linux-stable/drivers/scsi/libata-core.c

5874 lines
141 KiB
C
Raw Normal View History

/*
* libata-core.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include "scsi_priv.h"
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/byteorder.h>
#include "libata.h"
/* debounce timing parameters in msecs { interval, duration, timeout } */
const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors);
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
static void ata_dev_xfermask(struct ata_device *dev);
static unsigned int ata_unique_id = 1;
static struct workqueue_struct *ata_wq;
struct workqueue_struct *ata_aux_wq;
2006-03-11 20:50:08 -05:00
int atapi_enabled = 1;
module_param(atapi_enabled, int, 0444);
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
int atapi_dmadir = 0;
module_param(atapi_dmadir, int, 0444);
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
int libata_fua = 0;
module_param_named(fua, libata_fua, int, 0444);
MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
2005-06-02 18:17:13 -04:00
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @fis: Buffer into which data will output
* @pmp: Port multiplier port
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
static const u8 ata_rw_cmds[] = {
/* pio multi */
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
0,
0,
0,
ATA_CMD_WRITE_MULTI_FUA_EXT,
/* pio */
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
0,
0,
0,
0,
/* dma */
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
0,
0,
0,
ATA_CMD_WRITE_FUA_EXT
};
/**
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
* @qc: command to examine and configure
*
* Examine the device configuration and tf->flags to calculate
* the proper read/write commands and protocol to use.
*
* LOCKING:
* caller.
*/
int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &qc->tf;
struct ata_device *dev = qc->dev;
u8 cmd;
int index, fua, lba48, write;
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
if (dev->flags & ATA_DFLAG_PIO) {
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
/* Unable to use DMA due to host limitation */
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else {
tf->protocol = ATA_PROT_DMA;
index = 16;
}
cmd = ata_rw_cmds[index + fua + lba48 + write];
if (cmd) {
tf->command = cmd;
return 0;
}
return -1;
}
/**
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
* @pio_mask: pio_mask
* @mwdma_mask: mwdma_mask
* @udma_mask: udma_mask
*
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
* unsigned int xfer_mask.
*
* LOCKING:
* None.
*
* RETURNS:
* Packed xfer_mask.
*/
static unsigned int ata_pack_xfermask(unsigned int pio_mask,
unsigned int mwdma_mask,
unsigned int udma_mask)
{
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
}
/**
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
* @xfer_mask: xfer_mask to unpack
* @pio_mask: resulting pio_mask
* @mwdma_mask: resulting mwdma_mask
* @udma_mask: resulting udma_mask
*
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
* Any NULL distination masks will be ignored.
*/
static void ata_unpack_xfermask(unsigned int xfer_mask,
unsigned int *pio_mask,
unsigned int *mwdma_mask,
unsigned int *udma_mask)
{
if (pio_mask)
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
if (mwdma_mask)
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
if (udma_mask)
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
}
static const struct ata_xfer_ent {
int shift, bits;
u8 base;
} ata_xfer_tbl[] = {
{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
{ -1, },
};
/**
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
* @xfer_mask: xfer_mask of interest
*
* Return matching XFER_* value for @xfer_mask. Only the highest
* bit of @xfer_mask is considered.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching XFER_* value, 0 if no match found.
*/
static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
{
int highbit = fls(xfer_mask) - 1;
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
return ent->base + highbit - ent->shift;
return 0;
}
/**
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_mask for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_mask, 0 if no match found.
*/
static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return 1 << (ent->shift + xfer_mode - ent->base);
return 0;
}
/**
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_shift for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_shift, -1 if no match found.
*/
static int ata_xfer_mode2shift(unsigned int xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return ent->shift;
return -1;
}
/**
* ata_mode_string - convert xfer_mask to string
* @xfer_mask: mask of bits supported; only highest bit counts.
*
* Determine string which represents the highest speed
* (highest bit in @modemask).
*
* LOCKING:
* None.
*
* RETURNS:
* Constant C string representing highest speed listed in
* @mode_mask, or the constant C string "<n/a>".
*/
static const char *ata_mode_string(unsigned int xfer_mask)
{
static const char * const xfer_mode_str[] = {
"PIO0",
"PIO1",
"PIO2",
"PIO3",
"PIO4",
"MWDMA0",
"MWDMA1",
"MWDMA2",
"UDMA/16",
"UDMA/25",
"UDMA/33",
"UDMA/44",
"UDMA/66",
"UDMA/100",
"UDMA/133",
"UDMA7",
};
int highbit;
highbit = fls(xfer_mask) - 1;
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
return xfer_mode_str[highbit];
return "<n/a>";
}
static const char *sata_spd_string(unsigned int spd)
{
static const char * const spd_str[] = {
"1.5 Gbps",
"3.0 Gbps",
};
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
return "<unknown>";
return spd_str[spd - 1];
}
void ata_dev_disable(struct ata_device *dev)
{
if (ata_dev_enabled(dev)) {
ata_dev_printk(dev, KERN_WARNING, "disabled\n");
dev->class++;
}
}
/**
* ata_pio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_pio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
outb(0xaa, ioaddr->nsect_addr);
outb(0x55, ioaddr->lbal_addr);
outb(0x55, ioaddr->nsect_addr);
outb(0xaa, ioaddr->lbal_addr);
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_mmio_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_mmio_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* Dispatch ATA device presence detection, depending
* on whether we are using PIO or MMIO to talk to the
* ATA shadow registers.
*
* LOCKING:
* caller.
*/
static unsigned int ata_devchk(struct ata_port *ap,
unsigned int device)
{
if (ap->flags & ATA_FLAG_MMIO)
return ata_mmio_devchk(ap, device);
return ata_pio_devchk(ap, device);
}
/**
* ata_dev_classify - determine device type based on ATA-spec signature
* @tf: ATA taskfile register set for device to be identified
*
* Determine from taskfile register contents whether a device is
* ATA or ATAPI, as per "Signature and persistence" section
* of ATA/PI spec (volume 1, sect 5.14).
*
* LOCKING:
* None.
*
* RETURNS:
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
* the event of failure.
*/
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
{
/* Apple's open source Darwin code hints that some devices only
* put a proper signature into the LBA mid/high registers,
* So, we only check those. It's sufficient for uniqueness.
*/
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
DPRINTK("found ATA device by sig\n");
return ATA_DEV_ATA;
}
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
DPRINTK("found ATAPI device by sig\n");
return ATA_DEV_ATAPI;
}
DPRINTK("unknown device\n");
return ATA_DEV_UNKNOWN;
}
/**
* ata_dev_try_classify - Parse returned ATA device signature
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
* @r_err: Value of error register on completion
*
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
* an ATA/ATAPI-defined set of values is placed in the ATA
* shadow registers, indicating the results of device detection
* and diagnostics.
*
* Select the ATA device, and read the values from the ATA shadow
* registers. Then parse according to the Error register value,
* and the spec-defined values examined by ata_dev_classify().
