linux-stable/net/ethernet/eth.c

600 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Ethernet-type device handling.
*
* Version: @(#)eth.c 1.0.7 05/25/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Florian La Roche, <rzsfl@rz.uni-sb.de>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
*
* Fixes:
* Mr Linux : Arp problems
* Alan Cox : Generic queue tidyup (very tiny here)
* Alan Cox : eth_header ntohs should be htons
* Alan Cox : eth_rebuild_header missing an htons and
* minor other things.
* Tegge : Arp bug fixes.
* Florian : Removed many unnecessary functions, code cleanup
* and changes for new arp and skbuff.
* Alan Cox : Redid header building to reflect new format.
* Alan Cox : ARP only when compiled with CONFIG_INET
* Greg Page : 802.2 and SNAP stuff.
* Alan Cox : MAC layer pointers/new format.
* Paul Gortmaker : eth_copy_and_sum shouldn't csum padding.
* Alan Cox : Protect against forwarding explosions with
* older network drivers and IFF_ALLMULTI.
* Christer Weinigel : Better rebuild header message.
* Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup().
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/ip.h>
#include <linux/netdevice.h>
#include <linux/nvmem-consumer.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/if_ether.h>
#include <linux/of_net.h>
#include <linux/pci.h>
#include <net/dst.h>
#include <net/arp.h>
#include <net/sock.h>
#include <net/ipv6.h>
#include <net/ip.h>
#include <net/dsa.h>
#include <net/flow_dissector.h>
#include <linux/uaccess.h>
#include <net/pkt_sched.h>
__setup("ether=", netdev_boot_setup);
/**
* eth_header - create the Ethernet header
* @skb: buffer to alter
* @dev: source device
* @type: Ethernet type field
* @daddr: destination address (NULL leave destination address)
* @saddr: source address (NULL use device source address)
* @len: packet length (<= skb->len)
*
*
* Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
* in here instead.
*/
int eth_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type,
const void *daddr, const void *saddr, unsigned int len)
{
struct ethhdr *eth = skb_push(skb, ETH_HLEN);
if (type != ETH_P_802_3 && type != ETH_P_802_2)
eth->h_proto = htons(type);
else
eth->h_proto = htons(len);
/*
* Set the source hardware address.
*/
if (!saddr)
saddr = dev->dev_addr;
memcpy(eth->h_source, saddr, ETH_ALEN);
if (daddr) {
memcpy(eth->h_dest, daddr, ETH_ALEN);
[NET] ethernet: Fix first packet goes out with MAC 00:00:00:00:00:00 When you turn off ARP on a netdevice then the first packet always goes out with a dstMAC of all zeroes. This is because the first packet is used to resolve ARP entries. Even though the ARP entry may be resolved (I tried by setting a static ARP entry for a host i was pinging from), it gets overwritten by virtue of having the netdevice disabling ARP. Subsequent packets go out fine with correct dstMAC address (which may be why people have ignored reporting this issue). To cut the story short: the culprit code is in net/ethernet/eth.c::eth_header() ---- /* * Anyway, the loopback-device should never use this function... */ if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) { memset(eth->h_dest, 0, dev->addr_len); return ETH_HLEN; } if(daddr) { memcpy(eth->h_dest,daddr,dev->addr_len); return ETH_HLEN; } ---- Note how the h_dest is being reset when device has IFF_NOARP. As a note: All devices including loopback pass a daddr. loopback in fact passes a 0 all the time ;-> This means i can delete the check totaly or i can remove the IFF_NOARP Alexey says: -------------------- I think, it was me who did this crap. It was so long ago I do not remember why it was made. I remember some troubles with dummy device. It tried to resolve addresses, apparently, without success and generated errors instead of blackholing. I think the problem was eventually solved at neighbour level. After some thinking I suspect the deletion of this chunk could change behaviour of some parts which do not use neighbour cache f.e. packet socket. I think safer approach would be to move this chunk after if (daddr). And the possibility to remove this completely could be analyzed later. -------------------- Patch updated with Alexey's safer suggestions. Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca> Acked-by: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-24 00:18:01 +00:00
return ETH_HLEN;
}
/*
* Anyway, the loopback-device should never use this function...
