linux-stable/fs/bcachefs/alloc_background.c

1406 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_key_cache.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_gc.h"
#include "buckets.h"
#include "buckets_waiting_for_journal.h"
#include "clock.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "lru.h"
#include "recovery.h"
#include "trace.h"
#include "varint.h"
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
/* Persistent alloc info: */
static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
#define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
BCH_ALLOC_FIELDS_V1()
#undef x
};
const char * const bch2_bucket_states[] = {
"free",
"need gc gens",
"need discard",
"cached",
"dirty",
NULL
};
struct bkey_alloc_unpacked {
u64 journal_seq;
u64 bucket;
u8 dev;
u8 gen;
u8 oldest_gen;
u8 data_type;
bool need_discard:1;
bool need_inc_gen:1;
#define x(_name, _bits) u##_bits _name;
BCH_ALLOC_FIELDS_V2()
#undef x
};
static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
const void **p, unsigned field)
{
unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
u64 v;
if (!(a->fields & (1 << field)))
return 0;
switch (bytes) {
case 1:
v = *((const u8 *) *p);
break;
case 2:
v = le16_to_cpup(*p);
break;
case 4:
v = le32_to_cpup(*p);
break;
case 8:
v = le64_to_cpup(*p);
break;
default:
BUG();
}
*p += bytes;
return v;
}
static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p,
unsigned field, u64 v)
{
unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
if (!v)
return;
a->v.fields |= 1 << field;
switch (bytes) {
case 1:
*((u8 *) *p) = v;
break;
case 2:
*((__le16 *) *p) = cpu_to_le16(v);
break;
case 4:
*((__le32 *) *p) = cpu_to_le32(v);
break;
case 8:
*((__le64 *) *p) = cpu_to_le64(v);
break;
default:
BUG();
}
*p += bytes;
}
static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
const void *d = in->data;
unsigned idx = 0;
out->gen = in->gen;
#define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
BCH_ALLOC_FIELDS_V1()
#undef x
}
static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out,
struct bkey_s_c k)
{
struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k);
const u8 *in = a.v->data;
const u8 *end = bkey_val_end(a);
unsigned fieldnr = 0;
int ret;
u64 v;
out->gen = a.v->gen;
out->oldest_gen = a.v->oldest_gen;
out->data_type = a.v->data_type;
out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v);
out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v);
out->journal_seq = le64_to_cpu(a.v->journal_seq);
#define x(_name, _bits) \
if (fieldnr < a.v->nr_fields) { \
ret = bch2_varint_decode_fast(in, end, &v); \
if (ret < 0) \
return ret; \
in += ret; \
} else { \
v = 0; \
} \
out->_name = v; \
if (v != out->_name) \
return -1; \
fieldnr++;
BCH_ALLOC_FIELDS_V2()
#undef x
return 0;
}
static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
{
struct bkey_alloc_unpacked ret = {
.dev = k.k->p.inode,
.bucket = k.k->p.offset,
.gen = 0,
};
switch (k.k->type) {
case KEY_TYPE_alloc:
bch2_alloc_unpack_v1(&ret, k);
break;
case KEY_TYPE_alloc_v2:
bch2_alloc_unpack_v2(&ret, k);
break;
case KEY_TYPE_alloc_v3:
bch2_alloc_unpack_v3(&ret, k);
break;
}
return ret;
}
void bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out)
{
if (k.k->type == KEY_TYPE_alloc_v4) {
*out = *bkey_s_c_to_alloc_v4(k).v;
} else {
struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
*out = (struct bch_alloc_v4) {
.journal_seq = u.journal_seq,
.flags = u.need_discard,
.gen = u.gen,
.oldest_gen = u.oldest_gen,
.data_type = u.data_type,
.stripe_redundancy = u.stripe_redundancy,
.dirty_sectors = u.dirty_sectors,
.cached_sectors = u.cached_sectors,
.io_time[READ] = u.read_time,
.io_time[WRITE] = u.write_time,
.stripe = u.stripe,