*
* LOCKING:
* caller.
*
* RETURNS:
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
*/
static unsigned int
ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
{
struct ata_taskfile tf;
unsigned int class;
u8 err;
ap->ops->dev_select(ap, device);
memset(&tf, 0, sizeof(tf));
ap->ops->tf_read(ap, &tf);
err = tf.feature;
if (r_err)
*r_err = err;
/* see if device passed diags */
if (err == 1)
/* do nothing */ ;
else if ((device == 0) && (err == 0x81))
/* do nothing */ ;
else
return ATA_DEV_NONE;
/* determine if device is ATA or ATAPI */
class = ata_dev_classify(&tf);
if (class == ATA_DEV_UNKNOWN)
return ATA_DEV_NONE;
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
return ATA_DEV_NONE;
return class;
}
/**
* ata_id_string - Convert IDENTIFY DEVICE page into string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an even number.
*
* The strings in the IDENTIFY DEVICE page are broken up into
* 16-bit chunks. Run through the string, and output each
* 8-bit chunk linearly, regardless of platform.
*
* LOCKING:
* caller.
*/
void ata_id_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned int c;
while (len > 0) {
c = id[ofs] >> 8;
*s = c;
s++;
c = id[ofs] & 0xff;
*s = c;
s++;
ofs++;
len -= 2;
}
}
/**
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an odd number.
*
* This function is identical to ata_id_string except that it
* trims trailing spaces and terminates the resulting string with
* null. @len must be actual maximum length (even number) + 1.
*
* LOCKING:
* caller.
*/
void ata_id_c_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned char *p;
WARN_ON(!(len & 1));
ata_id_string(id, s, ofs, len - 1);
p = s + strnlen(s, len - 1);
while (p > s && p[-1] == ' ')
p--;
*p = '\0';
}
2005-06-02 18:17:13 -04:00
static u64 ata_id_n_sectors(const u16 *id)
{
if (ata_id_has_lba(id)) {
if (ata_id_has_lba48(id))
return ata_id_u64(id, 100);
else
return ata_id_u32(id, 60);
} else {
if (ata_id_current_chs_valid(id))
return ata_id_u32(id, 57);
else
return id[1] * id[3] * id[6];
}
}
2005-06-02 18:17:13 -04:00
/**
* ata_noop_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* This function performs no actual function.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
{
}
2005-06-02 18:17:13 -04:00
/**
* ata_std_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
2005-06-02 18:17:13 -04:00
* ATA channel. Works with both PIO and MMIO.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
{
u8 tmp;
if (device == 0)
tmp = ATA_DEVICE_OBS;
else
tmp = ATA_DEVICE_OBS | ATA_DEV1;
if (ap->flags & ATA_FLAG_MMIO) {
writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
} else {
outb(tmp, ap->ioaddr.device_addr);
}
ata_pause(ap); /* needed; also flushes, for mmio */
}
/**
* ata_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
* @wait: non-zero to wait for Status register BSY bit to clear
* @can_sleep: non-zero if context allows sleeping
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel.
*
* This is a high-level version of ata_std_dev_select(),
* which additionally provides the services of inserting
* the proper pauses and status polling, where needed.
*
* LOCKING:
* caller.
*/
void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep)
{
VPRINTK("ENTER, ata%u: device %u, wait %u\n",
ap->id, device, wait);
if (wait)
ata_wait_idle(ap);
ap->ops->dev_select(ap, device);
if (wait) {
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
msleep(150);
ata_wait_idle(ap);
}
}
/**
* ata_dump_id - IDENTIFY DEVICE info debugging output
* @id: IDENTIFY DEVICE page to dump
*
* Dump selected 16-bit words from the given IDENTIFY DEVICE
* page.
*
* LOCKING:
* caller.
*/
static inline void ata_dump_id(const u16 *id)
{
DPRINTK("49==0x%04x "
"53==0x%04x "
"63==0x%04x "
"64==0x%04x "
"75==0x%04x \n",
id[49],
id[53],
id[63],
id[64],
id[75]);
DPRINTK("80==0x%04x "
"81==0x%04x "
"82==0x%04x "
"83==0x%04x "
"84==0x%04x \n",
id[80],
id[81],
id[82],
id[83],
id[84]);
DPRINTK("88==0x%04x "
"93==0x%04x\n",
id[88],
id[93]);
}
/**
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
* @id: IDENTIFY data to compute xfer mask from
*
* Compute the xfermask for this device. This is not as trivial
* as it seems if we must consider early devices correctly.
*
* FIXME: pre IDE drive timing (do we care ?).
*
* LOCKING:
* None.
*
* RETURNS:
* Computed xfermask
*/
static unsigned int ata_id_xfermask(const u16 *id)
{
unsigned int pio_mask, mwdma_mask, udma_mask;
/* Usual case. Word 53 indicates word 64 is valid */
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
pio_mask <<= 3;
pio_mask |= 0x7;
} else {
/* If word 64 isn't valid then Word 51 high byte holds
* the PIO timing number for the maximum. Turn it into
* a mask.
*/
pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
/* But wait.. there's more. Design your standards by
* committee and you too can get a free iordy field to
* process. However its the speeds not the modes that
* are supported... Note drivers using the timing API
* will get this right anyway
*/
}
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
udma_mask = 0;
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
}
/**
* ata_port_queue_task - Queue port_task
* @ap: The ata_port to queue port_task for
* @fn: workqueue function to be scheduled
* @data: data value to pass to workqueue function
* @delay: delay time for workqueue function
*
* Schedule @fn(@data) for execution after @delay jiffies using
* port_task. There is one port_task per port and it's the
* user(low level driver)'s responsibility to make sure that only
* one task is active at any given time.
*
* libata core layer takes care of synchronization between
* port_task and EH. ata_port_queue_task() may be ignored for EH
* synchronization.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
unsigned long delay)
{
int rc;
if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
return;
PREPARE_WORK(&ap->port_task, fn, data);
if (!delay)
rc = queue_work(ata_wq, &ap->port_task);
else
rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
/* rc == 0 means that another user is using port task */
WARN_ON(rc == 0);
}
/**
* ata_port_flush_task - Flush port_task
* @ap: The ata_port to flush port_task for
*
* After this function completes, port_task is guranteed not to
* be running or scheduled.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_port_flush_task(struct ata_port *ap)
{
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
DPRINTK("flush #1\n");
flush_workqueue(ata_wq);
/*
* At this point, if a task is running, it's guaranteed to see
* the FLUSH flag; thus, it will never queue pio tasks again.
* Cancel and flush.
