1377 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
*
* Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio/consumer.h>
#include <linux/spi/spi.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/skbuff.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/ieee802154.h>
#include <linux/debugfs.h>
#include <net/mac802154.h>
#include <net/cfg802154.h>
#include <linux/device.h>
#include "mcr20a.h"
#define SPI_COMMAND_BUFFER 3
#define REGISTER_READ BIT(7)
#define REGISTER_WRITE (0 << 7)
#define REGISTER_ACCESS (0 << 6)
#define PACKET_BUFF_BURST_ACCESS BIT(6)
#define PACKET_BUFF_BYTE_ACCESS BIT(5)
#define MCR20A_WRITE_REG(x) (x)
#define MCR20A_READ_REG(x) (REGISTER_READ | (x))
#define MCR20A_BURST_READ_PACKET_BUF (0xC0)
#define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
#define MCR20A_CMD_REG 0x80
#define MCR20A_CMD_REG_MASK 0x3f
#define MCR20A_CMD_WRITE 0x40
#define MCR20A_CMD_FB 0x20
/* Number of Interrupt Request Status Register */
#define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
/* MCR20A CCA Type */
enum {
MCR20A_CCA_ED, // energy detect - CCA bit not active,
// not to be used for T and CCCA sequences
MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
MCR20A_CCA_MODE3
};
enum {
MCR20A_XCVSEQ_IDLE = 0x00,
MCR20A_XCVSEQ_RX = 0x01,
MCR20A_XCVSEQ_TX = 0x02,
MCR20A_XCVSEQ_CCA = 0x03,
MCR20A_XCVSEQ_TR = 0x04,
MCR20A_XCVSEQ_CCCA = 0x05,
};
/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
#define MCR20A_MIN_CHANNEL (11)
#define MCR20A_MAX_CHANNEL (26)
#define MCR20A_CHANNEL_SPACING (5)
/* MCR20A CCA Threshold constans */
#define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
#define MCR20A_MAX_CCA_THRESHOLD (0x00U)
/* version 0C */
#define MCR20A_OVERWRITE_VERSION (0x0C)
/* MCR20A PLL configurations */
static const u8 PLL_INT[16] = {
/* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
/* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
/* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
/* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
/* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
/* 2480 */ 0x0D
};
static const u8 PLL_FRAC[16] = {
/* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
/* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
/* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
/* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
/* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
/* 2480 */ 0x80
};
static const struct reg_sequence mar20a_iar_overwrites[] = {
{ IAR_MISC_PAD_CTRL, 0x02 },
{ IAR_VCO_CTRL1, 0xB3 },
{ IAR_VCO_CTRL2, 0x07 },
{ IAR_PA_TUNING, 0x71 },
{ IAR_CHF_IBUF, 0x2F },
{ IAR_CHF_QBUF, 0x2F },
{ IAR_CHF_IRIN, 0x24 },
{ IAR_CHF_QRIN, 0x24 },
{ IAR_CHF_IL, 0x24 },
{ IAR_CHF_QL, 0x24 },
{ IAR_CHF_CC1, 0x32 },
{ IAR_CHF_CCL, 0x1D },
{ IAR_CHF_CC2, 0x2D },
{ IAR_CHF_IROUT, 0x24 },
{ IAR_CHF_QROUT, 0x24 },
{ IAR_PA_CAL, 0x28 },
{ IAR_AGC_THR1, 0x55 },
{ IAR_AGC_THR2, 0x2D },
{ IAR_ATT_RSSI1, 0x5F },
{ IAR_ATT_RSSI2, 0x8F },
{ IAR_RSSI_OFFSET, 0x61 },
{ IAR_CHF_PMA_GAIN, 0x03 },
{ IAR_CCA1_THRESH, 0x50 },
{ IAR_CORR_NVAL, 0x13 },
{ IAR_ACKDELAY, 0x3D },
};
#define MCR20A_VALID_CHANNELS (0x07FFF800)
#define MCR20A_MAX_BUF (127)
#define printdev(X) (&X->spi->dev)
/* regmap information for Direct Access Register (DAR) access */
#define MCR20A_DAR_WRITE 0x01
#define MCR20A_DAR_READ 0x00
#define MCR20A_DAR_NUMREGS 0x3F
/* regmap information for Indirect Access Register (IAR) access */
#define MCR20A_IAR_ACCESS 0x80
#define MCR20A_IAR_NUMREGS 0xBEFF
/* Read/Write SPI Commands for DAR and IAR registers. */