};
}
}
struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
{
struct bkey_i_alloc_v4 *ret;
if (k.k->type == KEY_TYPE_alloc_v4) {
ret = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
if (!IS_ERR(ret))
bkey_reassemble(&ret->k_i, k);
} else {
ret = bch2_trans_kmalloc(trans, sizeof(*ret));
if (!IS_ERR(ret)) {
bkey_alloc_v4_init(&ret->k_i);
ret->k.p = k.k->p;
bch2_alloc_to_v4(k, &ret->v);
}
}
return ret;
}
struct bkey_i_alloc_v4 *
bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter *iter,
struct bpos pos)
{
struct bkey_s_c k;
struct bkey_i_alloc_v4 *a;
int ret;
bch2_trans_iter_init(trans, iter, BTREE_ID_alloc, pos,
BTREE_ITER_WITH_UPDATES|
BTREE_ITER_CACHED|
BTREE_ITER_INTENT);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret) {
bch2_trans_iter_exit(trans, iter);
return ERR_PTR(ret);
}
a = bch2_alloc_to_v4_mut(trans, k);
if (IS_ERR(a))
bch2_trans_iter_exit(trans, iter);
return a;
}
static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
{
unsigned i, bytes = offsetof(struct bch_alloc, data);
for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
if (a->fields & (1 << i))
bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
return DIV_ROUND_UP(bytes, sizeof(u64));
}
int bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k, struct printbuf *err)
{
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
if (!bch2_dev_exists2(c, k.k->p.inode)) {
pr_buf(err, "invalid device (%llu)", k.k->p.inode);
return -EINVAL;
}
/* allow for unknown fields */
if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) {
pr_buf(err, "incorrect value size (%zu < %u)",
bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v));
return -EINVAL;
}
return 0;
}
int bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k, struct printbuf *err)
{
struct bkey_alloc_unpacked u;
if (!bch2_dev_exists2(c, k.k->p.inode)) {
pr_buf(err, "invalid device (%llu)", k.k->p.inode);
return -EINVAL;
}
if (bch2_alloc_unpack_v2(&u, k)) {
pr_buf(err, "unpack error");
return -EINVAL;
}
return 0;
}
int bch2_alloc_v3_invalid(const struct bch_fs *c, struct bkey_s_c k, struct printbuf *err)
{
struct bkey_alloc_unpacked u;
struct bch_dev *ca;
if (!bch2_dev_exists2(c, k.k->p.inode)) {
pr_buf(err, "invalid device (%llu)", k.k->p.inode);
return -EINVAL;
}
ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (k.k->p.offset < ca->mi.first_bucket ||
k.k->p.offset >= ca->mi.nbuckets) {
pr_buf(err, "invalid bucket");
return -EINVAL;
}
if (bch2_alloc_unpack_v3(&u, k)) {
pr_buf(err, "unpack error");
return -EINVAL;
}
return 0;
}
int bch2_alloc_v4_invalid(const struct bch_fs *c, struct bkey_s_c k, struct printbuf *err)
{
struct bch_dev *ca;
if (!bch2_dev_exists2(c, k.k->p.inode)) {
pr_buf(err, "invalid device (%llu)", k.k->p.inode);
return -EINVAL;
}
ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (k.k->p.offset < ca->mi.first_bucket ||
k.k->p.offset >= ca->mi.nbuckets) {
pr_buf(err, "invalid bucket");
return -EINVAL;
}
return 0;
}
void bch2_alloc_v4_swab(struct bkey_s k)
{
struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v;
a->journal_seq = swab64(a->journal_seq);
a->flags = swab32(a->flags);
a->dirty_sectors = swab32(a->dirty_sectors);
a->cached_sectors = swab32(a->cached_sectors);
a->io_time[0] = swab64(a->io_time[0]);
a->io_time[1] = swab64(a->io_time[1]);
a->stripe = swab32(a->stripe);
a->nr_external_backpointers = swab32(a->nr_external_backpointers);
}
void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bch_alloc_v4 a;
bch2_alloc_to_v4(k, &a);
pr_buf(out, "gen %u oldest_gen %u data_type %s journal_seq %llu need_discard %llu",
a.gen, a.oldest_gen, bch2_data_types[a.data_type],
a.journal_seq, BCH_ALLOC_V4_NEED_DISCARD(&a));
