1244 lines
32 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Code for manipulating bucket marks for garbage collection.
*
* Copyright 2014 Datera, Inc.
*
* Bucket states:
* - free bucket: mark == 0
* The bucket contains no data and will not be read
*
* - allocator bucket: owned_by_allocator == 1
* The bucket is on a free list, or it is an open bucket
*
* - cached bucket: owned_by_allocator == 0 &&
* dirty_sectors == 0 &&
* cached_sectors > 0
* The bucket contains data but may be safely discarded as there are
* enough replicas of the data on other cache devices, or it has been
* written back to the backing device
*
* - dirty bucket: owned_by_allocator == 0 &&
* dirty_sectors > 0
* The bucket contains data that we must not discard (either only copy,
* or one of the 'main copies' for data requiring multiple replicas)
*
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
* This is a btree node, journal or gen/prio bucket
*
* Lifecycle:
*
* bucket invalidated => bucket on freelist => open bucket =>
* [dirty bucket =>] cached bucket => bucket invalidated => ...
*
* Note that cache promotion can skip the dirty bucket step, as data
* is copied from a deeper tier to a shallower tier, onto a cached
* bucket.
* Note also that a cached bucket can spontaneously become dirty --
* see below.
*
* Only a traversal of the key space can determine whether a bucket is
* truly dirty or cached.
*
* Transitions:
*
* - free => allocator: bucket was invalidated
* - cached => allocator: bucket was invalidated
*
* - allocator => dirty: open bucket was filled up
* - allocator => cached: open bucket was filled up
* - allocator => metadata: metadata was allocated
*
* - dirty => cached: dirty sectors were copied to a deeper tier
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
* - cached => free: cached sectors were overwritten
*
* - metadata => free: metadata was freed
*
* Oddities:
* - cached => dirty: a device was removed so formerly replicated data
* is no longer sufficiently replicated
* - free => cached: cannot happen
* - free => dirty: cannot happen
* - free => metadata: cannot happen
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "bset.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "buckets.h"
#include "ec.h"
#include "error.h"
#include "movinggc.h"
#include "trace.h"
#include <linux/preempt.h>
static inline u64 __bch2_fs_sectors_used(struct bch_fs *, struct bch_fs_usage);
#ifdef DEBUG_BUCKETS
#define lg_local_lock lg_global_lock
#define lg_local_unlock lg_global_unlock
static void bch2_fs_stats_verify(struct bch_fs *c)
{
struct bch_fs_usage stats =
__bch2_fs_usage_read(c);
unsigned i, j;
for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) {
for (j = 0; j < ARRAY_SIZE(stats.replicas[i].data); j++)
if ((s64) stats.replicas[i].data[j] < 0)
panic("replicas %u %s sectors underflow: %lli\n",
i + 1, bch_data_types[j],
stats.replicas[i].data[j]);
if ((s64) stats.replicas[i].persistent_reserved < 0)
panic("replicas %u reserved underflow: %lli\n",
i + 1, stats.replicas[i].persistent_reserved);
}
for (j = 0; j < ARRAY_SIZE(stats.buckets); j++)
if ((s64) stats.replicas[i].data_buckets[j] < 0)
panic("%s buckets underflow: %lli\n",
bch_data_types[j],
stats.buckets[j]);
if ((s64) stats.online_reserved < 0)
panic("sectors_online_reserved underflow: %lli\n",
stats.online_reserved);
}
static void bch2_dev_stats_verify(struct bch_dev *ca)
{
struct bch_dev_usage stats =
__bch2_dev_usage_read(ca);
u64 n = ca->mi.nbuckets - ca->mi.first_bucket;