#define MCR20A_READSHORT(reg) ((reg) << 1)
#define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
#define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
#define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
/* Type definitions for link configuration of instantiable layers */
#define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
static bool
mcr20a_dar_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
case DAR_PHY_CTRL1:
case DAR_PHY_CTRL2:
case DAR_PHY_CTRL3:
case DAR_PHY_CTRL4:
case DAR_SRC_CTRL:
case DAR_SRC_ADDRS_SUM_LSB:
case DAR_SRC_ADDRS_SUM_MSB:
case DAR_T3CMP_LSB:
case DAR_T3CMP_MSB:
case DAR_T3CMP_USB:
case DAR_T2PRIMECMP_LSB:
case DAR_T2PRIMECMP_MSB:
case DAR_T1CMP_LSB:
case DAR_T1CMP_MSB:
case DAR_T1CMP_USB:
case DAR_T2CMP_LSB:
case DAR_T2CMP_MSB:
case DAR_T2CMP_USB:
case DAR_T4CMP_LSB:
case DAR_T4CMP_MSB:
case DAR_T4CMP_USB:
case DAR_PLL_INT0:
case DAR_PLL_FRAC0_LSB:
case DAR_PLL_FRAC0_MSB:
case DAR_PA_PWR:
/* no DAR_ACM */
case DAR_OVERWRITE_VER:
case DAR_CLK_OUT_CTRL:
case DAR_PWR_MODES:
return true;
default:
return false;
}
}
static bool
mcr20a_dar_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = mcr20a_dar_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case DAR_RX_FRM_LEN:
case DAR_CCA1_ED_FNL:
case DAR_EVENT_TMR_LSB:
case DAR_EVENT_TMR_MSB:
case DAR_EVENT_TMR_USB:
case DAR_TIMESTAMP_LSB:
case DAR_TIMESTAMP_MSB:
case DAR_TIMESTAMP_USB:
case DAR_SEQ_STATE:
case DAR_LQI_VALUE:
case DAR_RSSI_CCA_CONT:
return true;
default:
return false;
}
}
static bool
mcr20a_dar_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
/* use them in spi_async and regmap so it's volatile */
return true;
default:
return false;
}
}
static bool
mcr20a_dar_precious(struct device *dev, unsigned int reg)
{
/* don't clear irq line on read */
switch (reg) {
case DAR_IRQ_STS1:
case DAR_IRQ_STS2:
case DAR_IRQ_STS3:
return true;
default:
return false;
}
}
static const struct regmap_config mcr20a_dar_regmap = {
.name = "mcr20a_dar",
.reg_bits = 8,
.val_bits = 8,
.write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
.read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = mcr20a_dar_writeable,
.readable_reg = mcr20a_dar_readable,
.volatile_reg = mcr20a_dar_volatile,
.precious_reg = mcr20a_dar_precious,
.fast_io = true,
.can_multi_write = true,
};
static bool
mcr20a_iar_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case IAR_XTAL_TRIM:
case IAR_PMC_LP_TRIM:
case IAR_MACPANID0_LSB:
case IAR_MACPANID0_MSB:
case IAR_MACSHORTADDRS0_LSB:
case IAR_MACSHORTADDRS0_MSB:
case IAR_MACLONGADDRS0_0:
case IAR_MACLONGADDRS0_8:
case IAR_MACLONGADDRS0_16:
case IAR_MACLONGADDRS0_24:
case IAR_MACLONGADDRS0_32:
case IAR_MACLONGADDRS0_40:
case IAR_MACLONGADDRS0_48:
case IAR_MACLONGADDRS0_56:
case IAR_RX_FRAME_FILTER:
case IAR_PLL_INT1:
case IAR_PLL_FRAC1_LSB:
case IAR_PLL_FRAC1_MSB:
case IAR_MACPANID1_LSB:
case IAR_MACPANID1_MSB:
case IAR_MACSHORTADDRS1_LSB:
case IAR_MACSHORTADDRS1_MSB:
case IAR_MACLONGADDRS1_0:
case IAR_MACLONGADDRS1_8:
case IAR_MACLONGADDRS1_16:
case IAR_MACLONGADDRS1_24:
case IAR_MACLONGADDRS1_32:
case IAR_MACLONGADDRS1_40:
case IAR_MACLONGADDRS1_48:
case IAR_MACLONGADDRS1_56:
case IAR_DUAL_PAN_CTRL:
case IAR_DUAL_PAN_DWELL:
case IAR_CCA1_THRESH:
case IAR_CCA1_ED_OFFSET_COMP:
case IAR_LQI_OFFSET_COMP:
case IAR_CCA_CTRL:
case IAR_CCA2_CORR_PEAKS:
case IAR_CCA2_CORR_THRESH:
case IAR_TMR_PRESCALE:
case IAR_ANT_PAD_CTRL:
case IAR_MISC_PAD_CTRL:
case IAR_BSM_CTRL:
case IAR_RNG:
case IAR_RX_WTR_MARK:
case IAR_SOFT_RESET:
