr[0].j_extent = 0;
/* cipher iv */
ivsize = crypto_ablkcipher_ivsize(cipher);
map_single_talitos_ptr(dev, &desc->ptr[1], ivsize, giv ?: areq->info, 0,
DMA_TO_DEVICE);
/* cipher key */
map_single_talitos_ptr(dev, &desc->ptr[2], ctx->keylen,
(char *)&ctx->key, 0, DMA_TO_DEVICE);
/*
* cipher in
*/
desc->ptr[3].len = cpu_to_be16(cryptlen);
desc->ptr[3].j_extent = 0;
sg_count = talitos_map_sg(dev, areq->src, edesc->src_nents ? : 1,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE,
edesc->src_is_chained);
if (sg_count == 1) {
desc->ptr[3].ptr = cpu_to_be32(sg_dma_address(areq->src));
} else {
sg_count = sg_to_link_tbl(areq->src, sg_count, cryptlen,
&edesc->link_tbl[0]);
if (sg_count > 1) {
desc->ptr[3].j_extent |= DESC_PTR_LNKTBL_JUMP;
desc->ptr[3].ptr = cpu_to_be32(edesc->dma_link_tbl);
dma_sync_single_for_device(dev, edesc->dma_link_tbl,
edesc->dma_len,
DMA_BIDIRECTIONAL);
} else {
/* Only one segment now, so no link tbl needed */
desc->ptr[3].ptr = cpu_to_be32(sg_dma_address(areq->
src));
}
}
/* cipher out */
desc->ptr[4].len = cpu_to_be16(cryptlen);
desc->ptr[4].j_extent = 0;
if (areq->src != areq->dst)
sg_count = talitos_map_sg(dev, areq->dst,
edesc->dst_nents ? : 1,
DMA_FROM_DEVICE,
edesc->dst_is_chained);
if (sg_count == 1) {
desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->dst));
} else {
struct talitos_ptr *link_tbl_ptr =
&edesc->link_tbl[edesc->src_nents + 1];
desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP;
desc->ptr[4].ptr = cpu_to_be32((struct talitos_ptr *)
edesc->dma_link_tbl +
edesc->src_nents + 1);
sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen,
link_tbl_ptr);
dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
edesc->dma_len, DMA_BIDIRECTIONAL);
}
/* iv out */
map_single_talitos_ptr(dev, &desc->ptr[5], ivsize, ctx->iv, 0,
DMA_FROM_DEVICE);
/* last DWORD empty */
desc->ptr[6].len = 0;
desc->ptr[6].ptr = 0;
desc->ptr[6].j_extent = 0;
ret = talitos_submit(dev, desc, callback, areq);
if (ret != -EINPROGRESS) {
common_nonsnoop_unmap(dev, edesc, areq);
kfree(edesc);
}
return ret;
}
static struct talitos_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request *
areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, areq->nbytes,
0, 0, areq->base.flags);
}
static int ablkcipher_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct talitos_edesc *edesc;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(areq);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* set encrypt */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
return common_nonsnoop(edesc, areq, NULL, ablkcipher_done);
}
static int ablkcipher_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct talitos_edesc *edesc;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(areq);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
return common_nonsnoop(edesc, areq, NULL, ablkcipher_done);
}
struct talitos_alg_template {
struct crypto_alg alg;
__be32 desc_hdr_template;
};
static struct talitos_alg_template driver_algs[] = {
/* AEAD algorithms. These use a single-pass ipsec_esp descriptor */
{
.alg = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{
.alg = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{
.alg = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{
.alg = {
.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{
.alg = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
{
.alg = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_type = &crypto_aead_type,
.cra_aead = {
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.givencrypt = aead_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
/* ABLKCIPHER algorithms. */
{
.alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_type = &crypto_ablkcipher_type,
.cra_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC,
},
{
.alg = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_type = &crypto_ablkcipher_type,
.cra_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES,
}
};
struct talitos_crypto_alg {
struct list_head entry;
struct device *dev;
__be32 desc_hdr_template;
struct crypto_alg crypto_alg;
};
static int talitos_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct talitos_crypto_alg *talitos_alg;
struct talitos_ctx *ctx = crypto_tfm_ctx(tfm);
talitos_alg = container_of(alg, struct talitos_crypto_alg, crypto_alg);
/* update context with ptr to dev */
ctx->dev = talitos_alg->dev;
/* copy descriptor header template value */
ctx->desc_hdr_template = talitos_alg->desc_hdr_template;
/* random first IV */
get_random_bytes(ctx->iv, TALITOS_MAX_IV_LENGTH);
return 0;
}
/*
* given the alg's descriptor header template, determine whether descriptor
* type and primary/secondary execution units required match the hw
* capabilities description provided in the device tree node.
