617 lines
15 KiB
C
Raw Normal View History

/*
* Equalizer Load-balancer for serial network interfaces.
*
* (c) Copyright 1995 Simon "Guru Aleph-Null" Janes
* NCM: Network and Communications Management, Inc.
*
* (c) Copyright 2002 David S. Miller (davem@redhat.com)
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* The author may be reached as simon@ncm.com, or C/O
* NCM
* Attn: Simon Janes
* 6803 Whittier Ave
* McLean VA 22101
* Phone: 1-703-847-0040 ext 103
*/
/*
* Sources:
* skeleton.c by Donald Becker.
* Inspirations:
* The Harried and Overworked Alan Cox
* Conspiracies:
* The Alan Cox and Mike McLagan plot to get someone else to do the code,
* which turned out to be me.
*/
/*
* $Log: eql.c,v $
* Revision 1.2 1996/04/11 17:51:52 guru
* Added one-line eql_remove_slave patch.
*
* Revision 1.1 1996/04/11 17:44:17 guru
* Initial revision
*
* Revision 3.13 1996/01/21 15:17:18 alan
* tx_queue_len changes.
* reformatted.
*
* Revision 3.12 1995/03/22 21:07:51 anarchy
* Added capable() checks on configuration.
* Moved header file.
*
* Revision 3.11 1995/01/19 23:14:31 guru
* slave_load = (ULONG_MAX - (ULONG_MAX / 2)) -
* (priority_Bps) + bytes_queued * 8;
*
* Revision 3.10 1995/01/19 23:07:53 guru
* back to
* slave_load = (ULONG_MAX - (ULONG_MAX / 2)) -
* (priority_Bps) + bytes_queued;
*
* Revision 3.9 1995/01/19 22:38:20 guru
* slave_load = (ULONG_MAX - (ULONG_MAX / 2)) -
* (priority_Bps) + bytes_queued * 4;
*
* Revision 3.8 1995/01/19 22:30:55 guru
* slave_load = (ULONG_MAX - (ULONG_MAX / 2)) -
* (priority_Bps) + bytes_queued * 2;
*
* Revision 3.7 1995/01/19 21:52:35 guru
* printk's trimmed out.
*
* Revision 3.6 1995/01/19 21:49:56 guru
* This is working pretty well. I gained 1 K/s in speed.. now it's just
* robustness and printk's to be diked out.
*
* Revision 3.5 1995/01/18 22:29:59 guru
* still crashes the kernel when the lock_wait thing is woken up.
*
* Revision 3.4 1995/01/18 21:59:47 guru
* Broken set-bit locking snapshot
*
* Revision 3.3 1995/01/17 22:09:18 guru
* infinite sleep in a lock somewhere..
*
* Revision 3.2 1995/01/15 16:46:06 guru
* Log trimmed of non-pertinent 1.x branch messages
*
* Revision 3.1 1995/01/15 14:41:45 guru
* New Scheduler and timer stuff...
*
* Revision 1.15 1995/01/15 14:29:02 guru
* Will make 1.14 (now 1.15) the 3.0 branch, and the 1.12 the 2.0 branch, the one
* with the dumber scheduler
*
* Revision 1.14 1995/01/15 02:37:08 guru
* shock.. the kept-new-versions could have zonked working
* stuff.. shudder
*
* Revision 1.13 1995/01/15 02:36:31 guru
* big changes
*
* scheduler was torn out and replaced with something smarter
*
* global names not prefixed with eql_ were renamed to protect
* against namespace collisions
*
* a few more abstract interfaces were added to facilitate any
* potential change of datastructure. the driver is still using
* a linked list of slaves. going to a heap would be a bit of
* an overkill.
*
* this compiles fine with no warnings.