*/
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
eth_zero_addr(eth->h_dest);
return ETH_HLEN;
}
return -ETH_HLEN;
}
EXPORT_SYMBOL(eth_header);
/**
* eth_get_headlen - determine the length of header for an ethernet frame
* @dev: pointer to network device
* @data: pointer to start of frame
* @len: total length of frame
*
* Make a best effort attempt to pull the length for all of the headers for
* a given frame in a linear buffer.
*/
u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len)
{
const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
const struct ethhdr *eth = (const struct ethhdr *)data;
struct flow_keys_basic keys;
/* this should never happen, but better safe than sorry */
if (unlikely(len < sizeof(*eth)))
return len;
/* parse any remaining L2/L3 headers, check for L4 */
if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
eth->h_proto, sizeof(*eth),
len, flags))
return max_t(u32, keys.control.thoff, sizeof(*eth));
/* parse for any L4 headers */
return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
}
EXPORT_SYMBOL(eth_get_headlen);
/**
* eth_type_trans - determine the packet's protocol ID.
* @skb: received socket data
* @dev: receiving network device
*
* The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*/
__be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
{
unsigned short _service_access_point;
const unsigned short *sap;
const struct ethhdr *eth;
skb->dev = dev;
skb_reset_mac_header(skb);
eth = (struct ethhdr *)skb->data;
skb_pull_inline(skb, ETH_HLEN);
if (unlikely(!ether_addr_equal_64bits(eth->h_dest,
dev->dev_addr))) {
if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) {
if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
} else {
skb->pkt_type = PACKET_OTHERHOST;
}
}
/*
* Some variants of DSA tagging don't have an ethertype field
* at all, so we check here whether one of those tagging
* variants has been configured on the receiving interface,
* and if so, set skb->protocol without looking at the packet.
net: dsa: Allow drivers to filter packets they can decode source port from Frames get processed by DSA and redirected to switch port net devices based on the ETH_P_XDSA multiplexed packet_type handler found by the network stack when calling eth_type_trans(). The running assumption is that once the DSA .rcv function is called, DSA is always able to decode the switch tag in order to change the skb->dev from its master. However there are tagging protocols (such as the new DSA_TAG_PROTO_SJA1105, user of DSA_TAG_PROTO_8021Q) where this assumption is not completely true, since switch tagging piggybacks on the absence of a vlan_filtering bridge. Moreover, management traffic (BPDU, PTP) for this switch doesn't rely on switch tagging, but on a different mechanism. So it would make sense to at least be able to terminate that. Having DSA receive traffic it can't decode would put it in an impossible situation: the eth_type_trans() function would invoke the DSA .rcv(), which could not change skb->dev, then eth_type_trans() would be invoked again, which again would call the DSA .rcv, and the packet would never be able to exit the DSA filter and would spiral in a loop until the whole system dies. This happens because eth_type_trans() doesn't actually look at the skb (so as to identify a potential tag) when it deems it as being ETH_P_XDSA. It just checks whether skb->dev has a DSA private pointer installed (therefore it's a DSA master) and that there exists a .rcv callback (everybody except DSA_TAG_PROTO_NONE has that). This is understandable as there are many switch tags out there, and exhaustively checking for all of them is far from ideal. The solution lies in introducing a filtering function for each tagging protocol. In the absence of a filtering function, all traffic is passed to the .rcv DSA callback. The tagging protocol should see the filtering function as a pre-validation that it can decode the incoming skb. The traffic that doesn't match the filter will bypass the DSA .rcv callback and be left on the master netdevice, which wasn't previously possible. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 10:19:23 +00:00
* The DSA tagging protocol may be able to decode some but not all
* traffic (for example only for management). In that case give it the
* option to filter the packets from which it can decode source port
* information.
