linux-stable/kernel/Kconfig.preempt

162 lines
5.8 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
config PREEMPT_NONE_BUILD
bool
config PREEMPT_VOLUNTARY_BUILD
bool
config PREEMPT_BUILD
bool
select PREEMPTION
select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
choice
prompt "Preemption Model"
default PREEMPT_NONE
config PREEMPT_NONE
bool "No Forced Preemption (Server)"
select PREEMPT_NONE_BUILD if !PREEMPT_DYNAMIC
help
This is the traditional Linux preemption model, geared towards
throughput. It will still provide good latencies most of the
time, but there are no guarantees and occasional longer delays
are possible.
Select this option if you are building a kernel for a server or
scientific/computation system, or if you want to maximize the
raw processing power of the kernel, irrespective of scheduling
latencies.
config PREEMPT_VOLUNTARY
bool "Voluntary Kernel Preemption (Desktop)"
depends on !ARCH_NO_PREEMPT
select PREEMPT_VOLUNTARY_BUILD if !PREEMPT_DYNAMIC
help
This option reduces the latency of the kernel by adding more
"explicit preemption points" to the kernel code. These new
preemption points have been selected to reduce the maximum
latency of rescheduling, providing faster application reactions,
at the cost of slightly lower throughput.
This allows reaction to interactive events by allowing a
low priority process to voluntarily preempt itself even if it
is in kernel mode executing a system call. This allows
applications to run more 'smoothly' even when the system is
under load.
Select this if you are building a kernel for a desktop system.
config PREEMPT
bool "Preemptible Kernel (Low-Latency Desktop)"
depends on !ARCH_NO_PREEMPT
select PREEMPT_BUILD
help
This option reduces the latency of the kernel by making
all kernel code (that is not executing in a critical section)
preemptible. This allows reaction to interactive events by
permitting a low priority process to be preempted involuntarily
even if it is in kernel mode executing a system call and would
otherwise not be about to reach a natural preemption point.
This allows applications to run more 'smoothly' even when the
system is under load, at the cost of slightly lower throughput
and a slight runtime overhead to kernel code.
Select this if you are building a kernel for a desktop or
embedded system with latency requirements in the milliseconds
range.
sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT Add a new entry to the preemption menu which enables the real-time support for the kernel. The choice is only enabled when an architecture supports it. It selects PREEMPT as the RT features depend on it. To achieve that the existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as well. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Clark Williams <williams@redhat.com> Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Daniel Wagner <wagi@monom.org> Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> Acked-by: Julia Cartwright <julia@ni.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Acked-by: Gratian Crisan <gratian.crisan@ni.com> Acked-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-17 20:01:49 +00:00
config PREEMPT_RT
bool "Fully Preemptible Kernel (Real-Time)"
depends on EXPERT && ARCH_SUPPORTS_RT
select PREEMPTION
sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT Add a new entry to the preemption menu which enables the real-time support for the kernel. The choice is only enabled when an architecture supports it. It selects PREEMPT as the RT features depend on it. To achieve that the existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as well. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Clark Williams <williams@redhat.com> Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Daniel Wagner <wagi@monom.org> Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> Acked-by: Julia Cartwright <julia@ni.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Acked-by: Gratian Crisan <gratian.crisan@ni.com> Acked-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-17 20:01:49 +00:00
help
This option turns the kernel into a real-time kernel by replacing
various locking primitives (spinlocks, rwlocks, etc.) with
preemptible priority-inheritance aware variants, enforcing
interrupt threading and introducing mechanisms to break up long
non-preemptible sections. This makes the kernel, except for very
low level and critical code paths (entry code, scheduler, low
sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT Add a new entry to the preemption menu which enables the real-time support for the kernel. The choice is only enabled when an architecture supports it. It selects PREEMPT as the RT features depend on it. To achieve that the existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as well. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Clark Williams <williams@redhat.com> Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Daniel Wagner <wagi@monom.org> Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> Acked-by: Julia Cartwright <julia@ni.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Acked-by: Gratian Crisan <gratian.crisan@ni.com> Acked-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-17 20:01:49 +00:00
level interrupt handling) fully preemptible and brings most
execution contexts under scheduler control.