*
* the locking mechanism and timer stuff must be written however,
* this version will not work otherwise
*
* Sorry, I had to rewrite most of this for 2.5.x -DaveM
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/netdevice.h>
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
#include <net/net_namespace.h>
#include <linux/if.h>
#include <linux/if_arp.h>
#include <linux/if_eql.h>
#include <asm/uaccess.h>
static int eql_open(struct net_device *dev);
static int eql_close(struct net_device *dev);
static int eql_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static netdev_tx_t eql_slave_xmit(struct sk_buff *skb, struct net_device *dev);
#define eql_is_slave(dev) ((dev->flags & IFF_SLAVE) == IFF_SLAVE)
#define eql_is_master(dev) ((dev->flags & IFF_MASTER) == IFF_MASTER)
static void eql_kill_one_slave(slave_queue_t *queue, slave_t *slave);
static void eql_timer(unsigned long param)
{
equalizer_t *eql = (equalizer_t *) param;
struct list_head *this, *tmp, *head;
spin_lock_bh(&eql->queue.lock);
head = &eql->queue.all_slaves;
list_for_each_safe(this, tmp, head) {
slave_t *slave = list_entry(this, slave_t, list);
if ((slave->dev->flags & IFF_UP) == IFF_UP) {
slave->bytes_queued -= slave->priority_Bps;
if (slave->bytes_queued < 0)
slave->bytes_queued = 0;
} else {
eql_kill_one_slave(&eql->queue, slave);
}
}
spin_unlock_bh(&eql->queue.lock);
eql->timer.expires = jiffies + EQL_DEFAULT_RESCHED_IVAL;
add_timer(&eql->timer);
}
static const char version[] __initconst =
"Equalizer2002: Simon Janes (simon@ncm.com) and David S. Miller (davem@redhat.com)";
static const struct net_device_ops eql_netdev_ops = {
.ndo_open = eql_open,
.ndo_stop = eql_close,
.ndo_do_ioctl = eql_ioctl,
.ndo_start_xmit = eql_slave_xmit,
};
static void __init eql_setup(struct net_device *dev)
{
equalizer_t *eql = netdev_priv(dev);
init_timer(&eql->timer);
eql->timer.data = (unsigned long) eql;
eql->timer.expires = jiffies + EQL_DEFAULT_RESCHED_IVAL;
eql->timer.function = eql_timer;
spin_lock_init(&eql->queue.lock);
INIT_LIST_HEAD(&eql->queue.all_slaves);
eql->queue.master_dev = dev;
dev->netdev_ops = &eql_netdev_ops;
/*
* Now we undo some of the things that eth_setup does
* that we don't like
*/
dev->mtu = EQL_DEFAULT_MTU; /* set to 576 in if_eql.h */
dev->flags = IFF_MASTER;
dev->type = ARPHRD_SLIP;
dev->tx_queue_len = 5; /* Hands them off fast */
dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
}
static int eql_open(struct net_device *dev)
{
equalizer_t *eql = netdev_priv(dev);
/* XXX We should force this off automatically for the user. */
netdev_info(dev,
"remember to turn off Van-Jacobson compression on your slave devices\n");
BUG_ON(!list_empty(&eql->queue.all_slaves));
eql->min_slaves = 1;
eql->max_slaves = EQL_DEFAULT_MAX_SLAVES; /* 4 usually... */
add_timer(&eql->timer);
return 0;
}
static void eql_kill_one_slave(slave_queue_t *queue, slave_t *slave)
{
list_del(&slave->list);
queue->num_slaves--;
slave->dev->flags &= ~IFF_SLAVE;
dev_put(slave->dev);
kfree(slave);
}
static void eql_kill_slave_queue(slave_queue_t *queue)
{
struct list_head *head, *tmp, *this;
spin_lock_bh(&queue->lock);
head = &queue->all_slaves;
list_for_each_safe(this, tmp, head) {
slave_t *s = list_entry(this, slave_t, list);
eql_kill_one_slave(queue, s);
}
spin_unlock_bh(&queue->lock);
}
static int eql_close(struct net_device *dev)
{
equalizer_t *eql = netdev_priv(dev);
/*
* The timer has to be stopped first before we start hacking away
* at the data structure it scans every so often...
