linux-stable/fs/bcachefs/util.c

914 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* random utiility code, for bcache but in theory not specific to bcache
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched/clock.h>
#include "eytzinger.h"
#include "util.h"
static const char si_units[] = "?kMGTPEZY";
static int __bch2_strtoh(const char *cp, u64 *res,
u64 t_max, bool t_signed)
{
bool positive = *cp != '-';
unsigned u;
u64 v = 0;
if (*cp == '+' || *cp == '-')
cp++;
if (!isdigit(*cp))
return -EINVAL;
do {
if (v > U64_MAX / 10)
return -ERANGE;
v *= 10;
if (v > U64_MAX - (*cp - '0'))
return -ERANGE;
v += *cp - '0';
cp++;
} while (isdigit(*cp));
for (u = 1; u < strlen(si_units); u++)
if (*cp == si_units[u]) {
cp++;
goto got_unit;
}
u = 0;
got_unit:
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (fls64(v) + u * 10 > 64)
return -ERANGE;
v <<= u * 10;
if (positive) {
if (v > t_max)
return -ERANGE;
} else {
if (v && !t_signed)
return -ERANGE;
if (v > t_max + 1)
return -ERANGE;
v = -v;
}
*res = v;
return 0;
}
#define STRTO_H(name, type) \
int bch2_ ## name ## _h(const char *cp, type *res) \
{ \
u64 v; \
int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type), \
ANYSINT_MAX(type) != ((type) ~0ULL)); \
*res = v; \
return ret; \
}
STRTO_H(strtoint, int)
STRTO_H(strtouint, unsigned int)
STRTO_H(strtoll, long long)
STRTO_H(strtoull, unsigned long long)
STRTO_H(strtou64, u64)
void bch2_hprint(struct printbuf *buf, s64 v)
{
int u, t = 0;
for (u = 0; v >= 1024 || v <= -1024; u++) {
t = v & ~(~0U << 10);
v >>= 10;
}
pr_buf(buf, "%lli", v);
/*
* 103 is magic: t is in the range [-1023, 1023] and we want
* to turn it into [-9, 9]
*/
if (u && v < 100 && v > -100)
pr_buf(buf, ".%i", t / 103);
if (u)
pr_buf(buf, "%c", si_units[u]);
}
void bch2_string_opt_to_text(struct printbuf *out,
const char * const list[],
size_t selected)
{
size_t i;
for (i = 0; list[i]; i++)
pr_buf(out, i == selected ? "[%s] " : "%s ", list[i]);
}
void bch2_flags_to_text(struct printbuf *out,
const char * const list[], u64 flags)
{
unsigned bit, nr = 0;
bool first = true;
if (out->pos != out->end)
*out->pos = '\0';
while (list[nr])
nr++;
while (flags && (bit = __ffs(flags)) < nr) {
if (!first)
pr_buf(out, ",");
first = false;
pr_buf(out, "%s", list[bit]);
flags ^= 1 << bit;
}
}
u64 bch2_read_flag_list(char *opt, const char * const list[])
{
u64 ret = 0;
char *p, *s, *d = kstrndup(opt, PAGE_SIZE - 1, GFP_KERNEL);
if (!d)
return -ENOMEM;
s = strim(d);
while ((p = strsep(&s, ","))) {
int flag = match_string(list, -1, p);
if (flag < 0) {
ret = -1;
break;
}
ret |= 1 << flag;
}
kfree(d);
return ret;
}
bool bch2_is_zero(const void *_p, size_t n)
{
const char *p = _p;
size_t i;
for (i = 0; i < n; i++)
if (p[i])
return false;
return true;
}
/* time stats: */
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
static void bch2_quantiles_update(struct bch2_quantiles *q, u64 v)
{
unsigned i = 0;
while (i < ARRAY_SIZE(q->entries)) {
struct bch2_quantile_entry *e = q->entries + i;
if (unlikely(!e->step)) {
e->m = v;
e->step = max_t(unsigned, v / 2, 1024);
} else if (e->m > v) {
e->m = e->m >= e->step
? e->m - e->step
: 0;
} else if (e->m < v) {
e->m = e->m + e->step > e->m
? e->m + e->step
: U32_MAX;
}
if ((e->m > v ? e->m - v : v - e->m) < e->step)
e->step = max_t(unsigned, e->step / 2, 1);
if (v >= e->m)
break;
i = eytzinger0_child(i, v > e->m);
}
}
static void bch2_time_stats_update_one(struct bch2_time_stats *stats,
u64 start, u64 end)
{
u64 duration, freq;
duration = time_after64(end, start)
? end - start : 0;
freq = time_after64(end, stats->last_event)
? end - stats->last_event : 0;
stats->count++;
stats->average_duration = stats->average_duration
? ewma_add(stats->average_duration, duration, 6)