*/
net: dsa: Allow drivers to filter packets they can decode source port from Frames get processed by DSA and redirected to switch port net devices based on the ETH_P_XDSA multiplexed packet_type handler found by the network stack when calling eth_type_trans(). The running assumption is that once the DSA .rcv function is called, DSA is always able to decode the switch tag in order to change the skb->dev from its master. However there are tagging protocols (such as the new DSA_TAG_PROTO_SJA1105, user of DSA_TAG_PROTO_8021Q) where this assumption is not completely true, since switch tagging piggybacks on the absence of a vlan_filtering bridge. Moreover, management traffic (BPDU, PTP) for this switch doesn't rely on switch tagging, but on a different mechanism. So it would make sense to at least be able to terminate that. Having DSA receive traffic it can't decode would put it in an impossible situation: the eth_type_trans() function would invoke the DSA .rcv(), which could not change skb->dev, then eth_type_trans() would be invoked again, which again would call the DSA .rcv, and the packet would never be able to exit the DSA filter and would spiral in a loop until the whole system dies. This happens because eth_type_trans() doesn't actually look at the skb (so as to identify a potential tag) when it deems it as being ETH_P_XDSA. It just checks whether skb->dev has a DSA private pointer installed (therefore it's a DSA master) and that there exists a .rcv callback (everybody except DSA_TAG_PROTO_NONE has that). This is understandable as there are many switch tags out there, and exhaustively checking for all of them is far from ideal. The solution lies in introducing a filtering function for each tagging protocol. In the absence of a filtering function, all traffic is passed to the .rcv DSA callback. The tagging protocol should see the filtering function as a pre-validation that it can decode the incoming skb. The traffic that doesn't match the filter will bypass the DSA .rcv callback and be left on the master netdevice, which wasn't previously possible. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 10:19:23 +00:00
if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev))
return htons(ETH_P_XDSA);
if (likely(eth_proto_is_802_3(eth->h_proto)))
return eth->h_proto;
/*
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
if (sap && *sap == 0xFFFF)
return htons(ETH_P_802_3);
/*
* Real 802.2 LLC
*/
return htons(ETH_P_802_2);
}
EXPORT_SYMBOL(eth_type_trans);
/**
* eth_header_parse - extract hardware address from packet
* @skb: packet to extract header from
* @haddr: destination buffer
*/
int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
{
const struct ethhdr *eth = eth_hdr(skb);
memcpy(haddr, eth->h_source, ETH_ALEN);
return ETH_ALEN;
}
EXPORT_SYMBOL(eth_header_parse);
/**
* eth_header_cache - fill cache entry from neighbour
* @neigh: source neighbour
* @hh: destination cache entry
* @type: Ethernet type field
*
* Create an Ethernet header template from the neighbour.
*/
int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
{
struct ethhdr *eth;
const struct net_device *dev = neigh->dev;
eth = (struct ethhdr *)
(((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
if (type == htons(ETH_P_802_3))
return -1;
eth->h_proto = type;
memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
hh->hh_len = ETH_HLEN;
return 0;
}
EXPORT_SYMBOL(eth_header_cache);
/**
* eth_header_cache_update - update cache entry
* @hh: destination cache entry
* @dev: network device
* @haddr: new hardware address
*
* Called by Address Resolution module to notify changes in address.