*/
del_timer_sync(&eql->timer);
eql_kill_slave_queue(&eql->queue);
return 0;
}
static int eql_enslave(struct net_device *dev, slaving_request_t __user *srq);
static int eql_emancipate(struct net_device *dev, slaving_request_t __user *srq);
static int eql_g_slave_cfg(struct net_device *dev, slave_config_t __user *sc);
static int eql_s_slave_cfg(struct net_device *dev, slave_config_t __user *sc);
static int eql_g_master_cfg(struct net_device *dev, master_config_t __user *mc);
static int eql_s_master_cfg(struct net_device *dev, master_config_t __user *mc);
static int eql_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
if (cmd != EQL_GETMASTRCFG && cmd != EQL_GETSLAVECFG &&
!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case EQL_ENSLAVE:
return eql_enslave(dev, ifr->ifr_data);
case EQL_EMANCIPATE:
return eql_emancipate(dev, ifr->ifr_data);
case EQL_GETSLAVECFG:
return eql_g_slave_cfg(dev, ifr->ifr_data);
case EQL_SETSLAVECFG:
return eql_s_slave_cfg(dev, ifr->ifr_data);
case EQL_GETMASTRCFG:
return eql_g_master_cfg(dev, ifr->ifr_data);
case EQL_SETMASTRCFG:
return eql_s_master_cfg(dev, ifr->ifr_data);
default:
return -EOPNOTSUPP;
}
}
/* queue->lock must be held */
static slave_t *__eql_schedule_slaves(slave_queue_t *queue)
{
unsigned long best_load = ~0UL;
struct list_head *this, *tmp, *head;
slave_t *best_slave;
best_slave = NULL;
/* Make a pass to set the best slave. */
head = &queue->all_slaves;
list_for_each_safe(this, tmp, head) {
slave_t *slave = list_entry(this, slave_t, list);
unsigned long slave_load, bytes_queued, priority_Bps;
/* Go through the slave list once, updating best_slave
* whenever a new best_load is found.
*/
bytes_queued = slave->bytes_queued;
priority_Bps = slave->priority_Bps;
if ((slave->dev->flags & IFF_UP) == IFF_UP) {
slave_load = (~0UL - (~0UL / 2)) -
(priority_Bps) + bytes_queued * 8;
if (slave_load < best_load) {
best_load = slave_load;
best_slave = slave;
}
} else {
/* We found a dead slave, kill it. */
eql_kill_one_slave(queue, slave);
}
}
return best_slave;
}
static netdev_tx_t eql_slave_xmit(struct sk_buff *skb, struct net_device *dev)
{
equalizer_t *eql = netdev_priv(dev);
slave_t *slave;
spin_lock(&eql->queue.lock);
slave = __eql_schedule_slaves(&eql->queue);
if (slave) {
struct net_device *slave_dev = slave->dev;
skb->dev = slave_dev;
skb->priority = 1;
slave->bytes_queued += skb->len;
dev_queue_xmit(skb);
dev->stats.tx_packets++;
} else {
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
}
spin_unlock(&eql->queue.lock);
return NETDEV_TX_OK;
}
/*
* Private ioctl functions
*/
/* queue->lock must be held */
static slave_t *__eql_find_slave_dev(slave_queue_t *queue, struct net_device *dev)
{
struct list_head *this, *head;
head = &queue->all_slaves;
list_for_each(this, head) {
slave_t *slave = list_entry(this, slave_t, list);
if (slave->dev == dev)
return slave;
}
return NULL;
}
static inline int eql_is_full(slave_queue_t *queue)
{
equalizer_t *eql = netdev_priv(queue->master_dev);
if (queue->num_slaves >= eql->max_slaves)
return 1;
return 0;
}
/* queue->lock must be held */
static int __eql_insert_slave(slave_queue_t *queue, slave_t *slave)
{
if (!eql_is_full(queue)) {
slave_t *duplicate_slave = NULL;
duplicate_slave = __eql_find_slave_dev(queue, slave->dev);
if (duplicate_slave)
eql_kill_one_slave(queue, duplicate_slave);
list_add(&slave->list, &queue->all_slaves);
queue->num_slaves++;
slave->dev->flags |= IFF_SLAVE;
return 0;
}
return -ENOSPC;
}
static int eql_enslave(struct net_device *master_dev, slaving_request_t __user *srqp)
{
struct net_device *slave_dev;
slaving_request_t srq;
if (copy_from_user(&srq, srqp, sizeof (slaving_request_t)))
return -EFAULT;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
slave_dev = dev_get_by_name(&init_net, srq.slave_name);
if (slave_dev) {
if ((master_dev->flags & IFF_UP) == IFF_UP) {
/* slave is not a master & not already a slave: */