: duration;
stats->average_frequency = stats->average_frequency
? ewma_add(stats->average_frequency, freq, 6)
: freq;
stats->max_duration = max(stats->max_duration, duration);
stats->last_event = end;
bch2_quantiles_update(&stats->quantiles, duration);
}
void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end)
{
unsigned long flags;
if (!stats->buffer) {
spin_lock_irqsave(&stats->lock, flags);
bch2_time_stats_update_one(stats, start, end);
if (stats->average_frequency < 32 &&
stats->count > 1024)
stats->buffer =
alloc_percpu_gfp(struct bch2_time_stat_buffer,
GFP_ATOMIC);
spin_unlock_irqrestore(&stats->lock, flags);
} else {
struct bch2_time_stat_buffer_entry *i;
struct bch2_time_stat_buffer *b;
preempt_disable();
b = this_cpu_ptr(stats->buffer);
BUG_ON(b->nr >= ARRAY_SIZE(b->entries));
b->entries[b->nr++] = (struct bch2_time_stat_buffer_entry) {
.start = start,
.end = end
};
if (b->nr == ARRAY_SIZE(b->entries)) {
spin_lock_irqsave(&stats->lock, flags);
for (i = b->entries;
i < b->entries + ARRAY_SIZE(b->entries);
i++)
bch2_time_stats_update_one(stats, i->start, i->end);
spin_unlock_irqrestore(&stats->lock, flags);
b->nr = 0;
}
preempt_enable();
}
}
#endif
static const struct time_unit {
const char *name;
u32 nsecs;
} time_units[] = {
{ "ns", 1 },
{ "us", NSEC_PER_USEC },
{ "ms", NSEC_PER_MSEC },
{ "sec", NSEC_PER_SEC },
};
static const struct time_unit *pick_time_units(u64 ns)
{
const struct time_unit *u;
for (u = time_units;
u + 1 < time_units + ARRAY_SIZE(time_units) &&
ns >= u[1].nsecs << 1;
u++)
;
return u;
}
static void pr_time_units(struct printbuf *out, u64 ns)
{
const struct time_unit *u = pick_time_units(ns);
pr_buf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
}
void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
{
const struct time_unit *u;
u64 freq = READ_ONCE(stats->average_frequency);
u64 q, last_q = 0;
int i;
pr_buf(out, "count:\t\t%llu\n",
stats->count);
pr_buf(out, "rate:\t\t%llu/sec\n",
freq ? div64_u64(NSEC_PER_SEC, freq) : 0);
pr_buf(out, "frequency:\t");
pr_time_units(out, freq);
pr_buf(out, "\navg duration:\t");
pr_time_units(out, stats->average_duration);
pr_buf(out, "\nmax duration:\t");
pr_time_units(out, stats->max_duration);
i = eytzinger0_first(NR_QUANTILES);
u = pick_time_units(stats->quantiles.entries[i].m);
pr_buf(out, "\nquantiles (%s):\t", u->name);
eytzinger0_for_each(i, NR_QUANTILES) {
bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
q = max(stats->quantiles.entries[i].m, last_q);
pr_buf(out, "%llu%s",
div_u64(q, u->nsecs),
is_last ? "\n" : " ");
last_q = q;
}
}
void bch2_time_stats_exit(struct bch2_time_stats *stats)
{
free_percpu(stats->buffer);
}
void bch2_time_stats_init(struct bch2_time_stats *stats)
{
memset(stats, 0, sizeof(*stats));
spin_lock_init(&stats->lock);
}
/* ratelimit: */
/**
* bch2_ratelimit_delay() - return how long to delay until the next time to do
* some work
*
* @d - the struct bch_ratelimit to update
*
* Returns the amount of time to delay by, in jiffies
*/
u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
{
u64 now = local_clock();
return time_after64(d->next, now)
? nsecs_to_jiffies(d->next - now)
: 0;
}
/**
* bch2_ratelimit_increment() - increment @d by the amount of work done
*
* @d - the struct bch_ratelimit to update
* @done - the amount of work done, in arbitrary units
*/
void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
{
u64 now = local_clock();
d->next += div_u64(done * NSEC_PER_SEC, d->rate);
if (time_before64(now + NSEC_PER_SEC, d->next))
d->next = now + NSEC_PER_SEC;
if (time_after64(now - NSEC_PER_SEC * 2, d->next))
d->next = now - NSEC_PER_SEC * 2;
}
/* pd controller: */
/*
* Updates pd_controller. Attempts to scale inputed values to units per second.