pr_buf(out, " dirty_sectors %u", a.dirty_sectors);
pr_buf(out, " cached_sectors %u", a.cached_sectors);
pr_buf(out, " stripe %u", a.stripe);
pr_buf(out, " stripe_redundancy %u", a.stripe_redundancy);
pr_buf(out, " read_time %llu", a.io_time[READ]);
pr_buf(out, " write_time %llu", a.io_time[WRITE]);
}
int bch2_alloc_read(struct bch_fs *c)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 a;
struct bch_dev *ca;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
ca = bch_dev_bkey_exists(c, k.k->p.inode);
bch2_alloc_to_v4(k, &a);
*bucket_gen(ca, k.k->p.offset) = a.gen;
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
if (ret)
bch_err(c, "error reading alloc info: %i", ret);
return ret;
}
/* Free space/discard btree: */
static int bch2_bucket_do_index(struct btree_trans *trans,
struct bkey_s_c alloc_k,
struct bch_alloc_v4 a,
bool set)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode);
struct btree_iter iter;
struct bkey_s_c old;
struct bkey_i *k;
enum bucket_state state = bucket_state(a);
enum btree_id btree;
enum bch_bkey_type old_type = !set ? KEY_TYPE_set : KEY_TYPE_deleted;
enum bch_bkey_type new_type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
struct printbuf buf = PRINTBUF;
int ret;
if (state != BUCKET_free &&
state != BUCKET_need_discard)
return 0;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.type = new_type;
switch (state) {
case BUCKET_free:
btree = BTREE_ID_freespace;
k->k.p = alloc_freespace_pos(alloc_k.k->p, a);
bch2_key_resize(&k->k, 1);
break;
case BUCKET_need_discard:
btree = BTREE_ID_need_discard;
k->k.p = alloc_k.k->p;
break;
default:
return 0;
}
bch2_trans_iter_init(trans, &iter, btree,
bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
old = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(old);
if (ret)
goto err;
if (ca->mi.freespace_initialized &&
bch2_fs_inconsistent_on(old.k->type != old_type, c,
"incorrect key when %s %s btree (got %s should be %s)\n"
" for %s",
set ? "setting" : "clearing",
bch2_btree_ids[btree],
bch2_bkey_types[old.k->type],
bch2_bkey_types[old_type],
(bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
ret = -EIO;
goto err;
}
ret = bch2_trans_update(trans, &iter, k, 0);
err:
bch2_trans_iter_exit(trans, &iter);
printbuf_exit(&buf);
return ret;
}
int bch2_trans_mark_alloc(struct btree_trans *trans,
struct bkey_s_c old, struct bkey_i *new,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct bch_alloc_v4 old_a, *new_a;
u64 old_lru, new_lru;
int ret = 0;
/*
* Deletion only happens in the device removal path, with
* BTREE_TRIGGER_NORUN:
*/
BUG_ON(new->k.type != KEY_TYPE_alloc_v4);
bch2_alloc_to_v4(old, &old_a);
new_a = &bkey_i_to_alloc_v4(new)->v;
if (new_a->dirty_sectors > old_a.dirty_sectors ||
new_a->cached_sectors > old_a.cached_sectors) {
new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
new_a->io_time[WRITE]= max_t(u64, 1, atomic64_read(&c->io_clock[WRITE].now));
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true);
SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true);
}
if (old_a.data_type && !new_a->data_type &&
old_a.gen == new_a->gen &&
!bch2_bucket_is_open_safe(c, new->k.p.inode, new->k.p.offset)) {
new_a->gen++;
SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false);
}
if (bucket_state(old_a) != bucket_state(*new_a) ||
(bucket_state(*new_a) == BUCKET_free &&
alloc_freespace_genbits(old_a) != alloc_freespace_genbits(*new_a))) {
ret = bch2_bucket_do_index(trans, old, old_a, false) ?:
bch2_bucket_do_index(trans, bkey_i_to_s_c(new), *new_a, true);
if (ret)
return ret;
}
old_lru = alloc_lru_idx(old_a);
new_lru = alloc_lru_idx(*new_a);
if (old_lru != new_lru) {
ret = bch2_lru_change(trans, new->k.p.inode, new->k.p.offset,