if (!eql_is_master(slave_dev) &&
!eql_is_slave(slave_dev)) {
slave_t *s = kmalloc(sizeof(*s), GFP_KERNEL);
equalizer_t *eql = netdev_priv(master_dev);
int ret;
if (!s) {
dev_put(slave_dev);
return -ENOMEM;
}
memset(s, 0, sizeof(*s));
s->dev = slave_dev;
s->priority = srq.priority;
s->priority_bps = srq.priority;
s->priority_Bps = srq.priority / 8;
spin_lock_bh(&eql->queue.lock);
ret = __eql_insert_slave(&eql->queue, s);
if (ret) {
dev_put(slave_dev);
kfree(s);
}
spin_unlock_bh(&eql->queue.lock);
return ret;
}
}
dev_put(slave_dev);
}
return -EINVAL;
}
static int eql_emancipate(struct net_device *master_dev, slaving_request_t __user *srqp)
{
equalizer_t *eql = netdev_priv(master_dev);
struct net_device *slave_dev;
slaving_request_t srq;
int ret;
if (copy_from_user(&srq, srqp, sizeof (slaving_request_t)))
return -EFAULT;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
slave_dev = dev_get_by_name(&init_net, srq.slave_name);
ret = -EINVAL;
if (slave_dev) {
spin_lock_bh(&eql->queue.lock);
if (eql_is_slave(slave_dev)) {
slave_t *slave = __eql_find_slave_dev(&eql->queue,
slave_dev);
if (slave) {
eql_kill_one_slave(&eql->queue, slave);
ret = 0;
}
}
dev_put(slave_dev);
spin_unlock_bh(&eql->queue.lock);
}
return ret;
}
static int eql_g_slave_cfg(struct net_device *dev, slave_config_t __user *scp)
{
equalizer_t *eql = netdev_priv(dev);
slave_t *slave;
struct net_device *slave_dev;
slave_config_t sc;
int ret;
if (copy_from_user(&sc, scp, sizeof (slave_config_t)))
return -EFAULT;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
slave_dev = dev_get_by_name(&init_net, sc.slave_name);
if (!slave_dev)
return -ENODEV;
ret = -EINVAL;
spin_lock_bh(&eql->queue.lock);
if (eql_is_slave(slave_dev)) {
slave = __eql_find_slave_dev(&eql->queue, slave_dev);
if (slave) {
sc.priority = slave->priority;
ret = 0;
}
}
spin_unlock_bh(&eql->queue.lock);
dev_put(slave_dev);
if (!ret && copy_to_user(scp, &sc, sizeof (slave_config_t)))
ret = -EFAULT;
return ret;
}
static int eql_s_slave_cfg(struct net_device *dev, slave_config_t __user *scp)
{
slave_t *slave;
equalizer_t *eql;
struct net_device *slave_dev;
slave_config_t sc;
int ret;
if (copy_from_user(&sc, scp, sizeof (slave_config_t)))
return -EFAULT;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 11:56:21 -07:00
slave_dev = dev_get_by_name(&init_net, sc.slave_name);
if (!slave_dev)
return -ENODEV;
ret = -EINVAL;
eql = netdev_priv(dev);
spin_lock_bh(&eql->queue.lock);
if (eql_is_slave(slave_dev)) {
slave = __eql_find_slave_dev(&eql->queue, slave_dev);
if (slave) {
slave->priority = sc.priority;
slave->priority_bps = sc.priority;
slave->priority_Bps = sc.priority / 8;
ret = 0;
}
}
spin_unlock_bh(&eql->queue.lock);
dev_put(slave_dev);
return ret;
}
static int eql_g_master_cfg(struct net_device *dev, master_config_t __user *mcp)
{
equalizer_t *eql;
master_config_t mc;
memset(&mc, 0, sizeof(master_config_t));
if (eql_is_master(dev)) {
eql = netdev_priv(dev);
mc.max_slaves = eql->max_slaves;
mc.min_slaves = eql->min_slaves;
if (copy_to_user(mcp, &mc, sizeof (master_config_t)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
static int eql_s_master_cfg(struct net_device *dev, master_config_t __user *mcp)
{
equalizer_t *eql;
master_config_t mc;
if (copy_from_user(&mc, mcp, sizeof (master_config_t)))
return -EFAULT;
if (eql_is_master(dev)) {
eql = netdev_priv(dev);
eql->max_slaves = mc.max_slaves;
eql->min_slaves = mc.min_slaves;
return 0;
}
return -EINVAL;
}
static struct net_device *dev_eql;
static int __init eql_init_module(void)
{
int err;
pr_info("%s\n", version);
dev_eql = alloc_netdev(sizeof(equalizer_t), "eql", eql_setup);
if (!dev_eql)
return -ENOMEM;
err = register_netdev(dev_eql);
if (err)
free_netdev(dev_eql);
return err;
}
static void __exit eql_cleanup_module(void)
{
unregister_netdev(dev_eql);
free_netdev(dev_eql);
}
module_init(eql_init_module);
module_exit(eql_cleanup_module);
MODULE_LICENSE("GPL");