unsigned i;
for (i = 0; i < ARRAY_SIZE(stats.buckets); i++)
BUG_ON(stats.buckets[i] > n);
BUG_ON(stats.buckets_alloc > n);
BUG_ON(stats.buckets_unavailable > n);
}
static void bch2_disk_reservations_verify(struct bch_fs *c, int flags)
{
if (!(flags & BCH_DISK_RESERVATION_NOFAIL)) {
u64 used = __bch2_fs_sectors_used(c);
u64 cached = 0;
u64 avail = atomic64_read(&c->sectors_available);
int cpu;
for_each_possible_cpu(cpu)
cached += per_cpu_ptr(c->usage_percpu, cpu)->available_cache;
if (used + avail + cached > c->capacity)
panic("used %llu avail %llu cached %llu capacity %llu\n",
used, avail, cached, c->capacity);
}
}
#else
static void bch2_fs_stats_verify(struct bch_fs *c) {}
static void bch2_dev_stats_verify(struct bch_dev *ca) {}
static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) {}
#endif
/*
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
* wraparound:
*/
void bch2_bucket_seq_cleanup(struct bch_fs *c)
{
u64 journal_seq = atomic64_read(&c->journal.seq);
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
struct bch_dev *ca;
struct bucket_array *buckets;
struct bucket *g;
struct bucket_mark m;
unsigned i;
if (journal_seq - c->last_bucket_seq_cleanup <
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
return;
c->last_bucket_seq_cleanup = journal_seq;
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets) {
bucket_cmpxchg(g, m, ({
if (!m.journal_seq_valid ||
bucket_needs_journal_commit(m, last_seq_ondisk))
break;
m.journal_seq_valid = 0;
}));
}
up_read(&ca->bucket_lock);
}
}
#define bch2_usage_add(_acc, _stats) \
do { \
typeof(_acc) _a = (_acc), _s = (_stats); \
unsigned i; \
\
for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \
((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \
} while (0)
#define bch2_usage_read_raw(_stats) \
({ \
typeof(*this_cpu_ptr(_stats)) _acc; \
int cpu; \
\
memset(&_acc, 0, sizeof(_acc)); \
\
for_each_possible_cpu(cpu) \
bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \
\
_acc; \
})
#define bch2_usage_read_cached(_c, _cached, _uncached) \
({ \
typeof(_cached) _ret; \
unsigned _seq; \
\
do { \
_seq = read_seqcount_begin(&(_c)->gc_pos_lock); \
_ret = (_c)->gc_pos.phase == GC_PHASE_DONE \
? bch2_usage_read_raw(_uncached) \
: (_cached); \
} while (read_seqcount_retry(&(_c)->gc_pos_lock, _seq)); \
\
_ret; \
})
struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca)
{
return bch2_usage_read_raw(ca->usage_percpu);
}
struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
{
return bch2_usage_read_cached(c, ca->usage_cached, ca->usage_percpu);
}
struct bch_fs_usage
__bch2_fs_usage_read(struct bch_fs *c)
{
return bch2_usage_read_raw(c->usage_percpu);
}
struct bch_fs_usage
bch2_fs_usage_read(struct bch_fs *c)
{
return bch2_usage_read_cached(c,
c->usage_cached,
c->usage_percpu);
}
struct fs_usage_sum {
u64 hidden;
u64 data;
u64 cached;
u64 reserved;
};
static inline struct fs_usage_sum __fs_usage_sum(struct bch_fs_usage stats)
{
struct fs_usage_sum sum = { 0 };
unsigned i;
/*
* For superblock and journal we count bucket usage, not sector usage,
* because any internal fragmentation should _not_ be counted as
* free space:
*/
sum.hidden += stats.buckets[BCH_DATA_SB];
sum.hidden += stats.buckets[BCH_DATA_JOURNAL];
for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) {
sum.data += stats.replicas[i].data[BCH_DATA_BTREE];
sum.data += stats.replicas[i].data[BCH_DATA_USER];
sum.data += stats.replicas[i].ec_data;
sum.cached += stats.replicas[i].data[BCH_DATA_CACHED];