old_lru, &new_lru);
if (ret)
return ret;
if (new_lru && new_a->io_time[READ] != new_lru)
new_a->io_time[READ] = new_lru;
}
return 0;
}
static int bch2_check_alloc_key(struct btree_trans *trans,
struct btree_iter *alloc_iter)
{
struct bch_fs *c = trans->c;
struct btree_iter discard_iter, freespace_iter;
struct bch_alloc_v4 a;
unsigned discard_key_type, freespace_key_type;
struct bkey_s_c alloc_k, k;
struct printbuf buf = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret;
alloc_k = bch2_btree_iter_peek(alloc_iter);
if (!alloc_k.k)
return 0;
ret = bkey_err(alloc_k);
if (ret)
return ret;
bch2_alloc_to_v4(alloc_k, &a);
discard_key_type = bucket_state(a) == BUCKET_need_discard
? KEY_TYPE_set : 0;
freespace_key_type = bucket_state(a) == BUCKET_free
? KEY_TYPE_set : 0;
bch2_trans_iter_init(trans, &discard_iter, BTREE_ID_need_discard,
alloc_k.k->p, 0);
bch2_trans_iter_init(trans, &freespace_iter, BTREE_ID_freespace,
alloc_freespace_pos(alloc_k.k->p, a), 0);
k = bch2_btree_iter_peek_slot(&discard_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (fsck_err_on(k.k->type != discard_key_type, c,
"incorrect key in need_discard btree (got %s should be %s)\n"
" %s",
bch2_bkey_types[k.k->type],
bch2_bkey_types[discard_key_type],
(bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
struct bkey_i *update =
bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.type = discard_key_type;
update->k.p = discard_iter.pos;
ret = bch2_trans_update(trans, &discard_iter, update, 0);
if (ret)
goto err;
}
k = bch2_btree_iter_peek_slot(&freespace_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (fsck_err_on(k.k->type != freespace_key_type, c,
"incorrect key in freespace btree (got %s should be %s)\n"
" %s",
bch2_bkey_types[k.k->type],
bch2_bkey_types[freespace_key_type],
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
struct bkey_i *update =
bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.type = freespace_key_type;
update->k.p = freespace_iter.pos;
bch2_key_resize(&update->k, 1);
ret = bch2_trans_update(trans, &freespace_iter, update, 0);
if (ret)
goto err;
}
err:
fsck_err:
bch2_trans_iter_exit(trans, &freespace_iter);
bch2_trans_iter_exit(trans, &discard_iter);
printbuf_exit(&buf2);
printbuf_exit(&buf);
return ret;
}
static inline bool bch2_dev_bucket_exists(struct bch_fs *c, struct bpos pos)
{
struct bch_dev *ca;
if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode])
return false;
ca = bch_dev_bkey_exists(c, pos.inode);
return pos.offset >= ca->mi.first_bucket &&
pos.offset < ca->mi.nbuckets;
}
static int bch2_check_freespace_key(struct btree_trans *trans,
struct btree_iter *freespace_iter,
bool initial)
{
struct bch_fs *c = trans->c;
struct btree_iter alloc_iter;
struct bkey_s_c k, freespace_k;
struct bch_alloc_v4 a;
u64 genbits;
struct bpos pos;
struct bkey_i *update;
struct printbuf buf = PRINTBUF;
int ret;
freespace_k = bch2_btree_iter_peek(freespace_iter);
if (!freespace_k.k)
return 1;
ret = bkey_err(freespace_k);
if (ret)
return ret;
pos = freespace_iter->pos;
pos.offset &= ~(~0ULL << 56);
genbits = freespace_iter->pos.offset & (~0ULL << 56);
bch2_trans_iter_init(trans, &alloc_iter, BTREE_ID_alloc, pos, 0);
if (fsck_err_on(!bch2_dev_bucket_exists(c, pos), c,
"%llu:%llu set in freespace btree but device or bucket does not exist",
pos.inode, pos.offset))
goto delete;
k = bch2_btree_iter_peek_slot(&alloc_iter);
ret = bkey_err(k);
if (ret)
goto err;
bch2_alloc_to_v4(k, &a);
if (fsck_err_on(bucket_state(a) != BUCKET_free ||
genbits != alloc_freespace_genbits(a), c,
"%s\n incorrectly set in freespace index (free %u, genbits %llu should be %llu)",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf),