Select this if you are building a kernel for systems which
require real-time guarantees.
endchoice
config PREEMPT_COUNT
bool
sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT Add a new entry to the preemption menu which enables the real-time support for the kernel. The choice is only enabled when an architecture supports it. It selects PREEMPT as the RT features depend on it. To achieve that the existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as well. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Clark Williams <williams@redhat.com> Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Daniel Wagner <wagi@monom.org> Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> Acked-by: Julia Cartwright <julia@ni.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Acked-by: Gratian Crisan <gratian.crisan@ni.com> Acked-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-17 20:01:49 +00:00
config PREEMPTION
sched/rt, Kconfig: Introduce CONFIG_PREEMPT_RT Add a new entry to the preemption menu which enables the real-time support for the kernel. The choice is only enabled when an architecture supports it. It selects PREEMPT as the RT features depend on it. To achieve that the existing PREEMPT choice is renamed to PREEMPT_LL which select PREEMPT as well. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Clark Williams <williams@redhat.com> Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Daniel Wagner <wagi@monom.org> Acked-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> Acked-by: Julia Cartwright <julia@ni.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Acked-by: Gratian Crisan <gratian.crisan@ni.com> Acked-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1907172200190.1778@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-17 20:01:49 +00:00
bool
select PREEMPT_COUNT
config PREEMPT_DYNAMIC
bool "Preemption behaviour defined on boot"
depends on HAVE_PREEMPT_DYNAMIC && !PREEMPT_RT
sched/preempt: Add PREEMPT_DYNAMIC using static keys Where an architecture selects HAVE_STATIC_CALL but not HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline which will either branch to a callee or return to the caller. On such architectures, a number of constraints can conspire to make those trampolines more complicated and potentially less useful than we'd like. For example: * Hardware and software control flow integrity schemes can require the addition of "landing pad" instructions (e.g. `BTI` for arm64), which will also be present at the "real" callee. * Limited branch ranges can require that trampolines generate or load an address into a register and perform an indirect branch (or at least have a slow path that does so). This loses some of the benefits of having a direct branch. * Interaction with SW CFI schemes can be complicated and fragile, e.g. requiring that we can recognise idiomatic codegen and remove indirections understand, at least until clang proves more helpful mechanisms for dealing with this. For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we really only need to enable/disable specific preemption functions. We can achieve the same effect without a number of the pain points above by using static keys to fold early returns into the preemption functions themselves rather than in an out-of-line trampoline, effectively inlining the trampoline into the start of the function. For arm64, this results in good code generation. For example, the dynamic_cond_resched() wrapper looks as follows when enabled. When disabled, the first `B` is replaced with a `NOP`, resulting in an early return. | <dynamic_cond_resched>: | bti c | b <dynamic_cond_resched+0x10> // or `nop` | mov w0, #0x0 | ret | mrs x0, sp_el0 | ldr x0, [x0, #8] | cbnz x0, <dynamic_cond_resched+0x8> | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret ... compared to the regular form of the function: | <__cond_resched>: | bti c | mrs x0, sp_el0 | ldr x1, [x0, #8] | cbz x1, <__cond_resched+0x18> | mov w0, #0x0 | ret | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret Any architecture which implements static keys should be able to use this to implement PREEMPT_DYNAMIC with similar cost to non-inlined static calls. Since this is likely to have greater overhead than (inlined) static calls, PREEMPT_DYNAMIC is only defaulted to enabled when HAVE_PREEMPT_DYNAMIC_CALL is selected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
2022-02-14 16:52:14 +00:00
select JUMP_LABEL if HAVE_PREEMPT_DYNAMIC_KEY
select PREEMPT_BUILD