*/
if (!cancel_delayed_work(&ap->port_task)) {
DPRINTK("flush #2\n");
flush_workqueue(ata_wq);
}
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
DPRINTK("EXIT\n");
}
void ata_qc_complete_internal(struct ata_queued_cmd *qc)
{
struct completion *waiting = qc->private_data;
complete(waiting);
}
/**
* ata_exec_internal - execute libata internal command
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @cdb: CDB for packet command
* @dma_dir: Data tranfer direction of the command
* @buf: Data buffer of the command
* @buflen: Length of data buffer
*
* Executes libata internal command with timeout. @tf contains
* command on entry and result on return. Timeout and error
* conditions are reported via return value. No recovery action
* is taken after a command times out. It's caller's duty to
* clean up after timeout.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*/
unsigned ata_exec_internal(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, void *buf, unsigned int buflen)
{
struct ata_port *ap = dev->ap;
u8 command = tf->command;
struct ata_queued_cmd *qc;
unsigned int tag, preempted_tag;
u32 preempted_sactive, preempted_qc_active;
DECLARE_COMPLETION(wait);
unsigned long flags;
unsigned int err_mask;
int rc;
spin_lock_irqsave(&ap->host_set->lock, flags);
/* no internal command while frozen */
if (ap->flags & ATA_FLAG_FROZEN) {
spin_unlock_irqrestore(&ap->host_set->lock, flags);
return AC_ERR_SYSTEM;
}
/* initialize internal qc */
/* XXX: Tag 0 is used for drivers with legacy EH as some
* drivers choke if any other tag is given. This breaks
* ata_tag_internal() test for those drivers. Don't use new
* EH stuff without converting to it.
*/
if (ap->ops->error_handler)
tag = ATA_TAG_INTERNAL;
else
tag = 0;
if (test_and_set_bit(tag, &ap->qc_allocated))
BUG();
qc = __ata_qc_from_tag(ap, tag);
qc->tag = tag;
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
preempted_tag = ap->active_tag;
preempted_sactive = ap->sactive;
preempted_qc_active = ap->qc_active;
ap->active_tag = ATA_TAG_POISON;
ap->sactive = 0;
ap->qc_active = 0;
/* prepare & issue qc */
qc->tf = *tf;
if (cdb)
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
qc->flags |= ATA_QCFLAG_RESULT_TF;
qc->dma_dir = dma_dir;
if (dma_dir != DMA_NONE) {
ata_sg_init_one(qc, buf, buflen);
qc->nsect = buflen / ATA_SECT_SIZE;
}
qc->private_data = &wait;
qc->complete_fn = ata_qc_complete_internal;
ata_qc_issue(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
ata_port_flush_task(ap);
if (!rc) {
spin_lock_irqsave(&ap->host_set->lock, flags);
/* We're racing with irq here. If we lose, the
* following test prevents us from completing the qc
* twice. If we win, the port is frozen and will be
* cleaned up by ->post_internal_cmd().
*/
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask |= AC_ERR_TIMEOUT;
if (ap->ops->error_handler)
ata_port_freeze(ap);
else
ata_qc_complete(qc);
ata_dev_printk(dev, KERN_WARNING,
"qc timeout (cmd 0x%x)\n", command);
}
spin_unlock_irqrestore(&ap->host_set->lock, flags);
}
/* do post_internal_cmd */
if (ap->ops->post_internal_cmd)
ap->ops->post_internal_cmd(qc);
if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
"internal command, assuming AC_ERR_OTHER\n");
qc->err_mask |= AC_ERR_OTHER;
}
/* finish up */
spin_lock_irqsave(&ap->host_set->lock, flags);
*tf = qc->result_tf;
err_mask = qc->err_mask;
ata_qc_free(qc);
ap->active_tag = preempted_tag;
ap->sactive = preempted_sactive;
ap->qc_active = preempted_qc_active;
/* XXX - Some LLDDs (sata_mv) disable port on command failure.
* Until those drivers are fixed, we detect the condition
* here, fail the command with AC_ERR_SYSTEM and reenable the
* port.
*
* Note that this doesn't change any behavior as internal
* command failure results in disabling the device in the
* higher layer for LLDDs without new reset/EH callbacks.
*
* Kill the following code as soon as those drivers are fixed.
*/
if (ap->flags & ATA_FLAG_DISABLED) {
err_mask |= AC_ERR_SYSTEM;
ata_port_probe(ap);
}
spin_unlock_irqrestore(&ap->host_set->lock, flags);
return err_mask;
}
/**
* ata_pio_need_iordy - check if iordy needed
* @adev: ATA device
*
* Check if the current speed of the device requires IORDY. Used
* by various controllers for chip configuration.
*/
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
{
int pio;
int speed = adev->pio_mode - XFER_PIO_0;
if (speed < 2)
return 0;
if (speed > 2)
return 1;
/* If we have no drive specific rule, then PIO 2 is non IORDY */
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
pio = adev->id[ATA_ID_EIDE_PIO];
/* Is the speed faster than the drive allows non IORDY ? */
if (pio) {
/* This is cycle times not frequency - watch the logic! */
if (pio > 240) /* PIO2 is 240nS per cycle */
return 1;
return 0;
}
}
return 0;
}
/**
* ata_dev_read_id - Read ID data from the specified device
* @dev: target device
* @p_class: pointer to class of the target device (may be changed)
* @post_reset: is this read ID post-reset?
* @id: buffer to read IDENTIFY data into
*
* Read ID data from the specified device. ATA_CMD_ID_ATA is
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
* for pre-ATA4 drives.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
int post_reset, u16 *id)
{
struct ata_port *ap = dev->ap;
unsigned int class = *p_class;
struct ata_taskfile tf;
unsigned int err_mask = 0;
const char *reason;
int rc;
DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
retry:
ata_tf_init(dev, &tf);
switch (class) {
case ATA_DEV_ATA:
tf.command = ATA_CMD_ID_ATA;
break;
case ATA_DEV_ATAPI:
tf.command = ATA_CMD_ID_ATAPI;
break;
default:
rc = -ENODEV;
reason = "unsupported class";
goto err_out;
}
tf.protocol = ATA_PROT_PIO;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
id, sizeof(id[0]) * ATA_ID_WORDS);
if (err_mask) {
rc = -EIO;
reason = "I/O error";
goto err_out;
}
swap_buf_le16(id, ATA_ID_WORDS);
/* sanity check */
if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
rc = -EINVAL;
reason = "device reports illegal type";
goto err_out;
}
if (post_reset && class == ATA_DEV_ATA) {
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY
* INITIALIZE DEVICE PARAMETERS
* anything else..
* Some drives were very specific about that exact sequence.