bucket_state(a) == BUCKET_free,
genbits >> 56, alloc_freespace_genbits(a) >> 56))
goto delete;
out:
err:
fsck_err:
bch2_trans_iter_exit(trans, &alloc_iter);
printbuf_exit(&buf);
return ret;
delete:
update = bch2_trans_kmalloc(trans, sizeof(*update));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
goto err;
bkey_init(&update->k);
update->k.p = freespace_iter->pos;
bch2_key_resize(&update->k, 1);
ret = bch2_trans_update(trans, freespace_iter, update, 0) ?:
bch2_trans_commit(trans, NULL, NULL, 0);
goto out;
}
int bch2_check_alloc_info(struct bch_fs *c, bool initial)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0, last_dev = -1;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
if (k.k->p.inode != last_dev) {
struct bch_dev *ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (!ca->mi.freespace_initialized) {
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
continue;
}
last_dev = k.k->p.inode;
}
ret = __bch2_trans_do(&trans, NULL, NULL, 0,
bch2_check_alloc_key(&trans, &iter));
if (ret)
break;
}
bch2_trans_iter_exit(&trans, &iter);
if (ret)
goto err;
bch2_trans_iter_init(&trans, &iter, BTREE_ID_freespace, POS_MIN,
BTREE_ITER_PREFETCH);
while (1) {
ret = __bch2_trans_do(&trans, NULL, NULL, 0,
bch2_check_freespace_key(&trans, &iter, initial));
if (ret)
break;
bch2_btree_iter_set_pos(&iter, bpos_nosnap_successor(iter.pos));
}
bch2_trans_iter_exit(&trans, &iter);
err:
bch2_trans_exit(&trans);
return ret < 0 ? ret : 0;
}
static int bch2_check_alloc_to_lru_ref(struct btree_trans *trans,
struct btree_iter *alloc_iter)
{
struct bch_fs *c = trans->c;
struct btree_iter lru_iter;
struct bch_alloc_v4 a;
struct bkey_s_c alloc_k, k;
struct printbuf buf = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret;
alloc_k = bch2_btree_iter_peek(alloc_iter);
if (!alloc_k.k)
return 0;
ret = bkey_err(alloc_k);
if (ret)
return ret;
bch2_alloc_to_v4(alloc_k, &a);
if (bucket_state(a) != BUCKET_cached)
return 0;
bch2_trans_iter_init(trans, &lru_iter, BTREE_ID_lru,
POS(alloc_k.k->p.inode, a.io_time[READ]), 0);
k = bch2_btree_iter_peek_slot(&lru_iter);
ret = bkey_err(k);
if (ret)
goto err;
if (fsck_err_on(!a.io_time[READ], c,
"cached bucket with read_time 0\n"
" %s",
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)) ||
fsck_err_on(k.k->type != KEY_TYPE_lru ||
le64_to_cpu(bkey_s_c_to_lru(k).v->idx) != alloc_k.k->p.offset, c,
"incorrect/missing lru entry\n"
" %s\n"
" %s",
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf),
(bch2_bkey_val_to_text(&buf2, c, k), buf2.buf))) {
u64 read_time = a.io_time[READ];
if (!a.io_time[READ])
a.io_time[READ] = atomic64_read(&c->io_clock[READ].now);
ret = bch2_lru_change(trans,
alloc_k.k->p.inode,
alloc_k.k->p.offset,
0, &a.io_time[READ]);
if (ret)
goto err;
if (a.io_time[READ] != read_time) {
struct bkey_i_alloc_v4 *a_mut =
bch2_alloc_to_v4_mut(trans, alloc_k);
ret = PTR_ERR_OR_ZERO(a_mut);
if (ret)
goto err;
a_mut->v.io_time[READ] = a.io_time[READ];
ret = bch2_trans_update(trans, alloc_iter,
&a_mut->k_i, BTREE_TRIGGER_NORUN);
if (ret)
goto err;
}
}
err:
fsck_err:
bch2_trans_iter_exit(trans, &lru_iter);
printbuf_exit(&buf2);
printbuf_exit(&buf);
return ret;
}
int bch2_check_alloc_to_lru_refs(struct bch_fs *c)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
ret = __bch2_trans_do(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW,
bch2_check_alloc_to_lru_ref(&trans, &iter));
if (ret)
break;
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
return ret < 0 ? ret : 0;
}
static int bch2_clear_need_discard(struct btree_trans *trans, struct bpos pos,
struct bch_dev *ca, bool *discard_done)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c k;
struct bkey_i_alloc_v4 *a;
struct printbuf buf = PRINTBUF;
