linux-stable/fs/bcachefs/fs.c

1909 lines
45 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "acl.h"
#include "btree_update.h"
#include "buckets.h"
#include "chardev.h"
#include "dirent.h"
#include "extents.h"
#include "fs.h"
#include "fs-io.h"
#include "fs-ioctl.h"
#include "fsck.h"
#include "inode.h"
#include "io.h"
#include "journal.h"
#include "keylist.h"
#include "quota.h"
#include "super.h"
#include "xattr.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/exportfs.h>
#include <linux/fiemap.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/posix_acl.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/statfs.h>
#include <linux/xattr.h>
static struct kmem_cache *bch2_inode_cache;
static void bch2_vfs_inode_init(struct bch_fs *,
struct bch_inode_info *,
struct bch_inode_unpacked *);
static void journal_seq_copy(struct bch_inode_info *dst,
u64 journal_seq)
{
u64 old, v = READ_ONCE(dst->ei_journal_seq);
do {
old = v;
if (old >= journal_seq)
break;
} while ((v = cmpxchg(&dst->ei_journal_seq, old, journal_seq)) != old);
}
static void __pagecache_lock_put(struct pagecache_lock *lock, long i)
{
BUG_ON(atomic_long_read(&lock->v) == 0);
if (atomic_long_sub_return_release(i, &lock->v) == 0)
wake_up_all(&lock->wait);
}
static bool __pagecache_lock_tryget(struct pagecache_lock *lock, long i)
{
long v = atomic_long_read(&lock->v), old;
do {
old = v;
if (i > 0 ? v < 0 : v > 0)
return false;
} while ((v = atomic_long_cmpxchg_acquire(&lock->v,
old, old + i)) != old);
return true;
}
static void __pagecache_lock_get(struct pagecache_lock *lock, long i)
{
wait_event(lock->wait, __pagecache_lock_tryget(lock, i));
}
void bch2_pagecache_add_put(struct pagecache_lock *lock)
{
__pagecache_lock_put(lock, 1);
}
void bch2_pagecache_add_get(struct pagecache_lock *lock)
{
__pagecache_lock_get(lock, 1);
}
void bch2_pagecache_block_put(struct pagecache_lock *lock)
{
__pagecache_lock_put(lock, -1);
}
void bch2_pagecache_block_get(struct pagecache_lock *lock)
{
__pagecache_lock_get(lock, -1);
}
/*
* I_SIZE_DIRTY requires special handling:
*
* To the recovery code, the flag means that there is stale data past i_size
* that needs to be deleted; it's used for implementing atomic appends and
* truncates.
*
* On append, we set I_SIZE_DIRTY before doing the write, then after the write
* we clear I_SIZE_DIRTY atomically with updating i_size to the new larger size
* that exposes the data we just wrote.
*
* On truncate, it's the reverse: We set I_SIZE_DIRTY atomically with setting
* i_size to the new smaller size, then we delete the data that we just made
* invisible, and then we clear I_SIZE_DIRTY.
*
* Because there can be multiple appends in flight at a time, we need a refcount
* (i_size_dirty_count) instead of manipulating the flag directly. Nonzero
* refcount means I_SIZE_DIRTY is set, zero means it's cleared.
*
* Because write_inode() can be called at any time, i_size_dirty_count means
* something different to the runtime code - it means to write_inode() "don't
* update i_size yet".
*
* We don't clear I_SIZE_DIRTY directly, we let write_inode() clear it when
* i_size_dirty_count is zero - but the reverse is not true, I_SIZE_DIRTY must
* be set explicitly.
*/
void bch2_inode_update_after_write(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
unsigned fields)
{
set_nlink(&inode->v, bi->bi_flags & BCH_INODE_UNLINKED
? 0
: bi->bi_nlink + nlink_bias(inode->v.i_mode));
i_uid_write(&inode->v, bi->bi_uid);
i_gid_write(&inode->v, bi->bi_gid);
inode->v.i_mode = bi->bi_mode;
if (fields & ATTR_ATIME)
inode->v.i_atime = bch2_time_to_timespec(c, bi->bi_atime);
if (fields & ATTR_MTIME)
inode->v.i_mtime = bch2_time_to_timespec(c, bi->bi_mtime);
if (fields & ATTR_CTIME)
inode_set_ctime_to_ts(&inode->v, bch2_time_to_timespec(c, bi->bi_ctime));
inode->ei_inode = *bi;
bch2_inode_flags_to_vfs(inode);
}
int __must_check bch2_write_inode_trans(struct btree_trans *trans,
struct bch_inode_info *inode,
struct bch_inode_unpacked *inode_u,
inode_set_fn set,
void *p)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = NULL;
struct bkey_inode_buf *inode_p;
int ret;
lockdep_assert_held(&inode->ei_update_lock);
if (c->opts.new_inode_updates) {
/* XXX: Don't do this with btree locks held */
if (!inode->ei_inode_update)
inode->ei_inode_update =
bch2_deferred_update_alloc(c, BTREE_ID_INODES, 64);
} else {
iter = bch2_trans_get_iter(trans, BTREE_ID_INODES,
POS(inode->v.i_ino, 0),
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
if (IS_ERR(iter))
return PTR_ERR(iter);
/* The btree node lock is our lock on the inode: */
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
}
*inode_u = inode->ei_inode;
if (set) {
ret = set(inode, inode_u, p);
if (ret)
return ret;
}
inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p));
if (IS_ERR(inode_p))
return PTR_ERR(inode_p);
bch2_inode_pack(inode_p, inode_u);
if (!inode->ei_inode_update)
bch2_trans_update(trans,
BTREE_INSERT_ENTRY(iter, &inode_p->inode.k_i));
else
bch2_trans_update(trans,
BTREE_INSERT_DEFERRED(inode->ei_inode_update,
&inode_p->inode.k_i));
return 0;
}
int __must_check bch2_write_inode(struct bch_fs *c,
struct bch_inode_info *inode,
inode_set_fn set,
void *p, unsigned fields)
{
struct btree_trans trans;
struct bch_inode_unpacked inode_u;
int ret;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
ret = bch2_write_inode_trans(&trans, inode, &inode_u, set, p) ?:
bch2_trans_commit(&trans, NULL,
&inode->ei_journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK|
BTREE_INSERT_NOFAIL);