*/
void eth_header_cache_update(struct hh_cache *hh,
const struct net_device *dev,
const unsigned char *haddr)
{
memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
haddr, ETH_ALEN);
}
EXPORT_SYMBOL(eth_header_cache_update);
/**
* eth_header_parser_protocol - extract protocol from L2 header
* @skb: packet to extract protocol from
*/
__be16 eth_header_parse_protocol(const struct sk_buff *skb)
{
const struct ethhdr *eth = eth_hdr(skb);
return eth->h_proto;
}
EXPORT_SYMBOL(eth_header_parse_protocol);
/**
* eth_prepare_mac_addr_change - prepare for mac change
* @dev: network device
* @p: socket address
*/
int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
return 0;
}
EXPORT_SYMBOL(eth_prepare_mac_addr_change);
/**
* eth_commit_mac_addr_change - commit mac change
* @dev: network device
* @p: socket address
*/
void eth_commit_mac_addr_change(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
}
EXPORT_SYMBOL(eth_commit_mac_addr_change);
/**
* eth_mac_addr - set new Ethernet hardware address
* @dev: network device
* @p: socket address
*
* Change hardware address of device.
*
* This doesn't change hardware matching, so needs to be overridden
* for most real devices.
*/
int eth_mac_addr(struct net_device *dev, void *p)
{
int ret;
ret = eth_prepare_mac_addr_change(dev, p);
if (ret < 0)
return ret;
eth_commit_mac_addr_change(dev, p);
return 0;
}
EXPORT_SYMBOL(eth_mac_addr);
/**
* eth_change_mtu - set new MTU size
* @dev: network device
* @new_mtu: new Maximum Transfer Unit
*
* Allow changing MTU size. Needs to be overridden for devices
* supporting jumbo frames.
*/
int eth_change_mtu(struct net_device *dev, int new_mtu)
{
netdev_warn(dev, "%s is deprecated\n", __func__);
dev->mtu = new_mtu;
return 0;
}
EXPORT_SYMBOL(eth_change_mtu);
int eth_validate_addr(struct net_device *dev)
{
if (!is_valid_ether_addr(dev->dev_addr))
return -EADDRNOTAVAIL;
return 0;
}
EXPORT_SYMBOL(eth_validate_addr);
const struct header_ops eth_header_ops ____cacheline_aligned = {
.create = eth_header,
.parse = eth_header_parse,
.cache = eth_header_cache,
.cache_update = eth_header_cache_update,
.parse_protocol = eth_header_parse_protocol,
};
/**
* ether_setup - setup Ethernet network device
* @dev: network device
*
* Fill in the fields of the device structure with Ethernet-generic values.
*/
void ether_setup(struct net_device *dev)
{
dev->header_ops = &eth_header_ops;
dev->type = ARPHRD_ETHER;
dev->hard_header_len = ETH_HLEN;
dev->min_header_len = ETH_HLEN;
dev->mtu = ETH_DATA_LEN;
dev->min_mtu = ETH_MIN_MTU;
dev->max_mtu = ETH_DATA_LEN;
dev->addr_len = ETH_ALEN;
dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
dev->flags = IFF_BROADCAST|IFF_MULTICAST;
dev->priv_flags |= IFF_TX_SKB_SHARING;
eth_broadcast_addr(dev->broadcast);
}
EXPORT_SYMBOL(ether_setup);
/**
* alloc_etherdev_mqs - Allocates and sets up an Ethernet device
* @sizeof_priv: Size of additional driver-private structure to be allocated
* for this Ethernet device
* @txqs: The number of TX queues this device has.
* @rxqs: The number of RX queues this device has.
*
* Fill in the fields of the device structure with Ethernet-generic
* values. Basically does everything except registering the device.
*
* Constructs a new net device, complete with a private data area of
* size (sizeof_priv). A 32-byte (not bit) alignment is enforced for
* this private data area.