int ret;
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, pos,
BTREE_ITER_CACHED);
k = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(k);
if (ret)
goto out;
a = bch2_alloc_to_v4_mut(trans, k);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
if (BCH_ALLOC_V4_NEED_INC_GEN(&a->v)) {
a->v.gen++;
SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
goto write;
}
BUG_ON(a->v.journal_seq > c->journal.flushed_seq_ondisk);
if (bch2_fs_inconsistent_on(!BCH_ALLOC_V4_NEED_DISCARD(&a->v), c,
"%s\n incorrectly set in need_discard btree",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
ret = -EIO;
goto out;
}
if (!*discard_done && ca->mi.discard && !c->opts.nochanges) {
/*
* This works without any other locks because this is the only
* thread that removes items from the need_discard tree
*/
bch2_trans_unlock(trans);
blkdev_issue_discard(ca->disk_sb.bdev,
k.k->p.offset * ca->mi.bucket_size,
ca->mi.bucket_size,
GFP_KERNEL);
*discard_done = true;
ret = bch2_trans_relock(trans) ? 0 : -EINTR;
if (ret)
goto out;
}
SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false);
write:
ret = bch2_trans_update(trans, &iter, &a->k_i, 0);
out:
bch2_trans_iter_exit(trans, &iter);
printbuf_exit(&buf);
return ret;
}
static void bch2_do_discards_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, discard_work);
struct bch_dev *ca = NULL;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
u64 seen = 0, open = 0, need_journal_commit = 0, discarded = 0;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_need_discard,
POS_MIN, 0, k, ret) {
bool discard_done = false;
if (ca && k.k->p.inode != ca->dev_idx) {
percpu_ref_put(&ca->io_ref);
ca = NULL;
}
if (!ca) {
ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (!percpu_ref_tryget(&ca->io_ref)) {
ca = NULL;
bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
continue;
}
}
seen++;
if (bch2_bucket_is_open_safe(c, k.k->p.inode, k.k->p.offset)) {
open++;
continue;
}
if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal,
c->journal.flushed_seq_ondisk,
k.k->p.inode, k.k->p.offset)) {
need_journal_commit++;
continue;
}
ret = __bch2_trans_do(&trans, NULL, NULL,
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_NOFAIL,
bch2_clear_need_discard(&trans, k.k->p, ca, &discard_done));
if (ret)
break;
discarded++;
}
bch2_trans_iter_exit(&trans, &iter);
if (ca)
percpu_ref_put(&ca->io_ref);
bch2_trans_exit(&trans);
if (need_journal_commit * 2 > seen)
bch2_journal_flush_async(&c->journal, NULL);
percpu_ref_put(&c->writes);
trace_do_discards(c, seen, open, need_journal_commit, discarded, ret);
}
void bch2_do_discards(struct bch_fs *c)
{
if (percpu_ref_tryget(&c->writes) &&
!queue_work(system_long_wq, &c->discard_work))
percpu_ref_put(&c->writes);
}
static int invalidate_one_bucket(struct btree_trans *trans, struct bch_dev *ca)
{
struct bch_fs *c = trans->c;
struct btree_iter lru_iter, alloc_iter = { NULL };
struct bkey_s_c k;
struct bkey_i_alloc_v4 *a;
u64 bucket, idx;
int ret;
bch2_trans_iter_init(trans, &lru_iter, BTREE_ID_lru,
POS(ca->dev_idx, 0), 0);
k = bch2_btree_iter_peek(&lru_iter);
ret = bkey_err(k);
if (ret)
goto out;
if (!k.k || k.k->p.inode != ca->dev_idx)
goto out;
if (bch2_fs_inconsistent_on(k.k->type != KEY_TYPE_lru, c,
"non lru key in lru btree"))
goto out;
idx = k.k->p.offset;
bucket = le64_to_cpu(bkey_s_c_to_lru(k).v->idx);
a = bch2_trans_start_alloc_update(trans, &alloc_iter,
POS(ca->dev_idx, bucket));
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
if (bch2_fs_inconsistent_on(idx != alloc_lru_idx(a->v), c,
"invalidating bucket with wrong lru idx (got %llu should be %llu",
idx, alloc_lru_idx(a->v)))
goto out;
SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