*/
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
err_mask = ata_dev_init_params(dev, id[3], id[6]);
if (err_mask) {
rc = -EIO;
reason = "INIT_DEV_PARAMS failed";
goto err_out;
}
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
post_reset = 0;
goto retry;
}
}
*p_class = class;
return 0;
err_out:
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
"(%s, err_mask=0x%x)\n", reason, err_mask);
return rc;
}
static inline u8 ata_dev_knobble(struct ata_device *dev)
{
return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
}
static void ata_dev_config_ncq(struct ata_device *dev,
char *desc, size_t desc_sz)
{
struct ata_port *ap = dev->ap;
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
if (!ata_id_has_ncq(dev->id)) {
desc[0] = '\0';
return;
}
if (ap->flags & ATA_FLAG_NCQ) {
hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
dev->flags |= ATA_DFLAG_NCQ;
}
if (hdepth >= ddepth)
snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
else
snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
}
/**
* ata_dev_configure - Configure the specified ATA/ATAPI device
* @dev: Target device to configure
* @print_info: Enable device info printout
*
* Configure @dev according to @dev->id. Generic and low-level
* driver specific fixups are also applied.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise
*/
int ata_dev_configure(struct ata_device *dev, int print_info)
{
struct ata_port *ap = dev->ap;
const u16 *id = dev->id;
unsigned int xfer_mask;
int i, rc;
if (!ata_dev_enabled(dev)) {
DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ap->id, dev->devno);
return 0;
}
DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
/* print device capabilities */
if (print_info)
ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
"84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
id[49], id[82], id[83], id[84],
id[85], id[86], id[87], id[88]);
/* initialize to-be-configured parameters */
dev->flags &= ~ATA_DFLAG_CFG_MASK;
dev->max_sectors = 0;
dev->cdb_len = 0;
dev->n_sectors = 0;
dev->cylinders = 0;
dev->heads = 0;
dev->sectors = 0;
/*
* common ATA, ATAPI feature tests
*/
/* find max transfer mode; for printk only */
xfer_mask = ata_id_xfermask(id);
ata_dump_id(id);
/* ATA-specific feature tests */
if (dev->class == ATA_DEV_ATA) {
dev->n_sectors = ata_id_n_sectors(id);
if (ata_id_has_lba(id)) {
const char *lba_desc;
char ncq_desc[20];
lba_desc = "LBA";
dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(id)) {
dev->flags |= ATA_DFLAG_LBA48;
lba_desc = "LBA48";
}
/* config NCQ */
ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
/* print device info to dmesg */
if (print_info)
ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
"max %s, %Lu sectors: %s %s\n",
ata_id_major_version(id),
ata_mode_string(xfer_mask),
(unsigned long long)dev->n_sectors,
lba_desc, ncq_desc);
} else {
/* CHS */
/* Default translation */
dev->cylinders = id[1];
dev->heads = id[3];
dev->sectors = id[6];
if (ata_id_current_chs_valid(id)) {
/* Current CHS translation is valid. */
dev->cylinders = id[54];
dev->heads = id[55];
dev->sectors = id[56];
}
/* print device info to dmesg */
if (print_info)
ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
"max %s, %Lu sectors: CHS %u/%u/%u\n",
ata_id_major_version(id),
ata_mode_string(xfer_mask),
(unsigned long long)dev->n_sectors,
dev->cylinders, dev->heads, dev->sectors);
}
if (dev->id[59] & 0x100) {
dev->multi_count = dev->id[59] & 0xff;
DPRINTK("ata%u: dev %u multi count %u\n",
ap->id, dev->devno, dev->multi_count);
}
dev->cdb_len = 16;
}
/* ATAPI-specific feature tests */
else if (dev->class == ATA_DEV_ATAPI) {
char *cdb_intr_string = "";
rc = atapi_cdb_len(id);
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
ata_dev_printk(dev, KERN_WARNING,
"unsupported CDB len\n");
rc = -EINVAL;
goto err_out_nosup;
}
dev->cdb_len = (unsigned int) rc;
if (ata_id_cdb_intr(dev->id)) {
dev->flags |= ATA_DFLAG_CDB_INTR;
cdb_intr_string = ", CDB intr";
}
/* print device info to dmesg */
if (print_info)
ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
ata_mode_string(xfer_mask),
cdb_intr_string);
}
ap->host->max_cmd_len = 0;
for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->host->max_cmd_len = max_t(unsigned int,
ap->host->max_cmd_len,
ap->device[i].cdb_len);
/* limit bridge transfers to udma5, 200 sectors */
if (ata_dev_knobble(dev)) {
if (print_info)
ata_dev_printk(dev, KERN_INFO,
"applying bridge limits\n");
dev->udma_mask &= ATA_UDMA5;
dev->max_sectors = ATA_MAX_SECTORS;
}
if (ap->ops->dev_config)
ap->ops->dev_config(ap, dev);
DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
return 0;
err_out_nosup:
DPRINTK("EXIT, err\n");
return rc;
}
/**
* ata_bus_probe - Reset and probe ATA bus
* @ap: Bus to probe
*
2005-05-30 19:49:12 -04:00
* Master ATA bus probing function. Initiates a hardware-dependent
* bus reset, then attempts to identify any devices found on
* the bus.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, negative errno otherwise.
*/
static int ata_bus_probe(struct ata_port *ap)
{
unsigned int classes[ATA_MAX_DEVICES];
int tries[ATA_MAX_DEVICES];
int i, rc, down_xfermask;
struct ata_device *dev;
ata_port_probe(ap);
for (i = 0; i < ATA_MAX_DEVICES; i++)
tries[i] = ATA_PROBE_MAX_TRIES;
retry:
down_xfermask = 0;
/* reset and determine device classes */
ap->ops->phy_reset(ap);
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!(ap->flags & ATA_FLAG_DISABLED) &&
dev->class != ATA_DEV_UNKNOWN)
classes[dev->devno] = dev->class;
else
classes[dev->devno] = ATA_DEV_NONE;
dev->class = ATA_DEV_UNKNOWN;
}
ata_port_probe(ap);
/* after the reset the device state is PIO 0 and the controller
state is undefined. Record the mode */
for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->device[i].pio_mode = XFER_PIO_0;
/* read IDENTIFY page and configure devices */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (tries[i])
dev->class = classes[i];
if (!ata_dev_enabled(dev))
continue;
rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
if (rc)
goto fail;
rc = ata_dev_configure(dev, 1);
if (rc)
goto fail;
}
/* configure transfer mode */
rc = ata_set_mode(ap, &dev);
if (rc) {
down_xfermask = 1;
goto fail;
}
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (ata_dev_enabled(&ap->device[i]))
return 0;
/* no device present, disable port */
ata_port_disable(ap);
ap->ops->port_disable(ap);
return -ENODEV;
fail:
switch (rc) {
case -EINVAL:
case -ENODEV:
tries[dev->devno] = 0;
break;
case -EIO:
sata_down_spd_limit(ap);
/* fall through */
default:
tries[dev->devno]--;
if (down_xfermask &&
ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
tries[dev->devno] = 0;
}
if (!tries[dev->devno]) {
ata_down_xfermask_limit(dev, 1);
ata_dev_disable(dev);
}
goto retry;
}
/**
2005-05-30 19:49:12 -04:00
* ata_port_probe - Mark port as enabled
* @ap: Port for which we indicate enablement
*
2005-05-30 19:49:12 -04:00
* Modify @ap data structure such that the system
* thinks that the entire port is enabled.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_probe(struct ata_port *ap)
{
ap->flags &= ~ATA_FLAG_DISABLED;
}
/**
* sata_print_link_status - Print SATA link status
* @ap: SATA port to printk link status about
*
* This function prints link speed and status of a SATA link.