*/
static int hw_supports(struct device *dev, __be32 desc_hdr_template)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int ret;
ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) &&
(1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units);
if (SECONDARY_EU(desc_hdr_template))
ret = ret && (1 << SECONDARY_EU(desc_hdr_template)
& priv->exec_units);
return ret;
}
static int talitos_remove(struct of_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_crypto_alg *t_alg, *n;
int i;
list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
if (hw_supports(dev, DESC_HDR_SEL0_RNG))
talitos_unregister_rng(dev);
kfree(priv->submit_count);
kfree(priv->tail);
kfree(priv->head);
if (priv->fifo)
for (i = 0; i < priv->num_channels; i++)
kfree(priv->fifo[i]);
kfree(priv->fifo);
kfree(priv->head_lock);
kfree(priv->tail_lock);
if (priv->irq != NO_IRQ) {
free_irq(priv->irq, dev);
irq_dispose_mapping(priv->irq);
}
tasklet_kill(&priv->done_task);
iounmap(priv->reg);
dev_set_drvdata(dev, NULL);
kfree(priv);
return 0;
}
static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev,
struct talitos_alg_template
*template)
{
struct talitos_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(struct talitos_crypto_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &t_alg->crypto_alg;
*alg = template->alg;
alg->cra_module = THIS_MODULE;
alg->cra_init = talitos_cra_init;
alg->cra_priority = TALITOS_CRA_PRIORITY;
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct talitos_ctx);
t_alg->desc_hdr_template = template->desc_hdr_template;
t_alg->dev = dev;
return t_alg;
}
static int talitos_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->node;
struct talitos_private *priv;
const unsigned int *prop;
int i, err;
priv = kzalloc(sizeof(struct talitos_private), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->ofdev = ofdev;
tasklet_init(&priv->done_task, talitos_done, (unsigned long)dev);
INIT_LIST_HEAD(&priv->alg_list);
priv->irq = irq_of_parse_and_map(np, 0);
if (priv->irq == NO_IRQ) {
dev_err(dev, "failed to map irq\n");
err = -EINVAL;
goto err_out;
}
/* get the irq line */
err = request_irq(priv->irq, talitos_interrupt, 0,
dev_driver_string(dev), dev);
if (err) {
dev_err(dev, "failed to request irq %d\n", priv->irq);
irq_dispose_mapping(priv->irq);
priv->irq = NO_IRQ;
goto err_out;
}
priv->reg = of_iomap(np, 0);
if (!priv->reg) {
dev_err(dev, "failed to of_iomap\n");
err = -ENOMEM;
goto err_out;
}
/* get SEC version capabilities from device tree */
prop = of_get_property(np, "fsl,num-channels", NULL);
if (prop)
priv->num_channels = *prop;
prop = of_get_property(np, "fsl,channel-fifo-len", NULL);
if (prop)
priv->chfifo_len = *prop;
prop = of_get_property(np, "fsl,exec-units-mask", NULL);
if (prop)
priv->exec_units = *prop;
prop = of_get_property(np, "fsl,descriptor-types-mask", NULL);
if (prop)
priv->desc_types = *prop;
if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len ||
!priv->exec_units || !priv->desc_types) {
dev_err(dev, "invalid property data in device tree node\n");
err = -EINVAL;
goto err_out;
}
if (of_device_is_compatible(np, "fsl,sec3.0"))
priv->features |= TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT;
if (of_device_is_compatible(np, "fsl,sec2.1"))
priv->features |= TALITOS_FTR_HW_AUTH_CHECK;
priv->head_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels,
GFP_KERNEL);
priv->tail_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels,
GFP_KERNEL);
if (!priv->head_lock || !priv->tail_lock) {
dev_err(dev, "failed to allocate fifo locks\n");
err = -ENOMEM;
goto err_out;
}
for (i = 0; i < priv->num_channels; i++) {
spin_lock_init(&priv->head_lock[i]);
spin_lock_init(&priv->tail_lock[i]);
}
priv->fifo = kmalloc(sizeof(struct talitos_request *) *
priv->num_channels, GFP_KERNEL);
if (!priv->fifo) {
dev_err(dev, "failed to allocate request fifo\n");
err = -ENOMEM;
goto err_out;
}
priv->fifo_len = roundup_pow_of_two(priv->chfifo_len);
for (i = 0; i < priv->num_channels; i++) {
priv->fifo[i] = kzalloc(sizeof(struct talitos_request) *
priv->fifo_len, GFP_KERNEL);
if (!priv->fifo[i]) {
dev_err(dev, "failed to allocate request fifo %d\n", i);
err = -ENOMEM;
goto err_out;
}
}
priv->submit_count = kmalloc(sizeof(atomic_t) * priv->num_channels,
GFP_KERNEL);
if (!priv->submit_count) {
dev_err(dev, "failed to allocate fifo submit count space\n");
err = -ENOMEM;
goto err_out;
}
for (i = 0; i < priv->num_channels; i++)
atomic_set(&priv->submit_count[i], -(priv->chfifo_len - 1));
priv->head = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL);
priv->tail = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL);
if (!priv->head || !priv->tail) {
dev_err(dev, "failed to allocate request index space\n");
err = -ENOMEM;
goto err_out;
}
/* reset and initialize the h/w */
err = init_device(dev);
if (err) {
dev_err(dev, "failed to initialize device\n");
goto err_out;
}
/* register the RNG, if available */
if (hw_supports(dev, DESC_HDR_SEL0_RNG)) {
err = talitos_register_rng(dev);
if (err) {
dev_err(dev, "failed to register hwrng: %d\n", err);
goto err_out;
} else
dev_info(dev, "hwrng\n");
}
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
if (hw_supports(dev, driver_algs[i].desc_hdr_template)) {
struct talitos_crypto_alg *t_alg;
t_alg = talitos_alg_alloc(dev, &driver_algs[i]);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
goto err_out;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
dev_err(dev, "%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
} else {
list_add_tail(&t_alg->entry, &priv->alg_list);
dev_info(dev, "%s\n",
t_alg->crypto_alg.cra_driver_name);
}
}
}
return 0;
err_out:
talitos_remove(ofdev);
return err;
}
static struct of_device_id talitos_match[] = {
{
.compatible = "fsl,sec2.0",
},
{},
};
MODULE_DEVICE_TABLE(of, talitos_match);
static struct of_platform_driver talitos_driver = {
.name = "talitos",
.match_table = talitos_match,
.probe = talitos_probe,
.remove = talitos_remove,
};
static int __init talitos_init(void)
{
return of_register_platform_driver(&talitos_driver);
}
module_init(talitos_init);
static void __exit talitos_exit(void)
{
of_unregister_platform_driver(&talitos_driver);
}
module_exit(talitos_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kim Phillips <kim.phillips@freescale.com>");
MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");