case IAR_TXDELAY:
case IAR_ACKDELAY:
case IAR_CORR_NVAL:
case IAR_ANT_AGC_CTRL:
case IAR_AGC_THR1:
case IAR_AGC_THR2:
case IAR_PA_CAL:
case IAR_ATT_RSSI1:
case IAR_ATT_RSSI2:
case IAR_RSSI_OFFSET:
case IAR_XTAL_CTRL:
case IAR_CHF_PMA_GAIN:
case IAR_CHF_IBUF:
case IAR_CHF_QBUF:
case IAR_CHF_IRIN:
case IAR_CHF_QRIN:
case IAR_CHF_IL:
case IAR_CHF_QL:
case IAR_CHF_CC1:
case IAR_CHF_CCL:
case IAR_CHF_CC2:
case IAR_CHF_IROUT:
case IAR_CHF_QROUT:
case IAR_PA_TUNING:
case IAR_VCO_CTRL1:
case IAR_VCO_CTRL2:
return true;
default:
return false;
}
}
static bool
mcr20a_iar_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = mcr20a_iar_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case IAR_PART_ID:
case IAR_DUAL_PAN_STS:
case IAR_RX_BYTE_COUNT:
case IAR_FILTERFAIL_CODE1:
case IAR_FILTERFAIL_CODE2:
case IAR_RSSI:
return true;
default:
return false;
}
}
static bool
mcr20a_iar_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case IAR_DUAL_PAN_STS:
case IAR_RX_BYTE_COUNT:
case IAR_FILTERFAIL_CODE1:
case IAR_FILTERFAIL_CODE2:
case IAR_RSSI:
return true;
default:
return false;
}
}
static const struct regmap_config mcr20a_iar_regmap = {
.name = "mcr20a_iar",
.reg_bits = 16,
.val_bits = 8,
.write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
.read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = mcr20a_iar_writeable,
.readable_reg = mcr20a_iar_readable,
.volatile_reg = mcr20a_iar_volatile,
.fast_io = true,
};
struct mcr20a_local {
struct spi_device *spi;
struct ieee802154_hw *hw;
struct regmap *regmap_dar;
struct regmap *regmap_iar;
u8 *buf;
bool is_tx;
/* for writing tx buffer */
struct spi_message tx_buf_msg;
u8 tx_header[1];
/* burst buffer write command */
struct spi_transfer tx_xfer_header;
u8 tx_len[1];
/* len of tx packet */
struct spi_transfer tx_xfer_len;
/* data of tx packet */
struct spi_transfer tx_xfer_buf;
struct sk_buff *tx_skb;
/* for read length rxfifo */
struct spi_message reg_msg;
u8 reg_cmd[1];
u8 reg_data[MCR20A_IRQSTS_NUM];
struct spi_transfer reg_xfer_cmd;
struct spi_transfer reg_xfer_data;
/* receive handling */
struct spi_message rx_buf_msg;
u8 rx_header[1];
struct spi_transfer rx_xfer_header;
u8 rx_lqi[1];
struct spi_transfer rx_xfer_lqi;
u8 rx_buf[MCR20A_MAX_BUF];
struct spi_transfer rx_xfer_buf;
/* isr handling for reading intstat */
struct spi_message irq_msg;
u8 irq_header[1];
u8 irq_data[MCR20A_IRQSTS_NUM];
struct spi_transfer irq_xfer_data;
struct spi_transfer irq_xfer_header;
};
static void
mcr20a_write_tx_buf_complete(void *context)
{
struct mcr20a_local *lp = context;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
lp->reg_msg.complete = NULL;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
lp->reg_data[0] = MCR20A_XCVSEQ_TX;
lp->reg_xfer_data.len = 1;
ret = spi_async(lp->spi, &lp->reg_msg);
if (ret)
dev_err(printdev(lp), "failed to set SEQ TX\n");
}
static int
mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
lp->tx_skb = skb;
print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb->len, 0);
lp->is_tx = 1;
lp->reg_msg.complete = NULL;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
lp->reg_xfer_data.len = 1;
return spi_async(lp->spi, &lp->reg_msg);
}
static int
mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
{
WARN_ON(!level);
*level = 0xbe;
return 0;
}
static int
mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct mcr20a_local *lp = hw->priv;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
if (ret)
return ret;
ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
if (ret)
return ret;
ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
PLL_FRAC[channel - 11]);
if (ret)
return ret;
return 0;
}
static int
mcr20a_start(struct ieee802154_hw *hw)
{
struct mcr20a_local *lp = hw->priv;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* No slotted operation */
dev_dbg(printdev(lp), "no slotted operation\n");
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_SLOTTED, 0x0);
if (ret < 0)
return ret;
/* enable irq */
enable_irq(lp->spi->irq);
/* Unmask SEQ interrupt */
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
DAR_PHY_CTRL2_SEQMSK, 0x0);
if (ret < 0)
return ret;
/* Start the RX sequence */
dev_dbg(printdev(lp), "start the RX sequence\n");
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
if (ret < 0)
return ret;
return 0;
}
static void
mcr20a_stop(struct ieee802154_hw *hw)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
/* stop all running sequence */
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
/* disable irq */
disable_irq(lp->spi->irq);
}
static int
mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct mcr20a_local *lp = hw->priv;
dev_dbg(printdev(lp), "%s\n", __func__);
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
u16 addr = le16_to_cpu(filt->short_addr);
regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
}
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
u16 pan = le16_to_cpu(filt->pan_id);
regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
}
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
u8 addr[8], i;
memcpy(addr, &filt->ieee_addr, 8);
for (i = 0; i < 8; i++)
regmap_write(lp->regmap_iar,
IAR_MACLONGADDRS0_0 + i, addr[i]);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
if (filt->pan_coord) {
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
} else {
regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
}
}
return 0;
}
/* -30 dBm to 10 dBm */
#define MCR20A_MAX_TX_POWERS 0x14
static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
};
static int
mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
{
struct mcr20a_local *lp = hw->priv;
u32 i;
dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
if (lp->hw->phy->supported.tx_powers[i] == mbm)
return regmap_write(lp->regmap_dar, DAR_PA_PWR,
((i + 8) & 0x1F));
}
return -EINVAL;
}
#define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
static int
mcr20a_set_cca_mode(struct ieee802154_hw *hw,
const struct wpan_phy_cca *cca)
{
struct mcr20a_local *lp = hw->priv;
unsigned int cca_mode = 0xff;
bool cca_mode_and = false;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* mapping 802.15.4 to driver spec */
switch (cca->mode) {
case NL802154_CCA_ENERGY:
cca_mode = MCR20A_CCA_MODE1;
break;
case NL802154_CCA_CARRIER:
cca_mode = MCR20A_CCA_MODE2;
break;
case NL802154_CCA_ENERGY_CARRIER:
switch (cca->opt) {
case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
cca_mode = MCR20A_CCA_MODE3;
cca_mode_and = true;
break;
case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
cca_mode = MCR20A_CCA_MODE3;
cca_mode_and = false;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_CCATYPE_MASK,
cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
if (ret < 0)
return ret;
if (cca_mode == MCR20A_CCA_MODE3) {
if (cca_mode_and) {
ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
IAR_CCA_CTRL_CCA3_AND_NOT_OR,
0x08);
} else {
ret = regmap_update_bits(lp->regmap_iar,
IAR_CCA_CTRL,
IAR_CCA_CTRL_CCA3_AND_NOT_OR,
0x00);
}
if (ret < 0)
return ret;
}
return ret;
}
static int
mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
{
struct mcr20a_local *lp = hw->priv;