*
* LOCKING:
* None.
*/
static void sata_print_link_status(struct ata_port *ap)
{
u32 sstatus, scontrol, tmp;
if (sata_scr_read(ap, SCR_STATUS, &sstatus))
return;
sata_scr_read(ap, SCR_CONTROL, &scontrol);
if (ata_port_online(ap)) {
tmp = (sstatus >> 4) & 0xf;
ata_port_printk(ap, KERN_INFO,
"SATA link up %s (SStatus %X SControl %X)\n",
sata_spd_string(tmp), sstatus, scontrol);
} else {
ata_port_printk(ap, KERN_INFO,
"SATA link down (SStatus %X SControl %X)\n",
sstatus, scontrol);
}
}
/**
* __sata_phy_reset - Wake/reset a low-level SATA PHY
* @ap: SATA port associated with target SATA PHY.
*
* This function issues commands to standard SATA Sxxx
* PHY registers, to wake up the phy (and device), and
* clear any reset condition.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
*/
void __sata_phy_reset(struct ata_port *ap)
{
u32 sstatus;
unsigned long timeout = jiffies + (HZ * 5);
if (ap->flags & ATA_FLAG_SATA_RESET) {
/* issue phy wake/reset */
sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
/* Couldn't find anything in SATA I/II specs, but
* AHCI-1.1 10.4.2 says at least 1 ms. */
mdelay(1);
}
/* phy wake/clear reset */
sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
/* wait for phy to become ready, if necessary */
do {
msleep(200);
sata_scr_read(ap, SCR_STATUS, &sstatus);
if ((sstatus & 0xf) != 1)
break;
} while (time_before(jiffies, timeout));
/* print link status */
sata_print_link_status(ap);
/* TODO: phy layer with polling, timeouts, etc. */
if (!ata_port_offline(ap))
ata_port_probe(ap);
else
ata_port_disable(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_disable(ap);
return;
}
ap->cbl = ATA_CBL_SATA;
}
/**
* sata_phy_reset - Reset SATA bus.
* @ap: SATA port associated with target SATA PHY.
*
* This function resets the SATA bus, and then probes
* the bus for devices.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
*/
void sata_phy_reset(struct ata_port *ap)
{
__sata_phy_reset(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
ata_bus_reset(ap);
}
/**
* ata_dev_pair - return other device on cable
* @adev: device
*
* Obtain the other device on the same cable, or if none is
* present NULL is returned
*/
struct ata_device *ata_dev_pair(struct ata_device *adev)
{
struct ata_port *ap = adev->ap;
struct ata_device *pair = &ap->device[1 - adev->devno];
if (!ata_dev_enabled(pair))
return NULL;
return pair;
}
/**
* ata_port_disable - Disable port.
* @ap: Port to be disabled.
*
* Modify @ap data structure such that the system
* thinks that the entire port is disabled, and should
* never attempt to probe or communicate with devices
* on this port.
*
* LOCKING: host_set lock, or some other form of
* serialization.
*/
void ata_port_disable(struct ata_port *ap)
{
ap->device[0].class = ATA_DEV_NONE;
ap->device[1].class = ATA_DEV_NONE;
ap->flags |= ATA_FLAG_DISABLED;
}
/**
* sata_down_spd_limit - adjust SATA spd limit downward
* @ap: Port to adjust SATA spd limit for
*
* Adjust SATA spd limit of @ap downward. Note that this
* function only adjusts the limit. The change must be applied
* using sata_set_spd().
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int sata_down_spd_limit(struct ata_port *ap)
{
u32 sstatus, spd, mask;
int rc, highbit;
rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
if (rc)
return rc;
mask = ap->sata_spd_limit;
if (mask <= 1)
return -EINVAL;
highbit = fls(mask) - 1;
mask &= ~(1 << highbit);
spd = (sstatus >> 4) & 0xf;
if (spd <= 1)
return -EINVAL;
spd--;
mask &= (1 << spd) - 1;
if (!mask)
return -EINVAL;
ap->sata_spd_limit = mask;
ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
sata_spd_string(fls(mask)));
return 0;
}
static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
{
u32 spd, limit;
if (ap->sata_spd_limit == UINT_MAX)
limit = 0;
else
limit = fls(ap->sata_spd_limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
return spd != limit;
}
/**
* sata_set_spd_needed - is SATA spd configuration needed
* @ap: Port in question
*
* Test whether the spd limit in SControl matches
* @ap->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
int sata_set_spd_needed(struct ata_port *ap)
{
u32 scontrol;
if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
return 0;
return __sata_set_spd_needed(ap, &scontrol);
}
/**
* sata_set_spd - set SATA spd according to spd limit
* @ap: Port to set SATA spd for
*
* Set SATA spd of @ap according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. Negative errno if SCR registers are inaccessible.
*/
int sata_set_spd(struct ata_port *ap)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
if (!__sata_set_spd_needed(ap, &scontrol))
return 0;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
return rc;
return 1;
}
/*
* This mode timing computation functionality is ported over from
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
*/
/*
* PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for PIO 5, which is a nonstandard extension and UDMA6, which
* is currently supported only by Maxtor drives.
*/
static const struct ata_timing ata_timing[] = {
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
{ 0xFF }
};
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
{
q->setup = EZ(t->setup * 1000, T);
q->act8b = EZ(t->act8b * 1000, T);
q->rec8b = EZ(t->rec8b * 1000, T);
q->cyc8b = EZ(t->cyc8b * 1000, T);
q->active = EZ(t->active * 1000, T);
q->recover = EZ(t->recover * 1000, T);
q->cycle = EZ(t->cycle * 1000, T);
q->udma = EZ(t->udma * 1000, UT);
}
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
struct ata_timing *m, unsigned int what)
{
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
}
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
{
const struct ata_timing *t;
for (t = ata_timing; t->mode != speed; t++)
2005-10-26 12:17:46 -04:00
if (t->mode == 0xFF)
return NULL;
return t;
}
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
struct ata_timing *t, int T, int UT)
{
const struct ata_timing *s;
struct ata_timing p;
/*
* Find the mode.
*/
if (!(s = ata_timing_find_mode(speed)))
return -EINVAL;
memcpy(t, s, sizeof(*s));
/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MW_DMA cycle timing.
*/
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
memset(&p, 0, sizeof(p));
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
}
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
}
/*
* Convert the timing to bus clock counts.
*/
ata_timing_quantize(t, t, T, UT);
/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
* S.M.A.R.T * and some other commands. We have to ensure that the
* DMA cycle timing is slower/equal than the fastest PIO timing.