if (ret == -EINTR)
goto retry;
/*
* the btree node lock protects inode->ei_inode, not ei_update_lock;
* this is important for inode updates via bchfs_write_index_update
*/
if (!ret)
bch2_inode_update_after_write(c, inode, &inode_u, fields);
bch2_trans_exit(&trans);
return ret < 0 ? ret : 0;
}
int bch2_fs_quota_transfer(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_qid new_qid,
unsigned qtypes,
enum quota_acct_mode mode)
{
unsigned i;
int ret;
qtypes &= enabled_qtypes(c);
for (i = 0; i < QTYP_NR; i++)
if (new_qid.q[i] == inode->ei_qid.q[i])
qtypes &= ~(1U << i);
if (!qtypes)
return 0;
mutex_lock(&inode->ei_quota_lock);
ret = bch2_quota_transfer(c, qtypes, new_qid,
inode->ei_qid,
inode->v.i_blocks +
inode->ei_quota_reserved,
mode);
if (!ret)
for (i = 0; i < QTYP_NR; i++)
if (qtypes & (1 << i))
inode->ei_qid.q[i] = new_qid.q[i];
mutex_unlock(&inode->ei_quota_lock);
return ret;
}
int bch2_reinherit_attrs_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_inode_info *dir = p;
u64 src, dst;
unsigned id;
int ret = 1;
for (id = 0; id < Inode_opt_nr; id++) {
if (bi->bi_fields_set & (1 << id))
continue;
src = bch2_inode_opt_get(&dir->ei_inode, id);
dst = bch2_inode_opt_get(bi, id);
if (src == dst)
continue;
bch2_inode_opt_set(bi, id, src);
ret = 0;
}
return ret;
}
struct inode *bch2_vfs_inode_get(struct bch_fs *c, u64 inum)
{
struct bch_inode_unpacked inode_u;
struct bch_inode_info *inode;
int ret;
inode = to_bch_ei(iget_locked(c->vfs_sb, inum));
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
if (!(inode->v.i_state & I_NEW))
return &inode->v;
ret = bch2_inode_find_by_inum(c, inum, &inode_u);
if (ret) {
iget_failed(&inode->v);
return ERR_PTR(ret);
}
bch2_vfs_inode_init(c, inode, &inode_u);
inode->ei_journal_seq = bch2_inode_journal_seq(&c->journal, inum);
unlock_new_inode(&inode->v);
return &inode->v;
}
static void bch2_inode_init_owner(struct bch_inode_unpacked *inode_u,
const struct inode *dir, umode_t mode)
{
kuid_t uid = current_fsuid();
kgid_t gid;
if (dir && dir->i_mode & S_ISGID) {
gid = dir->i_gid;
if (S_ISDIR(mode))
mode |= S_ISGID;
} else
gid = current_fsgid();
inode_u->bi_uid = from_kuid(i_user_ns(dir), uid);
inode_u->bi_gid = from_kgid(i_user_ns(dir), gid);
inode_u->bi_mode = mode;
}
static int inode_update_for_create_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_inode_unpacked *new_inode = p;
bi->bi_mtime = bi->bi_ctime = bch2_current_time(c);
if (S_ISDIR(new_inode->bi_mode))
bi->bi_nlink++;
return 0;
}
static int inum_test(struct inode *inode, void *p)
{
unsigned long *ino = p;
return *ino == inode->i_ino;
}
static struct bch_inode_info *
__bch2_create(struct mnt_idmap *idmap,
struct bch_inode_info *dir, struct dentry *dentry,
umode_t mode, dev_t rdev, bool tmpfile)
{
struct bch_fs *c = dir->v.i_sb->s_fs_info;
struct btree_trans trans;
struct bch_inode_unpacked dir_u;
struct bch_inode_info *inode, *old;
struct bch_inode_unpacked inode_u;
struct bch_hash_info hash_info;
struct posix_acl *default_acl = NULL, *acl = NULL;
u64 journal_seq = 0;
int ret;
bch2_inode_init(c, &inode_u, 0, 0, 0, rdev, &dir->ei_inode);
bch2_inode_init_owner(&inode_u, &dir->v, mode);
hash_info = bch2_hash_info_init(c, &inode_u);
if (tmpfile)
inode_u.bi_flags |= BCH_INODE_UNLINKED;
ret = bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, 1,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
return ERR_PTR(ret);
#ifdef CONFIG_BCACHEFS_POSIX_ACL
ret = posix_acl_create(&dir->v, &inode_u.bi_mode, &default_acl, &acl);
if (ret)
goto err;
#endif
/*
* preallocate vfs inode before btree transaction, so that nothing can
* fail after the transaction succeeds:
*/
inode = to_bch_ei(new_inode(c->vfs_sb));
if (unlikely(!inode)) {
ret = -ENOMEM;
goto err;
}
if (!tmpfile)
mutex_lock(&dir->ei_update_lock);
bch2_trans_init(&trans, c, 8, 1024);
retry:
bch2_trans_begin(&trans);
ret = __bch2_inode_create(&trans, &inode_u,
BLOCKDEV_INODE_MAX, 0,
&c->unused_inode_hint) ?:
(default_acl
? bch2_set_acl_trans(&trans, &inode_u, &hash_info,
default_acl, ACL_TYPE_DEFAULT)
: 0) ?:
(acl
? bch2_set_acl_trans(&trans, &inode_u, &hash_info,
acl, ACL_TYPE_ACCESS)
: 0) ?:
(!tmpfile
? __bch2_dirent_create(&trans, dir->v.i_ino,
&dir->ei_str_hash,
mode_to_type(mode),
&dentry->d_name,
inode_u.bi_inum,
BCH_HASH_SET_MUST_CREATE)
: 0) ?:
(!tmpfile
? bch2_write_inode_trans(&trans, dir, &dir_u,
inode_update_for_create_fn,
&inode_u)
: 0) ?:
bch2_trans_commit(&trans, NULL,
&journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK);
if (ret == -EINTR)
goto retry;
if (unlikely(ret))
goto err_trans;
if (!tmpfile) {
bch2_inode_update_after_write(c, dir, &dir_u,
ATTR_MTIME|ATTR_CTIME);
journal_seq_copy(dir, journal_seq);
mutex_unlock(&dir->ei_update_lock);
}
bch2_vfs_inode_init(c, inode, &inode_u);
journal_seq_copy(inode, journal_seq);
set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl);
set_cached_acl(&inode->v, ACL_TYPE_DEFAULT, default_acl);
/*
* we must insert the new inode into the inode cache before calling
* bch2_trans_exit() and dropping locks, else we could race with another
* thread pulling the inode in and modifying it:
*/
inode->v.i_state |= I_CREATING;
old = to_bch_ei(inode_insert5(&inode->v, inode->v.i_ino,
inum_test, NULL, &inode->v.i_ino));
BUG_ON(!old);
if (unlikely(old != inode)) {
/*
* We raced, another process pulled the new inode into cache
* before us:
*/
old->ei_journal_seq = inode->ei_journal_seq;
make_bad_inode(&inode->v);
iput(&inode->v);
inode = old;
} else {
/*
* we really don't want insert_inode_locked2() to be setting
* I_NEW...