sum.reserved += stats.replicas[i].persistent_reserved;
}
sum.reserved += stats.online_reserved;
return sum;
}
#define RESERVE_FACTOR 6
static u64 reserve_factor(u64 r)
{
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
}
static u64 avail_factor(u64 r)
{
return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
}
static inline u64 __bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats)
{
struct fs_usage_sum sum = __fs_usage_sum(stats);
return sum.hidden + sum.data + reserve_factor(sum.reserved);
}
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats)
{
return min(c->capacity, __bch2_fs_sectors_used(c, stats));
}
static inline int is_unavailable_bucket(struct bucket_mark m)
{
return !is_available_bucket(m);
}
static inline int is_fragmented_bucket(struct bucket_mark m,
struct bch_dev *ca)
{
if (!m.owned_by_allocator &&
m.data_type == BCH_DATA_USER &&
bucket_sectors_used(m))
return max_t(int, 0, (int) ca->mi.bucket_size -
bucket_sectors_used(m));
return 0;
}
static inline enum bch_data_type bucket_type(struct bucket_mark m)
{
return m.cached_sectors && !m.dirty_sectors
? BCH_DATA_CACHED
: m.data_type;
}
static bool bucket_became_unavailable(struct bch_fs *c,
struct bucket_mark old,
struct bucket_mark new)
{
return is_available_bucket(old) &&
!is_available_bucket(new) &&
(!c || c->gc_pos.phase == GC_PHASE_DONE);
}
void bch2_fs_usage_apply(struct bch_fs *c,
struct bch_fs_usage *stats,
struct disk_reservation *disk_res,
struct gc_pos gc_pos)
{
struct fs_usage_sum sum = __fs_usage_sum(*stats);
s64 added = sum.data + sum.reserved;
s64 should_not_have_added;
/*
* Not allowed to reduce sectors_available except by getting a
* reservation:
*/
should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
if (WARN_ONCE(should_not_have_added > 0,
"disk usage increased without a reservation")) {
atomic64_sub(should_not_have_added, &c->sectors_available);
added -= should_not_have_added;
}
if (added > 0) {
disk_res->sectors -= added;
stats->online_reserved -= added;
}
percpu_down_read(&c->usage_lock);
preempt_disable();
/* online_reserved not subject to gc: */
this_cpu_add(c->usage_percpu->online_reserved, stats->online_reserved);
stats->online_reserved = 0;
if (!gc_will_visit(c, gc_pos))
bch2_usage_add(this_cpu_ptr(c->usage_percpu), stats);
bch2_fs_stats_verify(c);
preempt_enable();
percpu_up_read(&c->usage_lock);
memset(stats, 0, sizeof(*stats));
}
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
struct bch_fs_usage *stats,
struct bucket_mark old, struct bucket_mark new)
{
struct bch_dev_usage *dev_usage;
percpu_rwsem_assert_held(&c->usage_lock);
bch2_fs_inconsistent_on(old.data_type && new.data_type &&
old.data_type != new.data_type, c,
"different types of data in same bucket: %s, %s",
bch2_data_types[old.data_type],
bch2_data_types[new.data_type]);
stats->buckets[bucket_type(old)] -= ca->mi.bucket_size;
stats->buckets[bucket_type(new)] += ca->mi.bucket_size;
preempt_disable();
dev_usage = this_cpu_ptr(ca->usage_percpu);
dev_usage->buckets[bucket_type(old)]--;
dev_usage->buckets[bucket_type(new)]++;
dev_usage->buckets_alloc +=
(int) new.owned_by_allocator - (int) old.owned_by_allocator;
dev_usage->buckets_ec +=
(int) new.stripe - (int) old.stripe;
dev_usage->buckets_unavailable +=
is_unavailable_bucket(new) - is_unavailable_bucket(old);
dev_usage->sectors[old.data_type] -= old.dirty_sectors;
dev_usage->sectors[new.data_type] += new.dirty_sectors;
dev_usage->sectors[BCH_DATA_CACHED] +=