u32 i;
dev_dbg(printdev(lp), "%s\n", __func__);
for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
if (hw->phy->supported.cca_ed_levels[i] == mbm)
return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
}
return 0;
}
static int
mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
{
struct mcr20a_local *lp = hw->priv;
int ret;
u8 rx_frame_filter_reg = 0x0;
dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
if (on) {
/* All frame types accepted*/
rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
IAR_RX_FRAME_FLT_NS_FT);
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PROMISCUOUS,
DAR_PHY_CTRL4_PROMISCUOUS);
if (ret < 0)
return ret;
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
rx_frame_filter_reg);
if (ret < 0)
return ret;
} else {
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
IAR_RX_FRAME_FLT_FRM_VER |
IAR_RX_FRAME_FLT_BEACON_FT |
IAR_RX_FRAME_FLT_DATA_FT |
IAR_RX_FRAME_FLT_CMD_FT);
if (ret < 0)
return ret;
}
return 0;
}
static const struct ieee802154_ops mcr20a_hw_ops = {
.owner = THIS_MODULE,
.xmit_async = mcr20a_xmit,
.ed = mcr20a_ed,
.set_channel = mcr20a_set_channel,
.start = mcr20a_start,
.stop = mcr20a_stop,
.set_hw_addr_filt = mcr20a_set_hw_addr_filt,
.set_txpower = mcr20a_set_txpower,
.set_cca_mode = mcr20a_set_cca_mode,
.set_cca_ed_level = mcr20a_set_cca_ed_level,
.set_promiscuous_mode = mcr20a_set_promiscuous_mode,
};
static int
mcr20a_request_rx(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
/* Start the RX sequence */
regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
return 0;
}
static void
mcr20a_handle_rx_read_buf_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
struct sk_buff *skb;
dev_dbg(printdev(lp), "%s\n", __func__);
dev_dbg(printdev(lp), "RX is done\n");
if (!ieee802154_is_valid_psdu_len(len)) {
dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
len = IEEE802154_MTU;
}
len = len - 2; /* get rid of frame check field */
skb = dev_alloc_skb(len);
if (!skb)
return;
__skb_put_data(skb, lp->rx_buf, len);
ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
lp->rx_buf, len, 0);
pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
/* start RX sequence */
mcr20a_request_rx(lp);
}
static void
mcr20a_handle_rx_read_len_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 len;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* get the length of received frame */
len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
dev_dbg(printdev(lp), "frame len : %d\n", len);
/* prepare to read the rx buf */
lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
lp->rx_xfer_buf.len = len;
ret = spi_async(lp->spi, &lp->rx_buf_msg);
if (ret)
dev_err(printdev(lp), "failed to read rx buffer length\n");
}
static int
mcr20a_handle_rx(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
lp->reg_xfer_data.len = 1;
return spi_async(lp->spi, &lp->reg_msg);
}
static int
mcr20a_handle_tx_complete(struct mcr20a_local *lp)
{
dev_dbg(printdev(lp), "%s\n", __func__);
ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
return mcr20a_request_rx(lp);
}
static int
mcr20a_handle_tx(struct mcr20a_local *lp)
{
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* write tx buffer */
lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
/* add 2 bytes of FCS */
lp->tx_len[0] = lp->tx_skb->len + 2;
lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
/* add 1 byte psduLength */
lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
ret = spi_async(lp->spi, &lp->tx_buf_msg);
if (ret) {
dev_err(printdev(lp), "SPI write Failed for TX buf\n");