*/
struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
unsigned int rxqs)
{
return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN,
ether_setup, txqs, rxqs);
}
EXPORT_SYMBOL(alloc_etherdev_mqs);
static void devm_free_netdev(struct device *dev, void *res)
{
free_netdev(*(struct net_device **)res);
}
struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv,
unsigned int txqs, unsigned int rxqs)
{
struct net_device **dr;
struct net_device *netdev;
dr = devres_alloc(devm_free_netdev, sizeof(*dr), GFP_KERNEL);
if (!dr)
return NULL;
netdev = alloc_etherdev_mqs(sizeof_priv, txqs, rxqs);
if (!netdev) {
devres_free(dr);
return NULL;
}
*dr = netdev;
devres_add(dev, dr);
return netdev;
}
EXPORT_SYMBOL(devm_alloc_etherdev_mqs);
ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
{
return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr);
}
EXPORT_SYMBOL(sysfs_format_mac);
struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
{
const struct packet_offload *ptype;
unsigned int hlen, off_eth;
struct sk_buff *pp = NULL;
struct ethhdr *eh, *eh2;
struct sk_buff *p;
__be16 type;
int flush = 1;
off_eth = skb_gro_offset(skb);
hlen = off_eth + sizeof(*eh);
eh = skb_gro_header_fast(skb, off_eth);
if (skb_gro_header_hard(skb, hlen)) {
eh = skb_gro_header_slow(skb, hlen, off_eth);
if (unlikely(!eh))
goto out;
}
flush = 0;
list_for_each_entry(p, head, list) {
if (!NAPI_GRO_CB(p)->same_flow)
continue;
eh2 = (struct ethhdr *)(p->data + off_eth);
if (compare_ether_header(eh, eh2)) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
}
type = eh->h_proto;
rcu_read_lock();
ptype = gro_find_receive_by_type(type);
if (ptype == NULL) {
flush = 1;
goto out_unlock;
}
skb_gro_pull(skb, sizeof(*eh));
skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb);
out_unlock:
rcu_read_unlock();
out:
skb_gro_flush_final(skb, pp, flush);
return pp;
}
EXPORT_SYMBOL(eth_gro_receive);
int eth_gro_complete(struct sk_buff *skb, int nhoff)
{
struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
__be16 type = eh->h_proto;
struct packet_offload *ptype;
int err = -ENOSYS;
if (skb->encapsulation)
skb_set_inner_mac_header(skb, nhoff);
rcu_read_lock();
ptype = gro_find_complete_by_type(type);
if (ptype != NULL)
err = ptype->callbacks.gro_complete(skb, nhoff +
sizeof(struct ethhdr));
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(eth_gro_complete);
static struct packet_offload eth_packet_offload __read_mostly = {
.type = cpu_to_be16(ETH_P_TEB),
.priority = 10,
.callbacks = {
.gro_receive = eth_gro_receive,
.gro_complete = eth_gro_complete,
},
};
static int __init eth_offload_init(void)
{
dev_add_offload(&eth_packet_offload);
return 0;
}
fs_initcall(eth_offload_init);
unsigned char * __weak arch_get_platform_mac_address(void)
{
return NULL;
}
int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
{
const unsigned char *addr = NULL;
if (dev->of_node)
addr = of_get_mac_address(dev->of_node);
if (IS_ERR_OR_NULL(addr))
addr = arch_get_platform_mac_address();
if (!addr)
return -ENODEV;
ether_addr_copy(mac_addr, addr);
return 0;
}
EXPORT_SYMBOL(eth_platform_get_mac_address);
/**
* Obtain the MAC address from an nvmem cell named 'mac-address' associated
* with given device.
*
* @dev: Device with which the mac-address cell is associated.
* @addrbuf: Buffer to which the MAC address will be copied on success.
*
* Returns 0 on success or a negative error number on failure.
*/
int nvmem_get_mac_address(struct device *dev, void *addrbuf)
{
struct nvmem_cell *cell;
const void *mac;
size_t len;
cell = nvmem_cell_get(dev, "mac-address");
if (IS_ERR(cell))
return PTR_ERR(cell);
mac = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(mac))
return PTR_ERR(mac);
if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
kfree(mac);
return -EINVAL;
}
ether_addr_copy(addrbuf, mac);
kfree(mac);
return 0;
}
EXPORT_SYMBOL(nvmem_get_mac_address);