*/
unlock_new_inode(&inode->v);
}
bch2_trans_exit(&trans);
out:
posix_acl_release(default_acl);
posix_acl_release(acl);
return inode;
err_trans:
if (!tmpfile)
mutex_unlock(&dir->ei_update_lock);
bch2_trans_exit(&trans);
make_bad_inode(&inode->v);
iput(&inode->v);
err:
bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, -1, KEY_TYPE_QUOTA_WARN);
inode = ERR_PTR(ret);
goto out;
}
/* methods */
static struct dentry *bch2_lookup(struct inode *vdir, struct dentry *dentry,
unsigned int flags)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct inode *vinode = NULL;
u64 inum;
inum = bch2_dirent_lookup(c, dir->v.i_ino,
&dir->ei_str_hash,
&dentry->d_name);
if (inum)
vinode = bch2_vfs_inode_get(c, inum);
return d_splice_alias(vinode, dentry);
}
static int bch2_create(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
umode_t mode, bool excl)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir), dentry, mode|S_IFREG, 0, false);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, &inode->v);
return 0;
}
static int inode_update_for_link_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_ctime = bch2_current_time(c);
if (bi->bi_flags & BCH_INODE_UNLINKED)
bi->bi_flags &= ~BCH_INODE_UNLINKED;
else
bi->bi_nlink++;
return 0;
}
static int __bch2_link(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_inode_info *dir,
struct dentry *dentry)
{
struct btree_trans trans;
struct bch_inode_unpacked inode_u;
int ret;
mutex_lock(&inode->ei_update_lock);
bch2_trans_init(&trans, c, 4, 1024);
retry:
bch2_trans_begin(&trans);
ret = __bch2_dirent_create(&trans, dir->v.i_ino,
&dir->ei_str_hash,
mode_to_type(inode->v.i_mode),
&dentry->d_name,
inode->v.i_ino,
BCH_HASH_SET_MUST_CREATE) ?:
bch2_write_inode_trans(&trans, inode, &inode_u,
inode_update_for_link_fn,
NULL) ?:
bch2_trans_commit(&trans, NULL,
&inode->ei_journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK);
if (ret == -EINTR)
goto retry;
if (likely(!ret))
bch2_inode_update_after_write(c, inode, &inode_u, ATTR_CTIME);
bch2_trans_exit(&trans);
mutex_unlock(&inode->ei_update_lock);
return ret;
}
static int bch2_link(struct dentry *old_dentry, struct inode *vdir,
struct dentry *dentry)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct bch_inode_info *inode = to_bch_ei(old_dentry->d_inode);
int ret;
lockdep_assert_held(&inode->v.i_rwsem);
ret = __bch2_link(c, inode, dir, dentry);
if (unlikely(ret))
return ret;
ihold(&inode->v);
d_instantiate(dentry, &inode->v);
return 0;
}
static int inode_update_dir_for_unlink_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_inode_info *unlink_inode = p;
bi->bi_mtime = bi->bi_ctime = bch2_current_time(c);
bi->bi_nlink -= S_ISDIR(unlink_inode->v.i_mode);
return 0;
}
static int inode_update_for_unlink_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_ctime = bch2_current_time(c);
if (bi->bi_nlink)
bi->bi_nlink--;
else
bi->bi_flags |= BCH_INODE_UNLINKED;
return 0;
}
static int bch2_unlink(struct inode *vdir, struct dentry *dentry)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct bch_inode_info *inode = to_bch_ei(dentry->d_inode);
struct bch_inode_unpacked dir_u, inode_u;
struct btree_trans trans;
int ret;
bch2_lock_inodes(INODE_UPDATE_LOCK, dir, inode);
bch2_trans_init(&trans, c, 4, 1024);
retry:
bch2_trans_begin(&trans);
ret = __bch2_dirent_delete(&trans, dir->v.i_ino,
&dir->ei_str_hash,
&dentry->d_name) ?:
bch2_write_inode_trans(&trans, dir, &dir_u,
inode_update_dir_for_unlink_fn,
inode) ?:
bch2_write_inode_trans(&trans, inode, &inode_u,
inode_update_for_unlink_fn,
NULL) ?:
bch2_trans_commit(&trans, NULL,
&dir->ei_journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK|
BTREE_INSERT_NOFAIL);
if (ret == -EINTR)
goto retry;
if (ret)
goto err;
if (dir->ei_journal_seq > inode->ei_journal_seq)
inode->ei_journal_seq = dir->ei_journal_seq;
bch2_inode_update_after_write(c, dir, &dir_u,
ATTR_MTIME|ATTR_CTIME);
bch2_inode_update_after_write(c, inode, &inode_u,
ATTR_MTIME);
err:
bch2_trans_exit(&trans);
bch2_unlock_inodes(INODE_UPDATE_LOCK, dir, inode);
return ret;
}
static int bch2_symlink(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
const char *symname)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir), *inode;
int ret;
inode = __bch2_create(idmap, dir, dentry, S_IFLNK|S_IRWXUGO, 0, true);
if (unlikely(IS_ERR(inode)))
return PTR_ERR(inode);
inode_lock(&inode->v);
ret = page_symlink(&inode->v, symname, strlen(symname) + 1);
inode_unlock(&inode->v);
if (unlikely(ret))
goto err;
ret = filemap_write_and_wait_range(inode->v.i_mapping, 0, LLONG_MAX);
if (unlikely(ret))
goto err;
journal_seq_copy(dir, inode->ei_journal_seq);
ret = __bch2_link(c, inode, dir, dentry);
if (unlikely(ret))
goto err;
d_instantiate(dentry, &inode->v);
return 0;
err:
iput(&inode->v);
return ret;
}