(int) new.cached_sectors - (int) old.cached_sectors;
dev_usage->sectors_fragmented +=
is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
preempt_enable();
if (!is_available_bucket(old) && is_available_bucket(new))
bch2_wake_allocator(ca);
bch2_dev_stats_verify(ca);
}
#define bucket_data_cmpxchg(c, ca, stats, g, new, expr) \
({ \
struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \
\
bch2_dev_usage_update(c, ca, stats, _old, new); \
_old; \
})
void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark *old)
{
struct bch_fs_usage *stats = this_cpu_ptr(c->usage_percpu);
struct bucket *g;
struct bucket_mark new;
percpu_rwsem_assert_held(&c->usage_lock);
g = bucket(ca, b);
*old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
BUG_ON(!is_available_bucket(new));
new.owned_by_allocator = 1;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
new.gen++;
}));
/*
* This isn't actually correct yet, since fs usage is still
* uncompressed sectors:
*/
stats->replicas[0].data[BCH_DATA_CACHED] -= old->cached_sectors;
if (!old->owned_by_allocator && old->cached_sectors)
trace_invalidate(ca, bucket_to_sector(ca, b),
old->cached_sectors);
}
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
struct gc_pos pos, unsigned flags)
{
struct bch_fs_usage *stats = this_cpu_ptr(c->usage_percpu);
struct bucket *g;
struct bucket_mark old, new;
percpu_rwsem_assert_held(&c->usage_lock);
g = bucket(ca, b);
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
gc_will_visit(c, pos))
return;
old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
new.owned_by_allocator = owned_by_allocator;
}));
BUG_ON(!owned_by_allocator && !old.owned_by_allocator &&
c->gc_pos.phase == GC_PHASE_DONE);
}
#define checked_add(a, b) \
do { \
unsigned _res = (unsigned) (a) + (b); \
(a) = _res; \
BUG_ON((a) != _res); \
} while (0)
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, struct gc_pos pos,
unsigned flags)
{
struct bch_fs_usage *stats;
struct bucket *g;
struct bucket_mark old, new;
BUG_ON(type != BCH_DATA_SB &&
type != BCH_DATA_JOURNAL);
if (likely(c)) {
percpu_rwsem_assert_held(&c->usage_lock);
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
gc_will_visit(c, pos))
return;
preempt_disable();
stats = this_cpu_ptr(c->usage_percpu);
g = bucket(ca, b);
old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
new.data_type = type;
checked_add(new.dirty_sectors, sectors);
}));
stats->replicas[0].data[type] += sectors;
preempt_enable();
} else {
rcu_read_lock();
g = bucket(ca, b);
old = bucket_cmpxchg(g, new, ({
new.data_type = type;
checked_add(new.dirty_sectors, sectors);
}));
rcu_read_unlock();
}
BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) &&
bucket_became_unavailable(c, old, new));
}
static int __disk_sectors(struct bch_extent_crc_unpacked crc, unsigned sectors)
{
if (!sectors)
return 0;
return max(1U, DIV_ROUND_UP(sectors * crc.compressed_size,
crc.uncompressed_size));
}
static s64 ptr_disk_sectors(struct bkey_s_c_extent e,
struct extent_ptr_decoded p,
s64 sectors)
{
if (p.crc.compression_type) {
unsigned old_sectors, new_sectors;
if (sectors > 0) {
old_sectors = 0;
new_sectors = sectors;
} else {
old_sectors = e.k->size;
new_sectors = e.k->size + sectors;
}
sectors = -__disk_sectors(p.crc, old_sectors)
+__disk_sectors(p.crc, new_sectors);
}
return sectors;
}
/*
* Checking against gc's position has to be done here, inside the cmpxchg()
* loop, to avoid racing with the start of gc clearing all the marks - GC does
* that with the gc pos seqlock held.