a->v.gen++;
a->v.data_type = 0;
a->v.dirty_sectors = 0;
a->v.cached_sectors = 0;
a->v.io_time[READ] = atomic64_read(&c->io_clock[READ].now);
a->v.io_time[WRITE] = atomic64_read(&c->io_clock[WRITE].now);
ret = bch2_trans_update(trans, &alloc_iter, &a->k_i,
BTREE_TRIGGER_BUCKET_INVALIDATE);
out:
bch2_trans_iter_exit(trans, &alloc_iter);
bch2_trans_iter_exit(trans, &lru_iter);
return ret;
}
static void bch2_do_invalidates_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs, invalidate_work);
struct bch_dev *ca;
struct btree_trans trans;
unsigned i;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
for_each_member_device(ca, c, i)
while (!ret && should_invalidate_buckets(ca))
ret = __bch2_trans_do(&trans, NULL, NULL,
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_NOFAIL,
invalidate_one_bucket(&trans, ca));
bch2_trans_exit(&trans);
percpu_ref_put(&c->writes);
}
void bch2_do_invalidates(struct bch_fs *c)
{
if (percpu_ref_tryget(&c->writes))
queue_work(system_long_wq, &c->invalidate_work);
}
static int bch2_dev_freespace_init(struct bch_fs *c, struct bch_dev *ca)
{
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 a;
struct bch_member *m;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for_each_btree_key(&trans, iter, BTREE_ID_alloc,
POS(ca->dev_idx, ca->mi.first_bucket),
BTREE_ITER_SLOTS|
BTREE_ITER_PREFETCH, k, ret) {
if (iter.pos.offset >= ca->mi.nbuckets)
break;
bch2_alloc_to_v4(k, &a);
ret = __bch2_trans_do(&trans, NULL, NULL,
BTREE_INSERT_LAZY_RW,
bch2_bucket_do_index(&trans, k, a, true));
if (ret)
break;
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
if (ret) {
bch_err(ca, "error initializing free space: %i", ret);
return ret;
}
mutex_lock(&c->sb_lock);
m = bch2_sb_get_members(c->disk_sb.sb)->members + ca->dev_idx;
SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, true);
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_fs_freespace_init(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
int ret = 0;
bool doing_init = false;
/*
* We can crash during the device add path, so we need to check this on
* every mount:
*/
for_each_member_device(ca, c, i) {
if (ca->mi.freespace_initialized)
continue;
if (!doing_init) {
bch_info(c, "initializing freespace");
doing_init = true;
}
ret = bch2_dev_freespace_init(c, ca);
if (ret) {
percpu_ref_put(&ca->ref);
return ret;
}
}
if (doing_init) {
mutex_lock(&c->sb_lock);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch_verbose(c, "done initializing freespace");
}
return ret;
}
/* Bucket IO clocks: */
int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
size_t bucket_nr, int rw)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_i_alloc_v4 *a;
u64 now;
int ret = 0;
a = bch2_trans_start_alloc_update(trans, &iter, POS(dev, bucket_nr));
ret = PTR_ERR_OR_ZERO(a);
if (ret)
return ret;
now = atomic64_read(&c->io_clock[rw].now);
if (a->v.io_time[rw] == now)
goto out;
a->v.io_time[rw] = now;
ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?:
bch2_trans_commit(trans, NULL, NULL, 0);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/* Startup/shutdown (ro/rw): */
void bch2_recalc_capacity(struct bch_fs *c)
{
struct bch_dev *ca;
u64 capacity = 0, reserved_sectors = 0, gc_reserve;
unsigned bucket_size_max = 0;
unsigned long ra_pages = 0;
unsigned i;
lockdep_assert_held(&c->state_lock);
for_each_online_member(ca, c, i) {
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
ra_pages += bdi->ra_pages;
}
bch2_set_ra_pages(c, ra_pages);
for_each_rw_member(ca, c, i) {
u64 dev_reserve = 0;
/*
* We need to reserve buckets (from the number
* of currently available buckets) against
* foreground writes so that mainly copygc can
* make forward progress.