static int bch2_mkdir(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry, umode_t mode)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir), dentry, mode|S_IFDIR, 0, false);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, &inode->v);
return 0;
}
static int bch2_rmdir(struct inode *vdir, struct dentry *dentry)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
if (bch2_empty_dir(c, dentry->d_inode->i_ino))
return -ENOTEMPTY;
return bch2_unlink(vdir, dentry);
}
static int bch2_mknod(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir), dentry, mode, rdev, false);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, &inode->v);
return 0;
}
struct rename_info {
u64 now;
struct bch_inode_info *src_dir;
struct bch_inode_info *dst_dir;
struct bch_inode_info *src_inode;
struct bch_inode_info *dst_inode;
enum bch_rename_mode mode;
};
static int inode_update_for_rename_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct rename_info *info = p;
int ret;
if (inode == info->src_dir) {
bi->bi_nlink -= S_ISDIR(info->src_inode->v.i_mode);
bi->bi_nlink += info->dst_inode &&
S_ISDIR(info->dst_inode->v.i_mode) &&
info->mode == BCH_RENAME_EXCHANGE;
}
if (inode == info->dst_dir) {
bi->bi_nlink += S_ISDIR(info->src_inode->v.i_mode);
bi->bi_nlink -= info->dst_inode &&
S_ISDIR(info->dst_inode->v.i_mode);
}
if (inode == info->src_inode) {
ret = bch2_reinherit_attrs_fn(inode, bi, info->dst_dir);
BUG_ON(!ret && S_ISDIR(info->src_inode->v.i_mode));
}
if (inode == info->dst_inode &&
info->mode == BCH_RENAME_EXCHANGE) {
ret = bch2_reinherit_attrs_fn(inode, bi, info->src_dir);
BUG_ON(!ret && S_ISDIR(info->dst_inode->v.i_mode));
}
if (inode == info->dst_inode &&
info->mode == BCH_RENAME_OVERWRITE) {
BUG_ON(bi->bi_nlink &&
S_ISDIR(info->dst_inode->v.i_mode));
if (bi->bi_nlink)
bi->bi_nlink--;
else
bi->bi_flags |= BCH_INODE_UNLINKED;
}
if (inode == info->src_dir ||
inode == info->dst_dir)
bi->bi_mtime = info->now;
bi->bi_ctime = info->now;
return 0;
}
static int bch2_rename2(struct mnt_idmap *idmap,
struct inode *src_vdir, struct dentry *src_dentry,
struct inode *dst_vdir, struct dentry *dst_dentry,
unsigned flags)
{
struct bch_fs *c = src_vdir->i_sb->s_fs_info;
struct rename_info i = {
.src_dir = to_bch_ei(src_vdir),
.dst_dir = to_bch_ei(dst_vdir),
.src_inode = to_bch_ei(src_dentry->d_inode),
.dst_inode = to_bch_ei(dst_dentry->d_inode),
.mode = flags & RENAME_EXCHANGE
? BCH_RENAME_EXCHANGE
: dst_dentry->d_inode
? BCH_RENAME_OVERWRITE : BCH_RENAME,
};
struct btree_trans trans;
struct bch_inode_unpacked dst_dir_u, src_dir_u;
struct bch_inode_unpacked src_inode_u, dst_inode_u;
u64 journal_seq = 0;
int ret;
if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE))
return -EINVAL;
if (i.mode == BCH_RENAME_OVERWRITE) {
if (S_ISDIR(i.src_inode->v.i_mode) !=
S_ISDIR(i.dst_inode->v.i_mode))
return -ENOTDIR;
if (S_ISDIR(i.src_inode->v.i_mode) &&
bch2_empty_dir(c, i.dst_inode->v.i_ino))
return -ENOTEMPTY;
ret = filemap_write_and_wait_range(i.src_inode->v.i_mapping,
0, LLONG_MAX);
if (ret)
return ret;
}
bch2_trans_init(&trans, c, 8, 2048);
bch2_lock_inodes(INODE_UPDATE_LOCK,
i.src_dir,
i.dst_dir,
i.src_inode,
i.dst_inode);
if (S_ISDIR(i.src_inode->v.i_mode) &&
inode_attrs_changing(i.dst_dir, i.src_inode)) {
ret = -EXDEV;
goto err;
}
if (i.mode == BCH_RENAME_EXCHANGE &&
S_ISDIR(i.dst_inode->v.i_mode) &&
inode_attrs_changing(i.src_dir, i.dst_inode)) {
ret = -EXDEV;
goto err;
}
if (inode_attr_changing(i.dst_dir, i.src_inode, Inode_opt_project)) {
ret = bch2_fs_quota_transfer(c, i.src_inode,
i.dst_dir->ei_qid,
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
}
if (i.mode == BCH_RENAME_EXCHANGE &&
inode_attr_changing(i.src_dir, i.dst_inode, Inode_opt_project)) {
ret = bch2_fs_quota_transfer(c, i.dst_inode,
i.src_dir->ei_qid,
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
}
retry:
bch2_trans_begin(&trans);
i.now = bch2_current_time(c);
ret = bch2_dirent_rename(&trans,
i.src_dir, &src_dentry->d_name,
i.dst_dir, &dst_dentry->d_name,
i.mode) ?:
bch2_write_inode_trans(&trans, i.src_dir, &src_dir_u,
inode_update_for_rename_fn, &i) ?:
(i.src_dir != i.dst_dir
? bch2_write_inode_trans(&trans, i.dst_dir, &dst_dir_u,
inode_update_for_rename_fn, &i)
: 0 ) ?:
bch2_write_inode_trans(&trans, i.src_inode, &src_inode_u,
inode_update_for_rename_fn, &i) ?:
(i.dst_inode
? bch2_write_inode_trans(&trans, i.dst_inode, &dst_inode_u,
inode_update_for_rename_fn, &i)
: 0 ) ?:
bch2_trans_commit(&trans, NULL,
&journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK);
if (ret == -EINTR)
goto retry;
if (unlikely(ret))
goto err;
bch2_inode_update_after_write(c, i.src_dir, &src_dir_u,
ATTR_MTIME|ATTR_CTIME);
journal_seq_copy(i.src_dir, journal_seq);
if (i.src_dir != i.dst_dir) {
bch2_inode_update_after_write(c, i.dst_dir, &dst_dir_u,
ATTR_MTIME|ATTR_CTIME);