*/
if (speed > XFER_PIO_4) {
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
}
/*
* Lengthen active & recovery time so that cycle time is correct.
*/
if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}
if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}
return 0;
}
/**
* ata_down_xfermask_limit - adjust dev xfer masks downward
* @dev: Device to adjust xfer masks
* @force_pio0: Force PIO0
*
* Adjust xfer masks of @dev downward. Note that this function
* does not apply the change. Invoking ata_set_mode() afterwards
* will apply the limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
{
unsigned long xfer_mask;
int highbit;
xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
dev->udma_mask);
if (!xfer_mask)
goto fail;
/* don't gear down to MWDMA from UDMA, go directly to PIO */
if (xfer_mask & ATA_MASK_UDMA)
xfer_mask &= ~ATA_MASK_MWDMA;
highbit = fls(xfer_mask) - 1;
xfer_mask &= ~(1 << highbit);
if (force_pio0)
xfer_mask &= 1 << ATA_SHIFT_PIO;
if (!xfer_mask)
goto fail;
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
&dev->udma_mask);
ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
ata_mode_string(xfer_mask));
return 0;
fail:
return -EINVAL;
}
static int ata_dev_set_mode(struct ata_device *dev)
{
unsigned int err_mask;
int rc;
dev->flags &= ~ATA_DFLAG_PIO;
if (dev->xfer_shift == ATA_SHIFT_PIO)
dev->flags |= ATA_DFLAG_PIO;
err_mask = ata_dev_set_xfermode(dev);
if (err_mask) {
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
"(err_mask=0x%x)\n", err_mask);
return -EIO;
}
rc = ata_dev_revalidate(dev, 0);
if (rc)
return rc;
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
dev->xfer_shift, (int)dev->xfer_mode);
ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
return 0;
}
/**
* ata_set_mode - Program timings and issue SET FEATURES - XFER
* @ap: port on which timings will be programmed
* @r_failed_dev: out paramter for failed device
*
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
* ata_set_mode() fails, pointer to the failing device is
* returned in @r_failed_dev.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
{
struct ata_device *dev;
int i, rc = 0, used_dma = 0, found = 0;
/* has private set_mode? */
if (ap->ops->set_mode) {
/* FIXME: make ->set_mode handle no device case and
* return error code and failing device on failure.
*/
for (i = 0; i < ATA_MAX_DEVICES; i++) {
if (ata_dev_enabled(&ap->device[i])) {
ap->ops->set_mode(ap);
break;
}
}
return 0;
}
/* step 1: calculate xfer_mask */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
unsigned int pio_mask, dma_mask;
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
ata_dev_xfermask(dev);
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
found = 1;
if (dev->dma_mode)
used_dma = 1;
}
if (!found)
goto out;
/* step 2: always set host PIO timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
if (!dev->pio_mode) {
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
rc = -EINVAL;
goto out;
}
dev->xfer_mode = dev->pio_mode;
dev->xfer_shift = ATA_SHIFT_PIO;
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* step 3: set host DMA timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev) || !dev->dma_mode)
continue;
dev->xfer_mode = dev->dma_mode;
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
if (ap->ops->set_dmamode)
ap->ops->set_dmamode(ap, dev);
}
/* step 4: update devices' xfer mode */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
rc = ata_dev_set_mode(dev);
if (rc)
goto out;
}
/* Record simplex status. If we selected DMA then the other
* host channels are not permitted to do so.
*/
if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
ap->host_set->simplex_claimed = 1;
/* step5: chip specific finalisation */
if (ap->ops->post_set_mode)
ap->ops->post_set_mode(ap);
out:
if (rc)
*r_failed_dev = dev;
return rc;
}
/**
* ata_tf_to_host - issue ATA taskfile to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues ATA taskfile register set to ATA host controller,
* with proper synchronization with interrupt handler and
* other threads.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static inline void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ap->ops->tf_load(ap, tf);
ap->ops->exec_command(ap, tf);
}
/**
* ata_busy_sleep - sleep until BSY clears, or timeout
* @ap: port containing status register to be polled
* @tmout_pat: impatience timeout
* @tmout: overall timeout
*
* Sleep until ATA Status register bit BSY clears,
* or a timeout occurs.
*
* LOCKING: None.
*/
unsigned int ata_busy_sleep (struct ata_port *ap,
unsigned long tmout_pat, unsigned long tmout)
{
unsigned long timer_start, timeout;
u8 status;
status = ata_busy_wait(ap, ATA_BUSY, 300);
timer_start = jiffies;
timeout = timer_start + tmout_pat;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_busy_wait(ap, ATA_BUSY, 3);
}
if (status & ATA_BUSY)
ata_port_printk(ap, KERN_WARNING,
"port is slow to respond, please be patient\n");
timeout = timer_start + tmout;
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
msleep(50);
status = ata_chk_status(ap);
}
if (status & ATA_BUSY) {
ata_port_printk(ap, KERN_ERR, "port failed to respond "
"(%lu secs)\n", tmout / HZ);
return 1;
}
return 0;
}
static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int dev0 = devmask & (1 << 0);
unsigned int dev1 = devmask & (1 << 1);
unsigned long timeout;
/* if device 0 was found in ata_devchk, wait for its
* BSY bit to clear
*/
if (dev0)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* if device 1 was found in ata_devchk, wait for
* register access, then wait for BSY to clear
*/
timeout = jiffies + ATA_TMOUT_BOOT;
while (dev1) {
u8 nsect, lbal;
ap->ops->dev_select(ap, 1);
if (ap->flags & ATA_FLAG_MMIO) {
nsect = readb((void __iomem *) ioaddr->nsect_addr);
lbal = readb((void __iomem *) ioaddr->lbal_addr);
} else {
nsect = inb(ioaddr->nsect_addr);
lbal = inb(ioaddr->lbal_addr);
}
if ((nsect == 1) && (lbal == 1))
break;
if (time_after(jiffies, timeout)) {
dev1 = 0;
break;
}
msleep(50); /* give drive a breather */
}
if (dev1)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* is all this really necessary? */
ap->ops->dev_select(ap, 0);
if (dev1)
ap->ops->dev_select(ap, 1);
if (dev0)
ap->ops->dev_select(ap, 0);
}
static unsigned int ata_bus_softreset(struct ata_port *ap,
unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->id);
/* software reset. causes dev0 to be selected */
if (ap->flags & ATA_FLAG_MMIO) {
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
} else {
outb(ap->ctl, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(10);
outb(ap->ctl, ioaddr->ctl_addr);
}
/* spec mandates ">= 2ms" before checking status.
* We wait 150ms, because that was the magic delay used for
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
* between when the ATA command register is written, and then
* status is checked. Because waiting for "a while" before
* checking status is fine, post SRST, we perform this magic
* delay here as well.