* @target: desired value
* @actual: current value
*
* @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
* it makes actual go down.
*/
void bch2_pd_controller_update(struct bch_pd_controller *pd,
s64 target, s64 actual, int sign)
{
s64 proportional, derivative, change;
unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
if (seconds_since_update == 0)
return;
pd->last_update = jiffies;
proportional = actual - target;
proportional *= seconds_since_update;
proportional = div_s64(proportional, pd->p_term_inverse);
derivative = actual - pd->last_actual;
derivative = div_s64(derivative, seconds_since_update);
derivative = ewma_add(pd->smoothed_derivative, derivative,
(pd->d_term / seconds_since_update) ?: 1);
derivative = derivative * pd->d_term;
derivative = div_s64(derivative, pd->p_term_inverse);
change = proportional + derivative;
/* Don't increase rate if not keeping up */
if (change > 0 &&
pd->backpressure &&
time_after64(local_clock(),
pd->rate.next + NSEC_PER_MSEC))
change = 0;
change *= (sign * -1);
pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
1, UINT_MAX);
pd->last_actual = actual;
pd->last_derivative = derivative;
pd->last_proportional = proportional;
pd->last_change = change;
pd->last_target = target;
}
void bch2_pd_controller_init(struct bch_pd_controller *pd)
{
pd->rate.rate = 1024;
pd->last_update = jiffies;
pd->p_term_inverse = 6000;
pd->d_term = 30;
pd->d_smooth = pd->d_term;
pd->backpressure = 1;
}
size_t bch2_pd_controller_print_debug(struct bch_pd_controller *pd, char *buf)
{
/* 2^64 - 1 is 20 digits, plus null byte */
char rate[21];
char actual[21];
char target[21];
char proportional[21];
char derivative[21];
char change[21];
s64 next_io;
bch2_hprint(&PBUF(rate), pd->rate.rate);
bch2_hprint(&PBUF(actual), pd->last_actual);
bch2_hprint(&PBUF(target), pd->last_target);
bch2_hprint(&PBUF(proportional), pd->last_proportional);
bch2_hprint(&PBUF(derivative), pd->last_derivative);
bch2_hprint(&PBUF(change), pd->last_change);
next_io = div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC);
return sprintf(buf,
"rate:\t\t%s/sec\n"
"target:\t\t%s\n"
"actual:\t\t%s\n"
"proportional:\t%s\n"
"derivative:\t%s\n"
"change:\t\t%s/sec\n"
"next io:\t%llims\n",
rate, target, actual, proportional,
derivative, change, next_io);
}
/* misc: */
void bch2_bio_map(struct bio *bio, void *base, size_t size)
{
while (size) {
struct page *page = is_vmalloc_addr(base)
? vmalloc_to_page(base)
: virt_to_page(base);
unsigned offset = offset_in_page(base);
unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
BUG_ON(!bio_add_page(bio, page, len, offset));
size -= len;
base += len;
}
}
int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
{
while (size) {
struct page *page = alloc_pages(gfp_mask, 0);
unsigned len = min_t(size_t, PAGE_SIZE, size);
if (!page)
return -ENOMEM;
if (unlikely(!bio_add_page(bio, page, len, 0))) {
__free_page(page);
break;
}
size -= len;
}
return 0;
}
size_t bch2_rand_range(size_t max)
{
size_t rand;
if (!max)
return 0;
do {
rand = get_random_long();
rand &= roundup_pow_of_two(max) - 1;
} while (rand >= max);
return rand;
}
void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, dst, iter, dst_iter) {
void *dstp = kmap_atomic(bv.bv_page);
memcpy(dstp + bv.bv_offset, src, bv.bv_len);
kunmap_atomic(dstp);
src += bv.bv_len;
}
}
void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, src, iter, src_iter) {
void *srcp = kmap_atomic(bv.bv_page);
memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
kunmap_atomic(srcp);
dst += bv.bv_len;
}
}
void bch_scnmemcpy(struct printbuf *out,
const char *src, size_t len)
{
size_t n = printbuf_remaining(out);
if (n) {
n = min(n - 1, len);
memcpy(out->pos, src, n);
out->pos += n;
*out->pos = '\0';
}
}
#include "eytzinger.h"
static int alignment_ok(const void *base, size_t align)
{
return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
((unsigned long)base & (align - 1)) == 0;
}
static void u32_swap(void *a, void *b, size_t size)
{
u32 t = *(u32 *)a;
*(u32 *)a = *(u32 *)b;
*(u32 *)b = t;
}
static void u64_swap(void *a, void *b, size_t size)
{
u64 t = *(u64 *)a;
*(u64 *)a = *(u64 *)b;
*(u64 *)b = t;
}
static void generic_swap(void *a, void *b, size_t size)
{
char t;
do {
t = *(char *)a;
*(char *)a++ = *(char *)b;
*(char *)b++ = t;
} while (--size > 0);
}
static inline int do_cmp(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
size_t l, size_t r)
{
return cmp_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