sched/preempt: Add PREEMPT_DYNAMIC using static keys Where an architecture selects HAVE_STATIC_CALL but not HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline which will either branch to a callee or return to the caller. On such architectures, a number of constraints can conspire to make those trampolines more complicated and potentially less useful than we'd like. For example: * Hardware and software control flow integrity schemes can require the addition of "landing pad" instructions (e.g. `BTI` for arm64), which will also be present at the "real" callee. * Limited branch ranges can require that trampolines generate or load an address into a register and perform an indirect branch (or at least have a slow path that does so). This loses some of the benefits of having a direct branch. * Interaction with SW CFI schemes can be complicated and fragile, e.g. requiring that we can recognise idiomatic codegen and remove indirections understand, at least until clang proves more helpful mechanisms for dealing with this. For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we really only need to enable/disable specific preemption functions. We can achieve the same effect without a number of the pain points above by using static keys to fold early returns into the preemption functions themselves rather than in an out-of-line trampoline, effectively inlining the trampoline into the start of the function. For arm64, this results in good code generation. For example, the dynamic_cond_resched() wrapper looks as follows when enabled. When disabled, the first `B` is replaced with a `NOP`, resulting in an early return. | <dynamic_cond_resched>: | bti c | b <dynamic_cond_resched+0x10> // or `nop` | mov w0, #0x0 | ret | mrs x0, sp_el0 | ldr x0, [x0, #8] | cbnz x0, <dynamic_cond_resched+0x8> | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret ... compared to the regular form of the function: | <__cond_resched>: | bti c | mrs x0, sp_el0 | ldr x1, [x0, #8] | cbz x1, <__cond_resched+0x18> | mov w0, #0x0 | ret | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret Any architecture which implements static keys should be able to use this to implement PREEMPT_DYNAMIC with similar cost to non-inlined static calls. Since this is likely to have greater overhead than (inlined) static calls, PREEMPT_DYNAMIC is only defaulted to enabled when HAVE_PREEMPT_DYNAMIC_CALL is selected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
2022-02-14 16:52:14 +00:00
default y if HAVE_PREEMPT_DYNAMIC_CALL
help
This option allows to define the preemption model on the kernel
command line parameter and thus override the default preemption
model defined during compile time.
The feature is primarily interesting for Linux distributions which
provide a pre-built kernel binary to reduce the number of kernel
flavors they offer while still offering different usecases.
The runtime overhead is negligible with HAVE_STATIC_CALL_INLINE enabled
but if runtime patching is not available for the specific architecture
then the potential overhead should be considered.
Interesting if you want the same pre-built kernel should be used for
both Server and Desktop workloads.
config SCHED_CORE
bool "Core Scheduling for SMT"
depends on SCHED_SMT
help
This option permits Core Scheduling, a means of coordinated task
selection across SMT siblings. When enabled -- see
prctl(PR_SCHED_CORE) -- task selection ensures that all SMT siblings
will execute a task from the same 'core group', forcing idle when no
matching task is found.
Use of this feature includes:
- mitigation of some (not all) SMT side channels;
- limiting SMT interference to improve determinism and/or performance.
SCHED_CORE is default disabled. When it is enabled and unused,
which is the likely usage by Linux distributions, there should
be no measurable impact on performance.
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-18 20:09:17 +00:00
config SCHED_CLASS_EXT
bool "Extensible Scheduling Class"
depends on BPF_SYSCALL && BPF_JIT && DEBUG_INFO_BTF
select STACKTRACE if STACKTRACE_SUPPORT
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-18 20:09:17 +00:00
help
This option enables a new scheduler class sched_ext (SCX), which
allows scheduling policies to be implemented as BPF programs to
achieve the following:
- Ease of experimentation and exploration: Enabling rapid
iteration of new scheduling policies.
- Customization: Building application-specific schedulers which
implement policies that are not applicable to general-purpose
schedulers.
- Rapid scheduler deployments: Non-disruptive swap outs of
scheduling policies in production environments.
sched_ext leverages BPF struct_ops feature to define a structure
which exports function callbacks and flags to BPF programs that
wish to implement scheduling policies. The struct_ops structure
exported by sched_ext is struct sched_ext_ops, and is conceptually
similar to struct sched_class.
For more information:
Documentation/scheduler/sched-ext.rst
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-18 20:09:17 +00:00
https://github.com/sched-ext/scx