*/
static void bch2_mark_pointer(struct bch_fs *c,
struct bkey_s_c_extent e,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
struct bucket_mark old, new;
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct bucket *g = PTR_BUCKET(ca, &p.ptr);
u64 v;
if (flags & BCH_BUCKET_MARK_GC_WILL_VISIT) {
if (journal_seq)
bucket_cmpxchg(g, new, ({
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}));
return;
}
v = atomic64_read(&g->_mark.v);
do {
new.v.counter = old.v.counter = v;
/*
* Check this after reading bucket mark to guard against
* the allocator invalidating a bucket after we've already
* checked the gen
*/
if (gen_after(new.gen, p.ptr.gen)) {
BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags));
EBUG_ON(!p.ptr.cached &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags));
return;
}
if (!p.ptr.cached)
checked_add(new.dirty_sectors, sectors);
else
checked_add(new.cached_sectors, sectors);
if (!new.dirty_sectors &&
!new.cached_sectors) {
new.data_type = 0;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
} else {
new.data_type = data_type;
}
if (flags & BCH_BUCKET_MARK_NOATOMIC) {
g->_mark = new;
break;
}
} while ((v = atomic64_cmpxchg(&g->_mark.v,
old.v.counter,
new.v.counter)) != old.v.counter);
bch2_dev_usage_update(c, ca, fs_usage, old, new);
BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) &&
bucket_became_unavailable(c, old, new));
}
static void bch2_mark_stripe_ptr(struct bch_fs *c,
struct bch_extent_stripe_ptr p,
s64 sectors, unsigned flags,
s64 *adjusted_disk_sectors,
unsigned *redundancy)
{
struct ec_stripe *m;
unsigned old, new, nr_data;
int blocks_nonempty_delta;
s64 parity_sectors;
m = genradix_ptr(&c->ec_stripes, p.idx);
if (WARN_ON(!m))
return;
if (WARN_ON(!m->alive))
return;
nr_data = m->nr_blocks - m->nr_redundant;
parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data);
if (sectors < 0)
parity_sectors = -parity_sectors;
*adjusted_disk_sectors += parity_sectors;
*redundancy = max_t(unsigned, *redundancy, m->nr_redundant + 1);
new = atomic_add_return(sectors, &m->block_sectors[p.block]);
old = new - sectors;
blocks_nonempty_delta = (int) !!new - (int) !!old;
if (!blocks_nonempty_delta)
return;
atomic_add(blocks_nonempty_delta, &m->blocks_nonempty);
BUG_ON(atomic_read(&m->blocks_nonempty) < 0);
bch2_stripes_heap_update(c, m, p.idx);
}
static void bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
s64 sectors, enum bch_data_type data_type,
struct gc_pos pos,
struct bch_fs_usage *stats,
u64 journal_seq, unsigned flags)
{
BUG_ON(!sectors);
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
s64 cached_sectors = 0;
s64 dirty_sectors = 0;
s64 ec_sectors = 0;
unsigned replicas = 0;
unsigned ec_redundancy = 0;
unsigned i;
extent_for_each_ptr_decode(e, p, entry) {
s64 disk_sectors = ptr_disk_sectors(e, p, sectors);
s64 adjusted_disk_sectors = disk_sectors;
bch2_mark_pointer(c, e, p, disk_sectors, data_type,
stats, journal_seq, flags);
if (!p.ptr.cached)
for (i = 0; i < p.ec_nr; i++)
bch2_mark_stripe_ptr(c, p.ec[i],
disk_sectors, flags,
&adjusted_disk_sectors,
&ec_redundancy);
if (!p.ptr.cached)
replicas++;
if (p.ptr.cached)
cached_sectors += adjusted_disk_sectors;
else if (!p.ec_nr)
dirty_sectors += adjusted_disk_sectors;
else
ec_sectors += adjusted_disk_sectors;
}
replicas = clamp_t(unsigned, replicas,
1, ARRAY_SIZE(stats->replicas));
ec_redundancy = clamp_t(unsigned, ec_redundancy,
1, ARRAY_SIZE(stats->replicas));
stats->replicas[0].data[BCH_DATA_CACHED] += cached_sectors;
stats->replicas[replicas - 1].data[data_type] += dirty_sectors;
stats->replicas[ec_redundancy - 1].ec_data += ec_sectors;
break;
}
case BCH_RESERVATION: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
sectors *= replicas;
replicas = clamp_t(unsigned, replicas,
1, ARRAY_SIZE(stats->replicas));
stats->replicas[replicas - 1].persistent_reserved += sectors;