*
* We need enough to refill the various reserves
* from scratch - copygc will use its entire
* reserve all at once, then run against when
* its reserve is refilled (from the formerly
* available buckets).
*
* This reserve is just used when considering if
* allocations for foreground writes must wait -
* not -ENOSPC calculations.
*/
dev_reserve += ca->nr_btree_reserve * 2;
dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */
dev_reserve += 1; /* btree write point */
dev_reserve += 1; /* copygc write point */
dev_reserve += 1; /* rebalance write point */
dev_reserve *= ca->mi.bucket_size;
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
ca->mi.first_bucket);
reserved_sectors += dev_reserve * 2;
bucket_size_max = max_t(unsigned, bucket_size_max,
ca->mi.bucket_size);
}
gc_reserve = c->opts.gc_reserve_bytes
? c->opts.gc_reserve_bytes >> 9
: div64_u64(capacity * c->opts.gc_reserve_percent, 100);
reserved_sectors = max(gc_reserve, reserved_sectors);
reserved_sectors = min(reserved_sectors, capacity);
c->capacity = capacity - reserved_sectors;
c->bucket_size_max = bucket_size_max;
/* Wake up case someone was waiting for buckets */
closure_wake_up(&c->freelist_wait);
}
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
{
struct open_bucket *ob;
bool ret = false;
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
spin_lock(&ob->lock);
if (ob->valid && !ob->on_partial_list &&
ob->dev == ca->dev_idx)
ret = true;
spin_unlock(&ob->lock);
}
return ret;
}
/* device goes ro: */
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
/* First, remove device from allocation groups: */
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
clear_bit(ca->dev_idx, c->rw_devs[i].d);
/*
* Capacity is calculated based off of devices in allocation groups:
*/
bch2_recalc_capacity(c);
/* Next, close write points that point to this device... */
for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
bch2_writepoint_stop(c, ca, &c->write_points[i]);
bch2_writepoint_stop(c, ca, &c->copygc_write_point);
bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
bch2_writepoint_stop(c, ca, &c->btree_write_point);
mutex_lock(&c->btree_reserve_cache_lock);
while (c->btree_reserve_cache_nr) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
bch2_open_buckets_put(c, &a->ob);
}
mutex_unlock(&c->btree_reserve_cache_lock);
while (1) {
struct open_bucket *ob;
spin_lock(&c->freelist_lock);
if (!ca->open_buckets_partial_nr) {
spin_unlock(&c->freelist_lock);
break;
}
ob = c->open_buckets +
ca->open_buckets_partial[--ca->open_buckets_partial_nr];
ob->on_partial_list = false;
spin_unlock(&c->freelist_lock);
bch2_open_bucket_put(c, ob);
}
bch2_ec_stop_dev(c, ca);
/*
* Wake up threads that were blocked on allocation, so they can notice
* the device can no longer be removed and the capacity has changed:
*/
closure_wake_up(&c->freelist_wait);
/*
* journal_res_get() can block waiting for free space in the journal -
* it needs to notice there may not be devices to allocate from anymore:
*/
wake_up(&c->journal.wait);
/* Now wait for any in flight writes: */
closure_wait_event(&c->open_buckets_wait,
!bch2_dev_has_open_write_point(c, ca));
}
/* device goes rw: */
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
if (ca->mi.data_allowed & (1 << i))
set_bit(ca->dev_idx, c->rw_devs[i].d);
}
void bch2_fs_allocator_background_init(struct bch_fs *c)
{
spin_lock_init(&c->freelist_lock);
INIT_WORK(&c->discard_work, bch2_do_discards_work);
INIT_WORK(&c->invalidate_work, bch2_do_invalidates_work);
}