linux-stable/drivers/pwm/pwm-pxa.c

213 lines
5.0 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/pwm/pwm-pxa.c
*
* simple driver for PWM (Pulse Width Modulator) controller
*
* 2008-02-13 initial version
* eric miao <eric.miao@marvell.com>
*
* Links to reference manuals for some of the supported PWM chips can be found
* in Documentation/arch/arm/marvell.rst.
*
* Limitations:
* - When PWM is stopped, the current PWM period stops abruptly at the next
* input clock (PWMCR_SD is set) and the output is driven to inactive.
*/
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/pwm.h>
#include <linux/of.h>
#include <asm/div64.h>
#define HAS_SECONDARY_PWM 0x10
static const struct platform_device_id pwm_id_table[] = {
/* PWM has_secondary_pwm? */
{ "pxa25x-pwm", 0 },
{ "pxa27x-pwm", HAS_SECONDARY_PWM },
{ "pxa168-pwm", 0 },
{ "pxa910-pwm", 0 },
{ },
};
MODULE_DEVICE_TABLE(platform, pwm_id_table);
/* PWM registers and bits definitions */
#define PWMCR (0x00)
#define PWMDCR (0x04)
#define PWMPCR (0x08)
#define PWMCR_SD (1 << 6)
#define PWMDCR_FD (1 << 10)
struct pxa_pwm_chip {
struct device *dev;
struct clk *clk;
void __iomem *mmio_base;
};
static inline struct pxa_pwm_chip *to_pxa_pwm_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
/*
* period_ns = 10^9 * (PRESCALE + 1) * (PV + 1) / PWM_CLK_RATE
* duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE
*/
static int pxa_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
u64 duty_ns, u64 period_ns)
{
struct pxa_pwm_chip *pc = to_pxa_pwm_chip(chip);
unsigned long long c;
unsigned long period_cycles, prescale, pv, dc;
unsigned long offset;
offset = pwm->hwpwm ? 0x10 : 0;
c = clk_get_rate(pc->clk);
c = c * period_ns;
do_div(c, 1000000000);
period_cycles = c;
if (period_cycles < 1)
period_cycles = 1;
prescale = (period_cycles - 1) / 1024;
pv = period_cycles / (prescale + 1) - 1;
if (prescale > 63)
return -EINVAL;
if (duty_ns == period_ns)
dc = PWMDCR_FD;
else
dc = mul_u64_u64_div_u64(pv + 1, duty_ns, period_ns);
writel(prescale | PWMCR_SD, pc->mmio_base + offset + PWMCR);
writel(dc, pc->mmio_base + offset + PWMDCR);
writel(pv, pc->mmio_base + offset + PWMPCR);
return 0;
}
static int pxa_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pxa_pwm_chip *pc = to_pxa_pwm_chip(chip);
u64 duty_cycle;
int err;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
err = clk_prepare_enable(pc->clk);
if (err)
return err;
duty_cycle = state->enabled ? state->duty_cycle : 0;
err = pxa_pwm_config(chip, pwm, duty_cycle, state->period);
if (err) {
clk_disable_unprepare(pc->clk);
return err;
}
if (state->enabled && !pwm->state.enabled)
return 0;
clk_disable_unprepare(pc->clk);
if (!state->enabled && pwm->state.enabled)
clk_disable_unprepare(pc->clk);
return 0;
}
static const struct pwm_ops pxa_pwm_ops = {
.apply = pxa_pwm_apply,
};
#ifdef CONFIG_OF
/*
* Device tree users must create one device instance for each PWM channel.
* Hence we dispense with the HAS_SECONDARY_PWM and "tell" the original driver
* code that this is a single channel pxa25x-pwm. Currently all devices are
* supported identically.
*/
static const struct of_device_id pwm_of_match[] = {
{ .compatible = "marvell,pxa250-pwm", .data = &pwm_id_table[0]},
{ .compatible = "marvell,pxa270-pwm", .data = &pwm_id_table[0]},
{ .compatible = "marvell,pxa168-pwm", .data = &pwm_id_table[0]},
{ .compatible = "marvell,pxa910-pwm", .data = &pwm_id_table[0]},
{ }
};
MODULE_DEVICE_TABLE(of, pwm_of_match);
#else
#define pwm_of_match NULL
#endif
static int pwm_probe(struct platform_device *pdev)
{
const struct platform_device_id *id = platform_get_device_id(pdev);
struct pwm_chip *chip;
struct pxa_pwm_chip *pc;
int ret = 0;
if (IS_ENABLED(CONFIG_OF) && id == NULL)
id = of_device_get_match_data(&pdev->dev);
if (id == NULL)
return -EINVAL;
chip = devm_pwmchip_alloc(&pdev->dev,
(id->driver_data & HAS_SECONDARY_PWM) ? 2 : 1,
sizeof(*pc));
if (IS_ERR(chip))
return PTR_ERR(chip);
pc = to_pxa_pwm_chip(chip);
pc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pc->clk))
return PTR_ERR(pc->clk);
chip->ops = &pxa_pwm_ops;
if (IS_ENABLED(CONFIG_OF))
chip->of_xlate = of_pwm_single_xlate;
pc->mmio_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pc->mmio_base))
return PTR_ERR(pc->mmio_base);
ret = devm_pwmchip_add(&pdev->dev, chip);
if (ret < 0) {
dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
return ret;
}
return 0;
}
static struct platform_driver pwm_driver = {
.driver = {
.name = "pxa25x-pwm",
.of_match_table = pwm_of_match,
},
.probe = pwm_probe,
.id_table = pwm_id_table,
};
module_platform_driver(pwm_driver);
MODULE_DESCRIPTION("PXA Pulse Width Modulator driver");
MODULE_LICENSE("GPL v2");