break;
}
}
}
static void bucket_set_stripe(struct bch_fs *c,
const struct bch_stripe *v,
bool enabled,
struct bch_fs_usage *fs_usage,
u64 journal_seq)
{
unsigned i;
for (i = 0; i < v->nr_blocks; i++) {
const struct bch_extent_ptr *ptr = v->ptrs + i;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g;
struct bucket_mark new, old;
BUG_ON(ptr_stale(ca, ptr));
rcu_read_lock();
g = PTR_BUCKET(ca, ptr);
old = bucket_cmpxchg(g, new, ({
new.stripe = enabled;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
}));
rcu_read_unlock();
BUG_ON(old.stripe == enabled);
bch2_dev_usage_update(c, ca, fs_usage, old, new);
}
}
static void bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k,
bool inserting, struct gc_pos pos,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
switch (k.k->type) {
case BCH_STRIPE: {
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
size_t idx = s.k->p.offset;
struct ec_stripe *m = genradix_ptr(&c->ec_stripes, idx);
unsigned i;
BUG_ON(!m);
BUG_ON(m->alive == inserting);
BUG_ON(atomic_read(&m->blocks_nonempty));
for (i = 0; i < EC_STRIPE_MAX; i++)
BUG_ON(atomic_read(&m->block_sectors[i]));
if (inserting) {
m->sectors = le16_to_cpu(s.v->sectors);
m->algorithm = s.v->algorithm;
m->nr_blocks = s.v->nr_blocks;
m->nr_redundant = s.v->nr_redundant;
}
if (inserting)
bch2_stripes_heap_insert(c, m, idx);
else
bch2_stripes_heap_del(c, m, idx);
bucket_set_stripe(c, s.v, inserting, fs_usage, 0);
break;
}
}
}
void bch2_mark_key(struct bch_fs *c,
enum bkey_type type, struct bkey_s_c k,
bool inserting, s64 sectors,
struct gc_pos pos,
struct bch_fs_usage *stats,
u64 journal_seq, unsigned flags)
{
/*
* synchronization w.r.t. GC:
*
* Normally, bucket sector counts/marks are updated on the fly, as
* references are added/removed from the btree, the lists of buckets the
* allocator owns, other metadata buckets, etc.
*
* When GC is in progress and going to mark this reference, we do _not_
* mark this reference here, to avoid double counting - GC will count it
* when it gets to it.
*
* To know whether we should mark a given reference (GC either isn't
* running, or has already marked references at this position) we
* construct a total order for everything GC walks. Then, we can simply
* compare the position of the reference we're marking - @pos - with
* GC's current position. If GC is going to mark this reference, GC's
* current position will be less than @pos; if GC's current position is
* greater than @pos GC has either already walked this position, or
* isn't running.
*
* To avoid racing with GC's position changing, we have to deal with
* - GC's position being set to GC_POS_MIN when GC starts:
* usage_lock guards against this
* - GC's position overtaking @pos: we guard against this with
* whatever lock protects the data structure the reference lives in
* (e.g. the btree node lock, or the relevant allocator lock).
*/
percpu_down_read(&c->usage_lock);
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
gc_will_visit(c, pos))
flags |= BCH_BUCKET_MARK_GC_WILL_VISIT;
if (!stats)
stats = this_cpu_ptr(c->usage_percpu);
switch (type) {
case BKEY_TYPE_BTREE:
bch2_mark_extent(c, k, inserting
? c->opts.btree_node_size
: -c->opts.btree_node_size,
BCH_DATA_BTREE,
pos, stats, journal_seq, flags);
break;
case BKEY_TYPE_EXTENTS:
bch2_mark_extent(c, k, sectors, BCH_DATA_USER,
pos, stats, journal_seq, flags);
break;
case BKEY_TYPE_EC:
bch2_mark_stripe(c, k, inserting,
pos, stats, journal_seq, flags);
break;
default:
break;
}
percpu_up_read(&c->usage_lock);
}
void bch2_mark_update(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->l[0].b;
struct btree_node_iter node_iter = iter->l[0].iter;
struct bch_fs_usage stats = { 0 };
struct gc_pos pos = gc_pos_btree_node(b);
struct bkey_packed *_k;
if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