static inline void do_swap(void *base, size_t n, size_t size,
void (*swap_func)(void *, void *, size_t),
size_t l, size_t r)
{
swap_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
void eytzinger0_sort(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t))
{
int i, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for (i = n / 2 - 1; i >= 0; --i) {
for (r = i; r * 2 + 1 < n; r = c) {
c = r * 2 + 1;
if (c + 1 < n &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
/* sort */
for (i = n - 1; i > 0; --i) {
do_swap(base, n, size, swap_func, 0, i);
for (r = 0; r * 2 + 1 < i; r = c) {
c = r * 2 + 1;
if (c + 1 < i &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
}
void sort_cmp_size(void *base, size_t num, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t size))
{
/* pre-scale counters for performance */
int i = (num/2 - 1) * size, n = num * size, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for ( ; i >= 0; i -= size) {
for (r = i; r * 2 + size < n; r = c) {
c = r * 2 + size;
if (c < n - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
/* sort */
for (i = n - size; i > 0; i -= size) {
swap_func(base, base + i, size);
for (r = 0; r * 2 + size < i; r = c) {
c = r * 2 + size;
if (c < i - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
}
static void mempool_free_vp(void *element, void *pool_data)
{
size_t size = (size_t) pool_data;
vpfree(element, size);
}
static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t) pool_data;
return vpmalloc(size, gfp_mask);
}
int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size)
{
return size < PAGE_SIZE
? mempool_init_kmalloc_pool(pool, min_nr, size)
: mempool_init(pool, min_nr, mempool_alloc_vp,
mempool_free_vp, (void *) size);
}
#if 0
void eytzinger1_test(void)
{
unsigned inorder, eytz, size;
pr_info("1 based eytzinger test:");
for (size = 2;
size < 65536;
size++) {
unsigned extra = eytzinger1_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0);
BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0);
inorder = 1;
eytzinger1_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger1_last(size) &&
eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
inorder++;
}
}
}
void eytzinger0_test(void)
{
unsigned inorder, eytz, size;
pr_info("0 based eytzinger test:");
for (size = 1;
size < 65536;
size++) {
unsigned extra = eytzinger0_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1);
BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1);
inorder = 0;
eytzinger0_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger0_last(size) &&
eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
inorder++;
}
}
}
static inline int cmp_u16(const void *_l, const void *_r, size_t size)
{
const u16 *l = _l, *r = _r;
return (*l > *r) - (*r - *l);
}
static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
{
int i, c1 = -1, c2 = -1;
ssize_t r;
r = eytzinger0_find_le(test_array, nr,
sizeof(test_array[0]),
cmp_u16, &search);
if (r >= 0)
c1 = test_array[r];
for (i = 0; i < nr; i++)
if (test_array[i] <= search && test_array[i] > c2)
c2 = test_array[i];
if (c1 != c2) {
eytzinger0_for_each(i, nr)
pr_info("[%3u] = %12u", i, test_array[i]);
pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
i, r, c1, c2);
}
}
void eytzinger0_find_test(void)
{
unsigned i, nr, allocated = 1 << 12;
u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
for (nr = 1; nr < allocated; nr++) {
pr_info("testing %u elems", nr);
get_random_bytes(test_array, nr * sizeof(test_array[0]));
eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
/* verify array is sorted correctly: */
eytzinger0_for_each(i, nr)
BUG_ON(i != eytzinger0_last(nr) &&
test_array[i] > test_array[eytzinger0_next(i, nr)]);
for (i = 0; i < U16_MAX; i += 1 << 12)
eytzinger0_find_test_val(test_array, nr, i);
for (i = 0; i < nr; i++) {
eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
eytzinger0_find_test_val(test_array, nr, test_array[i]);
eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
}
}
kfree(test_array);
}
#endif
/*
* Accumulate percpu counters onto one cpu's copy - only valid when access
* against any percpu counter is guarded against
*/
u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
{
u64 *ret;
int cpu;
preempt_disable();
ret = this_cpu_ptr(p);
preempt_enable();
for_each_possible_cpu(cpu) {
u64 *i = per_cpu_ptr(p, cpu);
if (i != ret) {
acc_u64s(ret, i, nr);
memset(i, 0, nr * sizeof(u64));
}
}
return ret;
}