*
* Old drivers/ide uses the 2mS rule and then waits for ready
*/
msleep(150);
/* Before we perform post reset processing we want to see if
* the bus shows 0xFF because the odd clown forgets the D7
* pulldown resistor.
*/
if (ata_check_status(ap) == 0xFF) {
ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
return AC_ERR_OTHER;
}
ata_bus_post_reset(ap, devmask);
return 0;
}
/**
* ata_bus_reset - reset host port and associated ATA channel
* @ap: port to reset
*
* This is typically the first time we actually start issuing
* commands to the ATA channel. We wait for BSY to clear, then
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
* result. Determine what devices, if any, are on the channel
* by looking at the device 0/1 error register. Look at the signature
* stored in each device's taskfile registers, to determine if
* the device is ATA or ATAPI.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
* Obtains host_set lock.
*
* SIDE EFFECTS:
* Sets ATA_FLAG_DISABLED if bus reset fails.
*/
void ata_bus_reset(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
u8 err;
unsigned int dev0, dev1 = 0, devmask = 0;
DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
/* determine if device 0/1 are present */
if (ap->flags & ATA_FLAG_SATA_RESET)
dev0 = 1;
else {
dev0 = ata_devchk(ap, 0);
if (slave_possible)
dev1 = ata_devchk(ap, 1);
}
if (dev0)
devmask |= (1 << 0);
if (dev1)
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
if (ap->flags & ATA_FLAG_SRST)
if (ata_bus_softreset(ap, devmask))
goto err_out;
/*
* determine by signature whether we have ATA or ATAPI devices
*/
ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
if ((slave_possible) && (err != 0x81))
ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
/* re-enable interrupts */
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
ata_irq_on(ap);
/* is double-select really necessary? */
if (ap->device[1].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (ap->device[0].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* if no devices were detected, disable this port */
if ((ap->device[0].class == ATA_DEV_NONE) &&
(ap->device[1].class == ATA_DEV_NONE))
goto err_out;
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
/* set up device control for ATA_FLAG_SATA_RESET */
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
}
DPRINTK("EXIT\n");
return;
err_out:
ata_port_printk(ap, KERN_ERR, "disabling port\n");
ap->ops->port_disable(ap);
DPRINTK("EXIT\n");
}
/**
* sata_phy_debounce - debounce SATA phy status
* @ap: ATA port to debounce SATA phy status for
* @params: timing parameters { interval, duratinon, timeout } in msec
*
* Make sure SStatus of @ap reaches stable state, determined by
* holding the same value where DET is not 1 for @duration polled
* every @interval, before @timeout. Timeout constraints the
* beginning of the stable state. Because, after hot unplugging,
* DET gets stuck at 1 on some controllers, this functions waits
* until timeout then returns 0 if DET is stable at 1.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
{
unsigned long interval_msec = params[0];
unsigned long duration = params[1] * HZ / 1000;
unsigned long timeout = jiffies + params[2] * HZ / 1000;
unsigned long last_jiffies;
u32 last, cur;
int rc;
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
last = cur;
last_jiffies = jiffies;
while (1) {
msleep(interval_msec);
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
/* DET stable? */
if (cur == last) {
if (cur == 1 && time_before(jiffies, timeout))
continue;
if (time_after(jiffies, last_jiffies + duration))
return 0;
continue;
}
/* unstable, start over */
last = cur;
last_jiffies = jiffies;
/* check timeout */
if (time_after(jiffies, timeout))
return -EBUSY;
}
}
/**
* sata_phy_resume - resume SATA phy
* @ap: ATA port to resume SATA phy for
* @params: timing parameters { interval, duratinon, timeout } in msec
*
* Resume SATA phy of @ap and debounce it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
scontrol = (scontrol & 0x0f0) | 0x300;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
return rc;
/* Some PHYs react badly if SStatus is pounded immediately
* after resuming. Delay 200ms before debouncing.
*/
msleep(200);
return sata_phy_debounce(ap, params);
}
[PATCH] libata-hp-prep: add prereset() method and implement ata_std_prereset() With hotplug, every reset might be a probing reset and thus something similar to probe_init() is needed. prereset() method is called before a series of resets to a port and is the counterpart of postreset(). prereset() can tell EH to use different type of reset or skip reset by modifying ehc->i.action. This patch also implements ata_std_prereset(). Most controllers should be able to use this function directly or with some wrapping. After hotplug, different controllers need different actions to resume the PHY and detect the newly attached device. Controllers can be categorized as follows. * Controllers which can wait for the first D2H FIS after hotplug. Note that if the waiting is implemented by polling TF status, there needs to be a way to set BSY on PHY status change. It can be implemented by hardware or with the help of the driver. * Controllers which can wait for the first D2H FIS after sending COMRESET. These controllers need to issue COMRESET to wait for the first FIS. Note that the received D2H FIS could be the first D2H FIS after POR (power-on-reset) or D2H FIS in response to the COMRESET. Some controllers use COMRESET as TF status synchronization point and clear TF automatically (sata_sil). * Controllers which cannot wait for the first D2H FIS reliably. Blindly issuing SRST to spinning-up device often results in command issue failure or timeout, causing extended delay. For these controllers, ata_std_prereset() explicitly waits ATA_SPINUP_WAIT (currently 8s) to give newly attached device time to spin up, then issues reset. Note that failing to getting ready in ATA_SPINUP_WAIT is not critical. libata will retry. So, the timeout needs to be long enough to spin up most devices. LLDDs can tell ata_std_prereset() which of above action is needed with ATA_FLAG_HRST_TO_RESUME and ATA_FLAG_SKIP_D2H_BSY flags. These flags are PHY-specific property and will be moved to ata_link later. While at it, this patch unifies function typedef's such that they all have named arguments. Signed-off-by: Tejun Heo <htejun@gmail.com>
2006-05-31 18:27:48 +09:00
static void ata_wait_spinup(struct ata_port *ap)
{
struct ata_eh_context *ehc = &ap->eh_context;
unsigned long end, secs;
int rc;
/* first, debounce phy if SATA */
if (ap->cbl == ATA_CBL_SATA) {
rc = sata_phy_debounce(ap, sata_deb_timing_eh);
/* if debounced successfully and offline, no need to wait */
if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
return;
}
/* okay, let's give the drive time to spin up */
end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
secs = ((end - jiffies) + HZ - 1) / HZ;
if (time_after(jiffies, end))
return;
if (secs > 5)
ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
"(%lu secs)\n", secs);
schedule_timeout_uninterruptible(end - jiffies);
}
/**
* ata_std_prereset - prepare for reset
* @ap: ATA port to be reset
*
* @ap is about to be reset. Initialize it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_prereset(struct ata_port *ap)
{
struct ata_eh_context *ehc = &ap->eh_context;
const unsigned long *timing;
int rc;
/* hotplug? */
if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
ehc->i.action |= ATA_EH_HARDRESET;
if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
ata_wait_spinup(ap);
}
/* if we're about to do hardreset, nothing more to do */
if (ehc->i.action & ATA_EH_HARDRESET)
return 0;
/* if SATA, resume phy */
if (ap->cbl == ATA_CBL_SATA) {
if (ap->flags & ATA_FLAG_LOADING)
timing = sata_deb_timing_boot;
else
timing = sata_deb_timing_eh;
rc = sata_phy_resume(ap, timing);
if (rc && rc != -EOPNOTSUPP) {
/* phy resume failed */
ata_port_printk(ap, KERN_WARNING, "failed to resume "
"link for reset (errno=%d)\n", rc);
return rc;
}
}
/* Wait for !BSY if the controller can wait for the first D2H
* Reg FIS and we don't know that no device is attached.