bch2_mark_key(c, btree_node_type(b), bkey_i_to_s_c(insert->k),
true,
bpos_min(insert->k->k.p, b->key.k.p).offset -
bkey_start_offset(&insert->k->k),
pos, &stats, trans->journal_res.seq, 0);
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_DISCARD))) {
struct bkey unpacked;
struct bkey_s_c k;
s64 sectors = 0;
k = bkey_disassemble(b, _k, &unpacked);
if (btree_node_is_extents(b)
? bkey_cmp(insert->k->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(insert->k->k.p, k.k->p))
break;
if (btree_node_is_extents(b)) {
switch (bch2_extent_overlap(&insert->k->k, k.k)) {
case BCH_EXTENT_OVERLAP_ALL:
sectors = -((s64) k.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
sectors = bkey_start_offset(&insert->k->k) -
k.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
sectors = bkey_start_offset(k.k) -
insert->k->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
sectors = k.k->p.offset - insert->k->k.p.offset;
BUG_ON(sectors <= 0);
bch2_mark_key(c, btree_node_type(b), k,
true, sectors,
pos, &stats, trans->journal_res.seq, 0);
sectors = bkey_start_offset(&insert->k->k) -
k.k->p.offset;
break;
}
BUG_ON(sectors >= 0);
}
bch2_mark_key(c, btree_node_type(b), k,
false, sectors,
pos, &stats, trans->journal_res.seq, 0);
bch2_btree_node_iter_advance(&node_iter, b);
}
bch2_fs_usage_apply(c, &stats, trans->disk_res, pos);
}
/* Disk reservations: */
static u64 __recalc_sectors_available(struct bch_fs *c)
{
int cpu;
for_each_possible_cpu(cpu)
per_cpu_ptr(c->usage_percpu, cpu)->available_cache = 0;
return avail_factor(bch2_fs_sectors_free(c, bch2_fs_usage_read(c)));
}
/* Used by gc when it's starting: */
void bch2_recalc_sectors_available(struct bch_fs *c)
{
percpu_down_write(&c->usage_lock);
atomic64_set(&c->sectors_available, __recalc_sectors_available(c));
percpu_up_write(&c->usage_lock);
}
void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res)
{
percpu_down_read(&c->usage_lock);
this_cpu_sub(c->usage_percpu->online_reserved,
res->sectors);
bch2_fs_stats_verify(c);
percpu_up_read(&c->usage_lock);
res->sectors = 0;
}
#define SECTORS_CACHE 1024
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
unsigned sectors, int flags)
{
struct bch_fs_usage *stats;
u64 old, v, get;
s64 sectors_available;
int ret;
percpu_down_read(&c->usage_lock);
preempt_disable();
stats = this_cpu_ptr(c->usage_percpu);
if (sectors <= stats->available_cache)
goto out;
v = atomic64_read(&c->sectors_available);
do {
old = v;
get = min((u64) sectors + SECTORS_CACHE, old);
if (get < sectors) {
preempt_enable();
percpu_up_read(&c->usage_lock);
goto recalculate;
}
} while ((v = atomic64_cmpxchg(&c->sectors_available,
old, old - get)) != old);
stats->available_cache += get;
out:
stats->available_cache -= sectors;
stats->online_reserved += sectors;
res->sectors += sectors;
bch2_disk_reservations_verify(c, flags);
bch2_fs_stats_verify(c);
preempt_enable();
percpu_up_read(&c->usage_lock);
return 0;
recalculate:
/*
* GC recalculates sectors_available when it starts, so that hopefully
* we don't normally end up blocking here:
*/
/*
* Piss fuck, we can be called from extent_insert_fixup() with btree
* locks held:
*/
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) {
if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD))
down_read(&c->gc_lock);
else if (!down_read_trylock(&c->gc_lock))
return -EINTR;
}
percpu_down_write(&c->usage_lock);
sectors_available = __recalc_sectors_available(c);
if (sectors <= sectors_available ||
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
atomic64_set(&c->sectors_available,
max_t(s64, 0, sectors_available - sectors));
stats->online_reserved += sectors;
res->sectors += sectors;
ret = 0;
bch2_disk_reservations_verify(c, flags);
} else {
atomic64_set(&c->sectors_available, sectors_available);
ret = -ENOSPC;
}
bch2_fs_stats_verify(c);
percpu_up_write(&c->usage_lock);