journal_seq_copy(i.dst_dir, journal_seq);
}
journal_seq_copy(i.src_inode, journal_seq);
if (i.dst_inode)
journal_seq_copy(i.dst_inode, journal_seq);
bch2_inode_update_after_write(c, i.src_inode, &src_inode_u,
ATTR_CTIME);
if (i.dst_inode)
bch2_inode_update_after_write(c, i.dst_inode, &dst_inode_u,
ATTR_CTIME);
err:
bch2_trans_exit(&trans);
bch2_fs_quota_transfer(c, i.src_inode,
bch_qid(&i.src_inode->ei_inode),
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_NOCHECK);
if (i.dst_inode)
bch2_fs_quota_transfer(c, i.dst_inode,
bch_qid(&i.dst_inode->ei_inode),
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_NOCHECK);
bch2_unlock_inodes(INODE_UPDATE_LOCK,
i.src_dir,
i.dst_dir,
i.src_inode,
i.dst_inode);
return ret;
}
struct inode_write_setattr {
struct iattr *attr;
struct mnt_idmap *idmap;
};
static int inode_update_for_setattr_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct inode_write_setattr *s = p;
unsigned int ia_valid = s->attr->ia_valid;
if (ia_valid & ATTR_UID)
bi->bi_uid = from_kuid(i_user_ns(&inode->v), s->attr->ia_uid);
if (ia_valid & ATTR_GID)
bi->bi_gid = from_kgid(i_user_ns(&inode->v), s->attr->ia_gid);
if (ia_valid & ATTR_ATIME)
bi->bi_atime = timespec_to_bch2_time(c, s->attr->ia_atime);
if (ia_valid & ATTR_MTIME)
bi->bi_mtime = timespec_to_bch2_time(c, s->attr->ia_mtime);
if (ia_valid & ATTR_CTIME)
bi->bi_ctime = timespec_to_bch2_time(c, s->attr->ia_ctime);
if (ia_valid & ATTR_MODE) {
umode_t mode = s->attr->ia_mode;
kgid_t gid = ia_valid & ATTR_GID
? s->attr->ia_gid
: inode->v.i_gid;
if (!in_group_p(gid) &&
!capable_wrt_inode_uidgid(s->idmap, &inode->v, CAP_FSETID))
mode &= ~S_ISGID;
bi->bi_mode = mode;
}
return 0;
}
static int bch2_setattr_nonsize(struct mnt_idmap *idmap,
struct bch_inode_info *inode,
struct iattr *iattr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_qid qid;
struct btree_trans trans;
struct bch_inode_unpacked inode_u;
struct posix_acl *acl = NULL;
struct inode_write_setattr s = { iattr, idmap };
int ret;
mutex_lock(&inode->ei_update_lock);
qid = inode->ei_qid;
if (iattr->ia_valid & ATTR_UID)
qid.q[QTYP_USR] = from_kuid(i_user_ns(&inode->v), iattr->ia_uid);
if (iattr->ia_valid & ATTR_GID)
qid.q[QTYP_GRP] = from_kgid(i_user_ns(&inode->v), iattr->ia_gid);
ret = bch2_fs_quota_transfer(c, inode, qid, ~0,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
kfree(acl);
acl = NULL;
ret = bch2_write_inode_trans(&trans, inode, &inode_u,
inode_update_for_setattr_fn, &s) ?:
(iattr->ia_valid & ATTR_MODE
? bch2_acl_chmod(&trans, inode, iattr->ia_mode, &acl)
: 0) ?:
bch2_trans_commit(&trans, NULL,
&inode->ei_journal_seq,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOUNLOCK|
BTREE_INSERT_NOFAIL);
if (ret == -EINTR)
goto retry;
if (unlikely(ret))
goto err_trans;
bch2_inode_update_after_write(c, inode, &inode_u, iattr->ia_valid);
if (acl)
set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl);
err_trans:
bch2_trans_exit(&trans);
err:
mutex_unlock(&inode->ei_update_lock);
return ret;
}
static int bch2_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned query_flags)
{
struct bch_inode_info *inode = to_bch_ei(d_inode(path->dentry));
struct bch_fs *c = inode->v.i_sb->s_fs_info;
stat->dev = inode->v.i_sb->s_dev;
stat->ino = inode->v.i_ino;
stat->mode = inode->v.i_mode;
stat->nlink = inode->v.i_nlink;
stat->uid = inode->v.i_uid;
stat->gid = inode->v.i_gid;
stat->rdev = inode->v.i_rdev;
stat->size = i_size_read(&inode->v);
stat->atime = inode->v.i_atime;
stat->mtime = inode->v.i_mtime;
stat->ctime = inode_get_ctime(&inode->v);
stat->blksize = block_bytes(c);
stat->blocks = inode->v.i_blocks;
if (request_mask & STATX_BTIME) {
stat->result_mask |= STATX_BTIME;
stat->btime = bch2_time_to_timespec(c, inode->ei_inode.bi_otime);
}
if (inode->ei_inode.bi_flags & BCH_INODE_IMMUTABLE)
stat->attributes |= STATX_ATTR_IMMUTABLE;
if (inode->ei_inode.bi_flags & BCH_INODE_APPEND)
stat->attributes |= STATX_ATTR_APPEND;
if (inode->ei_inode.bi_flags & BCH_INODE_NODUMP)
stat->attributes |= STATX_ATTR_NODUMP;
return 0;
}
static int bch2_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *iattr)
{
struct bch_inode_info *inode = to_bch_ei(dentry->d_inode);
int ret;
lockdep_assert_held(&inode->v.i_rwsem);
ret = setattr_prepare(idmap, dentry, iattr);
if (ret)
return ret;
return iattr->ia_valid & ATTR_SIZE
? bch2_truncate(inode, iattr)
: bch2_setattr_nonsize(idmap, inode, iattr);
}
static int bch2_tmpfile(struct mnt_idmap *idmap,
struct inode *vdir, struct file *file, umode_t mode)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir),
file->f_path.dentry, mode, 0, true);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_mark_tmpfile(file, &inode->v);
d_instantiate(file->f_path.dentry, &inode->v);
return finish_open_simple(file, 0);
}