return ret;
}
return 0;
}
static void
mcr20a_irq_clean_complete(void *context)
{
struct mcr20a_local *lp = context;
u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
dev_dbg(printdev(lp), "%s\n", __func__);
enable_irq(lp->spi->irq);
dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
switch (seq_state) {
/* TX IRQ, RX IRQ and SEQ IRQ */
case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
if (lp->is_tx) {
lp->is_tx = 0;
dev_dbg(printdev(lp), "TX is done. No ACK\n");
mcr20a_handle_tx_complete(lp);
}
break;
case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
/* rx is starting */
dev_dbg(printdev(lp), "RX is starting\n");
mcr20a_handle_rx(lp);
break;
case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
if (lp->is_tx) {
/* tx is done */
lp->is_tx = 0;
dev_dbg(printdev(lp), "TX is done. Get ACK\n");
mcr20a_handle_tx_complete(lp);
} else {
/* rx is starting */
dev_dbg(printdev(lp), "RX is starting\n");
mcr20a_handle_rx(lp);
}
break;
case (DAR_IRQSTS1_SEQIRQ):
if (lp->is_tx) {
dev_dbg(printdev(lp), "TX is starting\n");
mcr20a_handle_tx(lp);
} else {
dev_dbg(printdev(lp), "MCR20A is stop\n");
}
break;
}
}
static void mcr20a_irq_status_complete(void *context)
{
int ret;
struct mcr20a_local *lp = context;
dev_dbg(printdev(lp), "%s\n", __func__);
regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
lp->reg_msg.complete = mcr20a_irq_clean_complete;
lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
ret = spi_async(lp->spi, &lp->reg_msg);
if (ret)
dev_err(printdev(lp), "failed to clean irq status\n");
}
static irqreturn_t mcr20a_irq_isr(int irq, void *data)
{
struct mcr20a_local *lp = data;
int ret;
disable_irq_nosync(irq);
lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
/* read IRQSTSx */
ret = spi_async(lp->spi, &lp->irq_msg);
if (ret) {
enable_irq(irq);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static void mcr20a_hw_setup(struct mcr20a_local *lp)
{
u8 i;
struct ieee802154_hw *hw = lp->hw;
struct wpan_phy *phy = lp->hw->phy;
dev_dbg(printdev(lp), "%s\n", __func__);
phy->symbol_duration = 16;
phy->lifs_period = 40;
phy->sifs_period = 12;
hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
IEEE802154_HW_AFILT |
IEEE802154_HW_PROMISCUOUS;
phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
WPAN_PHY_FLAG_CCA_MODE;
phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
/* initiating cca_ed_levels */
for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
++i) {
mcr20a_ed_levels[i] = -i * 100;
}
phy->supported.cca_ed_levels = mcr20a_ed_levels;
phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
phy->cca.mode = NL802154_CCA_ENERGY;
phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
phy->current_page = 0;
/* MCR20A default reset value */
phy->current_channel = 20;
phy->symbol_duration = 16;
phy->supported.tx_powers = mcr20a_powers;
phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
phy->cca_ed_level = phy->supported.cca_ed_levels[75];
phy->transmit_power = phy->supported.tx_powers[0x0F];
}
static void
mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->tx_buf_msg);
lp->tx_buf_msg.context = lp;
lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
lp->tx_xfer_header.len = 1;
lp->tx_xfer_header.tx_buf = lp->tx_header;
lp->tx_xfer_len.len = 1;
lp->tx_xfer_len.tx_buf = lp->tx_len;
spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
}
static void
mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->reg_msg);
lp->reg_msg.context = lp;
lp->reg_xfer_cmd.len = 1;
lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