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD))
up_read(&c->gc_lock);
return ret;
}
/* Startup/shutdown: */
static void buckets_free_rcu(struct rcu_head *rcu)
{
struct bucket_array *buckets =
container_of(rcu, struct bucket_array, rcu);
kvpfree(buckets,
sizeof(struct bucket_array) +
buckets->nbuckets * sizeof(struct bucket));
}
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bucket_array *buckets = NULL, *old_buckets = NULL;
unsigned long *buckets_dirty = NULL;
u8 *oldest_gens = NULL;
alloc_fifo free[RESERVE_NR];
alloc_fifo free_inc;
alloc_heap alloc_heap;
copygc_heap copygc_heap;
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
ca->mi.bucket_size / c->opts.btree_node_size);
/* XXX: these should be tunable */
size_t reserve_none = max_t(size_t, 1, nbuckets >> 9);
size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7);
size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12),
btree_reserve);
bool resize = ca->buckets != NULL,
start_copygc = ca->copygc_thread != NULL;
int ret = -ENOMEM;
unsigned i;
memset(&free, 0, sizeof(free));
memset(&free_inc, 0, sizeof(free_inc));
memset(&alloc_heap, 0, sizeof(alloc_heap));
memset(&copygc_heap, 0, sizeof(copygc_heap));
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO)) ||
!(oldest_gens = kvpmalloc(nbuckets * sizeof(u8),
GFP_KERNEL|__GFP_ZERO)) ||
!(buckets_dirty = kvpmalloc(BITS_TO_LONGS(nbuckets) *
sizeof(unsigned long),
GFP_KERNEL|__GFP_ZERO)) ||
!init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_MOVINGGC],
copygc_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
!init_heap(&copygc_heap, copygc_reserve, GFP_KERNEL))
goto err;
buckets->first_bucket = ca->mi.first_bucket;
buckets->nbuckets = nbuckets;
bch2_copygc_stop(ca);
if (resize) {
down_write(&c->gc_lock);
down_write(&ca->bucket_lock);
percpu_down_write(&c->usage_lock);
}
old_buckets = bucket_array(ca);
if (resize) {
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
memcpy(buckets->b,
old_buckets->b,
n * sizeof(struct bucket));
memcpy(oldest_gens,
ca->oldest_gens,
n * sizeof(u8));
memcpy(buckets_dirty,
ca->buckets_dirty,
BITS_TO_LONGS(n) * sizeof(unsigned long));
}
rcu_assign_pointer(ca->buckets, buckets);
buckets = old_buckets;
swap(ca->oldest_gens, oldest_gens);
swap(ca->buckets_dirty, buckets_dirty);
if (resize)
percpu_up_write(&c->usage_lock);
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++) {
fifo_move(&free[i], &ca->free[i]);
swap(ca->free[i], free[i]);
}
fifo_move(&free_inc, &ca->free_inc);
swap(ca->free_inc, free_inc);
spin_unlock(&c->freelist_lock);
/* with gc lock held, alloc_heap can't be in use: */
swap(ca->alloc_heap, alloc_heap);
/* and we shut down copygc: */
swap(ca->copygc_heap, copygc_heap);
nbuckets = ca->mi.nbuckets;
if (resize) {
up_write(&ca->bucket_lock);
up_write(&c->gc_lock);
}
if (start_copygc &&
bch2_copygc_start(c, ca))
bch_err(ca, "error restarting copygc thread");
ret = 0;
err:
free_heap(&copygc_heap);
free_heap(&alloc_heap);
free_fifo(&free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&free[i]);
kvpfree(buckets_dirty,
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
kvpfree(oldest_gens,
nbuckets * sizeof(u8));
if (buckets)
call_rcu(&old_buckets->rcu, buckets_free_rcu);
return ret;
}
void bch2_dev_buckets_free(struct bch_dev *ca)
{
unsigned i;
free_heap(&ca->copygc_heap);
free_heap(&ca->alloc_heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
kvpfree(ca->buckets_dirty,
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
kvpfree(ca->oldest_gens, ca->mi.nbuckets * sizeof(u8));
kvpfree(rcu_dereference_protected(ca->buckets, 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
free_percpu(ca->usage_percpu);
}
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
{
if (!(ca->usage_percpu = alloc_percpu(struct bch_dev_usage)))
return -ENOMEM;
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
}