static int bch2_fill_extent(struct fiemap_extent_info *info,
const struct bkey_i *k, unsigned flags)
{
if (bkey_extent_is_data(&k->k)) {
struct bkey_s_c_extent e = bkey_i_to_s_c_extent(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
int ret;
extent_for_each_ptr_decode(e, p, entry) {
int flags2 = 0;
u64 offset = p.ptr.offset;
if (p.crc.compression_type)
flags2 |= FIEMAP_EXTENT_ENCODED;
else
offset += p.crc.offset;
if ((offset & (PAGE_SECTORS - 1)) ||
(e.k->size & (PAGE_SECTORS - 1)))
flags2 |= FIEMAP_EXTENT_NOT_ALIGNED;
ret = fiemap_fill_next_extent(info,
bkey_start_offset(e.k) << 9,
offset << 9,
e.k->size << 9, flags|flags2);
if (ret)
return ret;
}
return 0;
} else if (k->k.type == KEY_TYPE_reservation) {
return fiemap_fill_next_extent(info,
bkey_start_offset(&k->k) << 9,
0, k->k.size << 9,
flags|
FIEMAP_EXTENT_DELALLOC|
FIEMAP_EXTENT_UNWRITTEN);
} else {
BUG();
}
}
static int bch2_fiemap(struct inode *vinode, struct fiemap_extent_info *info,
u64 start, u64 len)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *ei = to_bch_ei(vinode);
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
BKEY_PADDED(k) tmp;
bool have_extent = false;
int ret = 0;
ret = fiemap_prep(&ei->v, info, start, &len, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
if (start + len < start)
return -EINVAL;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
POS(ei->v.i_ino, start >> 9), 0, k, ret)
if (bkey_extent_is_data(k.k) ||
k.k->type == KEY_TYPE_reservation) {
if (bkey_cmp(bkey_start_pos(k.k),
POS(ei->v.i_ino, (start + len) >> 9)) >= 0)
break;
if (have_extent) {
ret = bch2_fill_extent(info, &tmp.k, 0);
if (ret)
break;
}
bkey_reassemble(&tmp.k, k);
have_extent = true;
}
if (!ret && have_extent)
ret = bch2_fill_extent(info, &tmp.k, FIEMAP_EXTENT_LAST);
ret = bch2_trans_exit(&trans) ?: ret;
return ret < 0 ? ret : 0;
}
static const struct vm_operations_struct bch_vm_ops = {
.fault = bch2_page_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = bch2_page_mkwrite,
};
static int bch2_mmap(struct file *file, struct vm_area_struct *vma)
{
file_accessed(file);
vma->vm_ops = &bch_vm_ops;
return 0;
}
/* Directories: */
static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence)
{
return generic_file_llseek_size(file, offset, whence,
S64_MAX, S64_MAX);
}
static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx)
{
struct bch_fs *c = file_inode(file)->i_sb->s_fs_info;
return bch2_readdir(c, file, ctx);
}
static const struct file_operations bch_file_operations = {
.llseek = bch2_llseek,
.read_iter = bch2_read_iter,
.write_iter = bch2_write_iter,
.mmap = bch2_mmap,
.open = generic_file_open,
.fsync = bch2_fsync,
.splice_read = filemap_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = bch2_fallocate_dispatch,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
};
static const struct inode_operations bch_file_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.fiemap = bch2_fiemap,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct inode_operations bch_dir_inode_operations = {
.lookup = bch2_lookup,
.create = bch2_create,
.link = bch2_link,
.unlink = bch2_unlink,
.symlink = bch2_symlink,
.mkdir = bch2_mkdir,
.rmdir = bch2_rmdir,
.mknod = bch2_mknod,
.rename = bch2_rename2,
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.tmpfile = bch2_tmpfile,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct file_operations bch_dir_file_operations = {
.llseek = bch2_dir_llseek,
.read = generic_read_dir,
.iterate_shared = bch2_vfs_readdir,
.fsync = bch2_fsync,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
};
static const struct inode_operations bch_symlink_inode_operations = {
.get_link = page_get_link,
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct inode_operations bch_special_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct address_space_operations bch_address_space_operations = {
.writepage = bch2_writepage,
.read_folio = bch2_read_folio,
.writepages = bch2_writepages,
.readahead = bch2_readahead,
.dirty_folio = bch2_dirty_folio,
.write_begin = bch2_write_begin,
.write_end = bch2_write_end,
.invalidate_folio = bch2_invalidate_folio,
.release_folio = bch2_release_folio,
.direct_IO = noop_direct_IO,
#ifdef CONFIG_MIGRATION
.migrate_folio = filemap_migrate_folio,
#endif
.error_remove_page = generic_error_remove_page,
};
static struct inode *bch2_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct bch_fs *c = sb->s_fs_info;
struct inode *vinode;
if (ino < BCACHEFS_ROOT_INO)
return ERR_PTR(-ESTALE);
vinode = bch2_vfs_inode_get(c, ino);
if (IS_ERR(vinode))
return ERR_CAST(vinode);
if (generation && vinode->i_generation != generation) {
/* we didn't find the right inode.. */
iput(vinode);
return ERR_PTR(-ESTALE);
}
return vinode;
}
static struct dentry *bch2_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