lp->reg_xfer_data.rx_buf = lp->reg_data;
lp->reg_xfer_data.tx_buf = lp->reg_data;
spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
spi_message_init(&lp->rx_buf_msg);
lp->rx_buf_msg.context = lp;
lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
lp->rx_xfer_header.len = 1;
lp->rx_xfer_header.tx_buf = lp->rx_header;
lp->rx_xfer_header.rx_buf = lp->rx_header;
lp->rx_xfer_buf.rx_buf = lp->rx_buf;
lp->rx_xfer_lqi.len = 1;
lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
}
static void
mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
{
spi_message_init(&lp->irq_msg);
lp->irq_msg.context = lp;
lp->irq_msg.complete = mcr20a_irq_status_complete;
lp->irq_xfer_header.len = 1;
lp->irq_xfer_header.tx_buf = lp->irq_header;
lp->irq_xfer_header.rx_buf = lp->irq_header;
lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
lp->irq_xfer_data.rx_buf = lp->irq_data;
spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
}
static int
mcr20a_phy_init(struct mcr20a_local *lp)
{
u8 index;
unsigned int phy_reg = 0;
int ret;
dev_dbg(printdev(lp), "%s\n", __func__);
/* Disable Tristate on COCO MISO for SPI reads */
ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
if (ret)
goto err_ret;
/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
* immediately after init
*/
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
if (ret)
goto err_ret;
/* Clear all PP IRQ bits in IRQSTS2 */
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
DAR_IRQSTS2_WAKE_IRQ);
if (ret)
goto err_ret;
/* Disable all timer interrupts */
ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
if (ret)
goto err_ret;
/* PHY_CTRL1 : default HW settings + AUTOACK enabled */
ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
/* PHY_CTRL2 : disable all interrupts */
ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
if (ret)
goto err_ret;
/* PHY_CTRL3 : disable all timers and remaining interrupts */
ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
DAR_PHY_CTRL3_WAKE_MSK);
if (ret)
goto err_ret;
/* SRC_CTRL : enable Acknowledge Frame Pending and
* Source Address Matching Enable
*/
ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
DAR_SRC_CTRL_ACK_FRM_PND |
(DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
if (ret)
goto err_ret;
/* RX_FRAME_FILTER */
/* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
IAR_RX_FRAME_FLT_FRM_VER |
IAR_RX_FRAME_FLT_BEACON_FT |
IAR_RX_FRAME_FLT_DATA_FT |
IAR_RX_FRAME_FLT_CMD_FT);
if (ret)
goto err_ret;
dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
MCR20A_OVERWRITE_VERSION);
/* Overwrites direct registers */
ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
MCR20A_OVERWRITE_VERSION);
if (ret)
goto err_ret;
/* Overwrites indirect registers */
ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
ARRAY_SIZE(mar20a_iar_overwrites));
if (ret)
goto err_ret;
/* Clear HW indirect queue */
dev_dbg(printdev(lp), "clear HW indirect queue\n");
for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
DAR_SRC_CTRL_INDEX_SHIFT)
| (DAR_SRC_CTRL_SRCADDR_EN)
| (DAR_SRC_CTRL_INDEX_DISABLE));
ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
if (ret)
goto err_ret;
phy_reg = 0;
}
/* Assign HW Indirect hash table to PAN0 */
ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
if (ret)
goto err_ret;
/* Clear current lvl */
phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
/* Set new lvl */
phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
if (ret)
goto err_ret;
/* Set CCA threshold to -75 dBm */
ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