bch2_nfs_get_inode);
}
static struct dentry *bch2_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
bch2_nfs_get_inode);
}
static const struct export_operations bch_export_ops = {
.fh_to_dentry = bch2_fh_to_dentry,
.fh_to_parent = bch2_fh_to_parent,
//.get_parent = bch2_get_parent,
};
static void bch2_vfs_inode_init(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi)
{
bch2_inode_update_after_write(c, inode, bi, ~0);
inode->v.i_blocks = bi->bi_sectors;
inode->v.i_ino = bi->bi_inum;
inode->v.i_rdev = bi->bi_dev;
inode->v.i_generation = bi->bi_generation;
inode->v.i_size = bi->bi_size;
inode->ei_journal_seq = 0;
inode->ei_quota_reserved = 0;
inode->ei_str_hash = bch2_hash_info_init(c, bi);
inode->ei_qid = bch_qid(bi);
inode->v.i_mapping->a_ops = &bch_address_space_operations;
switch (inode->v.i_mode & S_IFMT) {
case S_IFREG:
inode->v.i_op = &bch_file_inode_operations;
inode->v.i_fop = &bch_file_operations;
break;
case S_IFDIR:
inode->v.i_op = &bch_dir_inode_operations;
inode->v.i_fop = &bch_dir_file_operations;
break;
case S_IFLNK:
inode_nohighmem(&inode->v);
inode->v.i_op = &bch_symlink_inode_operations;
break;
default:
init_special_inode(&inode->v, inode->v.i_mode, inode->v.i_rdev);
inode->v.i_op = &bch_special_inode_operations;
break;
}
}
static struct inode *bch2_alloc_inode(struct super_block *sb)
{
struct bch_inode_info *inode;
inode = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS);
if (!inode)
return NULL;
inode_init_once(&inode->v);
mutex_init(&inode->ei_update_lock);
pagecache_lock_init(&inode->ei_pagecache_lock);
mutex_init(&inode->ei_quota_lock);
inode->ei_inode_update = NULL;
inode->ei_journal_seq = 0;
return &inode->v;
}
static void bch2_i_callback(struct rcu_head *head)
{
struct inode *vinode = container_of(head, struct inode, i_rcu);
struct bch_inode_info *inode = to_bch_ei(vinode);
kmem_cache_free(bch2_inode_cache, inode);
}
static void bch2_destroy_inode(struct inode *vinode)
{
call_rcu(&vinode->i_rcu, bch2_i_callback);
}
static int inode_update_times_fn(struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_atime = timespec_to_bch2_time(c, inode->v.i_atime);
bi->bi_mtime = timespec_to_bch2_time(c, inode->v.i_mtime);
bi->bi_ctime = timespec_to_bch2_time(c, inode_get_ctime(&inode->v));
return 0;
}
static int bch2_vfs_write_inode(struct inode *vinode,
struct writeback_control *wbc)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *inode = to_bch_ei(vinode);
int ret;
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL,
ATTR_ATIME|ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
if (c->opts.journal_flush_disabled)
return ret;
if (!ret && wbc->sync_mode == WB_SYNC_ALL)
ret = bch2_journal_flush_seq(&c->journal, inode->ei_journal_seq);
return ret;
}
static void bch2_evict_inode(struct inode *vinode)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *inode = to_bch_ei(vinode);
truncate_inode_pages_final(&inode->v.i_data);
clear_inode(&inode->v);
BUG_ON(!is_bad_inode(&inode->v) && inode->ei_quota_reserved);
if (inode->ei_inode_update)
bch2_deferred_update_free(c, inode->ei_inode_update);
inode->ei_inode_update = NULL;
if (!inode->v.i_nlink && !is_bad_inode(&inode->v)) {
bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) inode->v.i_blocks),
KEY_TYPE_QUOTA_WARN);
bch2_quota_acct(c, inode->ei_qid, Q_INO, -1,
KEY_TYPE_QUOTA_WARN);
bch2_inode_rm(c, inode->v.i_ino);
}
}
static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct bch_fs *c = sb->s_fs_info;
struct bch_fs_usage_short usage = bch2_fs_usage_read_short(c);
unsigned shift = sb->s_blocksize_bits - 9;
u64 fsid;
buf->f_type = BCACHEFS_STATFS_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = usage.capacity >> shift;
buf->f_bfree = (usage.capacity - usage.used) >> shift;
buf->f_bavail = buf->f_bfree;
buf->f_files = usage.nr_inodes;
buf->f_ffree = U64_MAX;
fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^
le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64));
buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
buf->f_namelen = BCH_NAME_MAX;
return 0;
}
static int bch2_sync_fs(struct super_block *sb, int wait)
{
struct bch_fs *c = sb->s_fs_info;
if (!wait) {
bch2_journal_flush_async(&c->journal, NULL);
return 0;
}
return bch2_journal_flush(&c->journal);
}
static struct bch_fs *bch2_path_to_fs(const char *path)
{
struct bch_fs *c;
dev_t dev;
int ret;
ret = lookup_bdev(path, &dev);
if (ret)
return ERR_PTR(ret);
c = bch2_dev_to_fs(dev);
return c ?: ERR_PTR(-ENOENT);
}
static struct bch_fs *__bch2_open_as_blockdevs(const char *dev_name, char * const *devs,
unsigned nr_devs, struct bch_opts opts)
{
struct bch_fs *c, *c1, *c2;
size_t i;
if (!nr_devs)
return ERR_PTR(-EINVAL);
c = bch2_fs_open(devs, nr_devs, opts);
if (IS_ERR(c) && PTR_ERR(c) == -EBUSY) {
/*
* Already open?
* Look up each block device, make sure they all belong to a
* filesystem and they all belong to the _same_ filesystem
*/
c1 = bch2_path_to_fs(devs[0]);
if (IS_ERR(c1))
return c;
for (i = 1; i < nr_devs; i++) {
c2 = bch2_path_to_fs(devs[i]);
if (!IS_ERR(c2))
closure_put(&c2->cl);
if (c1 != c2) {
closure_put(&c1->cl);
return c;
}
}
c = c1;
}
if (IS_ERR(c))
return c;
mutex_lock(&c->state_lock);
if (!test_bit(BCH_FS_STARTED, &c->flags)) {
mutex_unlock(&c->state_lock);
closure_put(&c->cl);
pr_err("err mounting %s: incomplete filesystem", dev_name);
return ERR_PTR(-EINVAL);
}
mutex_unlock(&c->state_lock);
set_bit(BCH_FS_BDEV_MOUNTED, &c->flags);
return c;
}
static struct bch_fs *bch2_open_as_blockdevs(const char *_dev_name,
struct bch_opts opts)
{
char *dev_name = NULL, **devs = NULL, *s;
struct bch_fs *c = ERR_PTR(-ENOMEM);
size_t i, nr_devs = 0;
dev_name = kstrdup(_dev_name, GFP_KERNEL);
if (!dev_name)
goto err;
for (s = dev_name; s; s = strchr(s + 1, ':'))
nr_devs++;
devs = kcalloc(nr_devs, sizeof(const char *), GFP_KERNEL);
if (!devs)
goto err;
for (i = 0, s = dev_name;
s;
(s = strchr(s, ':')) && (*s++ = '\0'))
devs[i++] = s;
c = __bch2_open_as_blockdevs(_dev_name, devs, nr_devs, opts);
err:
kfree(devs);
kfree(dev_name);
return c;
}
static int bch2_remount(struct super_block *sb, int *flags, char *data)
{
struct bch_fs *c = sb->s_fs_info;
struct bch_opts opts = bch2_opts_empty();
int ret;
opt_set(opts, read_only, (*flags & SB_RDONLY) != 0);
ret = bch2_parse_mount_opts(&opts, data);
if (ret)
return ret;
if (opts.read_only != c->opts.read_only) {
mutex_lock(&c->state_lock);
if (opts.read_only) {
bch2_fs_read_only(c);
sb->s_flags |= SB_RDONLY;
} else {
ret = bch2_fs_read_write(c);
if (ret) {
bch_err(c, "error going rw: %i", ret);
mutex_unlock(&c->state_lock);
return -EINVAL;
}
sb->s_flags &= ~SB_RDONLY;
}
c->opts.read_only = opts.read_only;
mutex_unlock(&c->state_lock);
}
if (opts.errors >= 0)
c->opts.errors = opts.errors;
return ret;
}
static int bch2_show_options(struct seq_file *seq, struct dentry *root)
{
struct bch_fs *c = root->d_sb->s_fs_info;
enum bch_opt_id i;
char buf[512];
for (i = 0; i < bch2_opts_nr; i++) {
const struct bch_option *opt = &bch2_opt_table[i];
u64 v = bch2_opt_get_by_id(&c->opts, i);
if (!(opt->mode & OPT_MOUNT))
continue;
if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
continue;
bch2_opt_to_text(&PBUF(buf), c, opt, v,
OPT_SHOW_MOUNT_STYLE);
seq_putc(seq, ',');
seq_puts(seq, buf);
}
return 0;
}
static const struct super_operations bch_super_operations = {
.alloc_inode = bch2_alloc_inode,
.destroy_inode = bch2_destroy_inode,
.write_inode = bch2_vfs_write_inode,
.evict_inode = bch2_evict_inode,
.sync_fs = bch2_sync_fs,
.statfs = bch2_statfs,
.show_options = bch2_show_options,
.remount_fs = bch2_remount,
#if 0
.put_super = bch2_put_super,
.freeze_fs = bch2_freeze,
.unfreeze_fs = bch2_unfreeze,
#endif
};
static int bch2_test_super(struct super_block *s, void *data)
{
return s->s_fs_info == data;
}
static int bch2_set_super(struct super_block *s, void *data)
{
s->s_fs_info = data;
return 0;
}
static struct dentry *bch2_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
struct bch_fs *c;
struct bch_dev *ca;
struct super_block *sb;
struct inode *vinode;
struct bch_opts opts = bch2_opts_empty();
unsigned i;
int ret;
opt_set(opts, read_only, (flags & SB_RDONLY) != 0);
ret = bch2_parse_mount_opts(&opts, data);
if (ret)
return ERR_PTR(ret);
c = bch2_open_as_blockdevs(dev_name, opts);
if (IS_ERR(c))
return ERR_CAST(c);
sb = sget(fs_type, bch2_test_super, bch2_set_super, flags|SB_NOSEC, c);
if (IS_ERR(sb)) {
closure_put(&c->cl);
return ERR_CAST(sb);
}
BUG_ON(sb->s_fs_info != c);
if (sb->s_root) {
closure_put(&c->cl);
if ((flags ^ sb->s_flags) & SB_RDONLY) {
ret = -EBUSY;
goto err_put_super;
}
goto out;
}
/* XXX: blocksize */
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_op = &bch_super_operations;
sb->s_export_op = &bch_export_ops;
#ifdef CONFIG_BCACHEFS_QUOTA
sb->s_qcop = &bch2_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR|QTYPE_MASK_GRP|QTYPE_MASK_PRJ;
#endif
sb->s_xattr = bch2_xattr_handlers;
sb->s_magic = BCACHEFS_STATFS_MAGIC;
sb->s_time_gran = c->sb.time_precision;
c->vfs_sb = sb;
strlcpy(sb->s_id, c->name, sizeof(sb->s_id));
ret = super_setup_bdi(sb);
if (ret)
goto err_put_super;
sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
for_each_online_member(ca, c, i) {
struct block_device *bdev = ca->disk_sb.bdev;
/* XXX: create an anonymous device for multi device filesystems */
sb->s_bdev = bdev;
sb->s_dev = bdev->bd_dev;
percpu_ref_put(&ca->io_ref);
break;
}
#ifdef CONFIG_BCACHEFS_POSIX_ACL
if (c->opts.acl)
sb->s_flags |= SB_POSIXACL;
#endif
vinode = bch2_vfs_inode_get(c, BCACHEFS_ROOT_INO);
if (IS_ERR(vinode)) {
bch_err(c, "error mounting: error getting root inode %i",
(int) PTR_ERR(vinode));
ret = PTR_ERR(vinode);
goto err_put_super;
}
sb->s_root = d_make_root(vinode);
if (!sb->s_root) {
bch_err(c, "error mounting: error allocating root dentry");
ret = -ENOMEM;
goto err_put_super;
}
sb->s_flags |= SB_ACTIVE;
out:
return dget(sb->s_root);
err_put_super:
deactivate_locked_super(sb);
return ERR_PTR(ret);
}
static void bch2_kill_sb(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
generic_shutdown_super(sb);
if (test_bit(BCH_FS_BDEV_MOUNTED, &c->flags))
bch2_fs_stop(c);
else
closure_put(&c->cl);
}
static struct file_system_type bcache_fs_type = {
.owner = THIS_MODULE,
.name = "bcachefs",
.mount = bch2_mount,
.kill_sb = bch2_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("bcachefs");
void bch2_vfs_exit(void)
{
unregister_filesystem(&bcache_fs_type);
if (bch2_inode_cache)
kmem_cache_destroy(bch2_inode_cache);
}
int __init bch2_vfs_init(void)
{
int ret = -ENOMEM;
bch2_inode_cache = KMEM_CACHE(bch_inode_info, 0);
if (!bch2_inode_cache)
goto err;
ret = register_filesystem(&bcache_fs_type);
if (ret)
goto err;
return 0;
err:
bch2_vfs_exit();
return ret;
}
#endif /* NO_BCACHEFS_FS */