if (ret)
goto err_ret;
/* Set prescaller to obtain 1 symbol (16us) timebase */
ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
if (ret)
goto err_ret;
/* Enable autodoze mode. */
ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
DAR_PWR_MODES_AUTODOZE,
DAR_PWR_MODES_AUTODOZE);
if (ret)
goto err_ret;
/* Disable clk_out */
ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
DAR_CLK_OUT_CTRL_EN, 0x0);
if (ret)
goto err_ret;
return 0;
err_ret:
return ret;
}
static int
mcr20a_probe(struct spi_device *spi)
{
struct ieee802154_hw *hw;
struct mcr20a_local *lp;
struct gpio_desc *rst_b;
int irq_type;
int ret = -ENOMEM;
dev_dbg(&spi->dev, "%s\n", __func__);
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH);
if (IS_ERR(rst_b)) {
ret = PTR_ERR(rst_b);
if (ret != -EPROBE_DEFER)
dev_err(&spi->dev, "Failed to get 'rst_b' gpio: %d", ret);
return ret;
}
/* reset mcr20a */
usleep_range(10, 20);
gpiod_set_value_cansleep(rst_b, 1);
usleep_range(10, 20);
gpiod_set_value_cansleep(rst_b, 0);
usleep_range(120, 240);
/* allocate ieee802154_hw and private data */
hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
if (!hw) {
dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
return ret;
}
/* init mcr20a local data */
lp = hw->priv;
lp->hw = hw;
lp->spi = spi;
/* init ieee802154_hw */
hw->parent = &spi->dev;
ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
/* init buf */
lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
if (!lp->buf) {
ret = -ENOMEM;
goto free_dev;
}
mcr20a_setup_tx_spi_messages(lp);
mcr20a_setup_rx_spi_messages(lp);
mcr20a_setup_irq_spi_messages(lp);
/* setup regmap */
lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
if (IS_ERR(lp->regmap_dar)) {
ret = PTR_ERR(lp->regmap_dar);
dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
ret);
goto free_dev;
}
lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
if (IS_ERR(lp->regmap_iar)) {
ret = PTR_ERR(lp->regmap_iar);
dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
goto free_dev;
}
mcr20a_hw_setup(lp);
spi_set_drvdata(spi, lp);
ret = mcr20a_phy_init(lp);
if (ret < 0) {
dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
goto free_dev;
}
irq_type = irq_get_trigger_type(spi->irq);
if (!irq_type)
irq_type = IRQF_TRIGGER_FALLING;
ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
irq_type, dev_name(&spi->dev), lp);
if (ret) {
dev_err(&spi->dev, "could not request_irq for mcr20a\n");
ret = -ENODEV;
goto free_dev;
}
/* disable_irq by default and wait for starting hardware */
disable_irq(spi->irq);
ret = ieee802154_register_hw(hw);
if (ret) {
dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
goto free_dev;
}
return ret;
free_dev:
ieee802154_free_hw(lp->hw);
return ret;
}
static int mcr20a_remove(struct spi_device *spi)
{
struct mcr20a_local *lp = spi_get_drvdata(spi);
dev_dbg(&spi->dev, "%s\n", __func__);
ieee802154_unregister_hw(lp->hw);
ieee802154_free_hw(lp->hw);
return 0;
}
static const struct of_device_id mcr20a_of_match[] = {
{ .compatible = "nxp,mcr20a", },
{ },
};
MODULE_DEVICE_TABLE(of, mcr20a_of_match);
static const struct spi_device_id mcr20a_device_id[] = {
{ .name = "mcr20a", },
{ },
};
MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
static struct spi_driver mcr20a_driver = {
.id_table = mcr20a_device_id,
.driver = {
.of_match_table = of_match_ptr(mcr20a_of_match),
.name = "mcr20a",
},
.probe = mcr20a_probe,
.remove = mcr20a_remove,
};
module_spi_driver(mcr20a_driver);
MODULE_DESCRIPTION("MCR20A Transceiver Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");