*/
if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
return 0;
}
/**
* ata_std_softreset - reset host port via ATA SRST
* @ap: port to reset
* @classes: resulting classes of attached devices
*
* Reset host port using ATA SRST.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
{
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
unsigned int devmask = 0, err_mask;
u8 err;
DPRINTK("ENTER\n");
if (ata_port_offline(ap)) {
classes[0] = ATA_DEV_NONE;
goto out;
}
/* determine if device 0/1 are present */
if (ata_devchk(ap, 0))
devmask |= (1 << 0);
if (slave_possible && ata_devchk(ap, 1))
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
DPRINTK("about to softreset, devmask=%x\n", devmask);
err_mask = ata_bus_softreset(ap, devmask);
if (err_mask) {
ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
err_mask);
return -EIO;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_dev_try_classify(ap, 0, &err);
if (slave_possible && err != 0x81)
classes[1] = ata_dev_try_classify(ap, 1, &err);
out:
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
return 0;
}
/**
* sata_std_hardreset - reset host port via SATA phy reset
* @ap: port to reset
* @class: resulting class of attached device
*
* SATA phy-reset host port using DET bits of SControl register.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
{
u32 scontrol;
int rc;
DPRINTK("ENTER\n");
if (sata_set_spd_needed(ap)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
scontrol = (scontrol & 0x0f0) | 0x302;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
return rc;
sata_set_spd(ap);
}
/* issue phy wake/reset */
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
scontrol = (scontrol & 0x0f0) | 0x301;
if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
return rc;
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
msleep(1);
/* bring phy back */
sata_phy_resume(ap, sata_deb_timing_eh);
/* TODO: phy layer with polling, timeouts, etc. */
if (ata_port_offline(ap)) {
*class = ATA_DEV_NONE;
DPRINTK("EXIT, link offline\n");
return 0;
}
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_printk(ap, KERN_ERR,
"COMRESET failed (device not ready)\n");
return -EIO;
}
ap->ops->dev_select(ap, 0); /* probably unnecessary */
*class = ata_dev_try_classify(ap, 0, NULL);
DPRINTK("EXIT, class=%u\n", *class);
return 0;
}
/**
* ata_std_postreset - standard postreset callback
* @ap: the target ata_port
* @classes: classes of attached devices
*
* This function is invoked after a successful reset. Note that
* the device might have been reset more than once using
* different reset methods before postreset is invoked.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
{
u32 serror;
DPRINTK("ENTER\n");
/* print link status */
sata_print_link_status(ap);
/* clear SError */
if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
sata_scr_write(ap, SCR_ERROR, serror);
/* re-enable interrupts */
if (!ap->ops->error_handler) {
/* FIXME: hack. create a hook instead */
if (ap->ioaddr.ctl_addr)
ata_irq_on(ap);
}
/* is double-select really necessary? */
if (classes[0] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (classes[1] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* bail out if no device is present */
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
DPRINTK("EXIT, no device\n");
return;
}
/* set up device control */
if (ap->ioaddr.ctl_addr) {
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
else
outb(ap->ctl, ap->ioaddr.ctl_addr);
}
DPRINTK("EXIT\n");
}
/**
* ata_dev_same_device - Determine whether new ID matches configured device
* @dev: device to compare against
* @new_class: class of the new device
* @new_id: IDENTIFY page of the new device
*
* Compare @new_class and @new_id against @dev and determine
* whether @dev is the device indicated by @new_class and
* @new_id.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
*/
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
const u16 *new_id)
{
const u16 *old_id = dev->id;
unsigned char model[2][41], serial[2][21];
u64 new_n_sectors;
if (dev->class != new_class) {
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
dev->class, new_class);
return 0;
}
ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
new_n_sectors = ata_id_n_sectors(new_id);
if (strcmp(model[0], model[1])) {
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
"'%s' != '%s'\n", model[0], model[1]);
return 0;
}
if (strcmp(serial[0], serial[1])) {
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
"'%s' != '%s'\n", serial[0], serial[1]);
return 0;
}
if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
"%llu != %llu\n",
(unsigned long long)dev->n_sectors,
(unsigned long long)new_n_sectors);
return 0;
}
return 1;
}
/**
* ata_dev_revalidate - Revalidate ATA device
* @dev: device to revalidate
* @post_reset: is this revalidation after reset?
*
* Re-read IDENTIFY page and make sure @dev is still attached to
* the port.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_dev_revalidate(struct ata_device *dev, int post_reset)
{
unsigned int class = dev->class;
u16 *id = (void *)dev->ap->sector_buf;
int rc;
if (!ata_dev_enabled(dev)) {
rc = -ENODEV;
goto fail;
}
/* read ID data */
rc = ata_dev_read_id(dev, &class, post_reset, id);
if (rc)
goto fail;
/* is the device still there? */
if (!ata_dev_same_device(dev, class, id)) {
rc = -ENODEV;
goto fail;
}
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
/* configure device according to the new ID */
rc = ata_dev_configure(dev, 0);
if (rc == 0)
return 0;
fail:
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
return rc;
}
static const char * const ata_dma_blacklist [] = {
"WDC AC11000H", NULL,
"WDC AC22100H", NULL,
"WDC AC32500H", NULL,
"WDC AC33100H", NULL,
"WDC AC31600H", NULL,
"WDC AC32100H", "24.09P07",
"WDC AC23200L", "21.10N21",
"Compaq CRD-8241B", NULL,
"CRD-8400B", NULL,
"CRD-8480B", NULL,
"CRD-8482B", NULL,
"CRD-84", NULL,
"SanDisk SDP3B", NULL,
"SanDisk SDP3B-64", NULL,
"SANYO CD-ROM CRD", NULL,
"HITACHI CDR-8", NULL,
"HITACHI CDR-8335", NULL,
"HITACHI CDR-8435", NULL,
"Toshiba CD-ROM XM-6202B", NULL,
"TOSHIBA CD-ROM XM-1702BC", NULL,
"CD-532E-A", NULL,
"E-IDE CD-ROM CR-840", NULL,
"CD-ROM Drive/F5A", NULL,
"WPI CDD-820", NULL,
"SAMSUNG CD-ROM SC-148C", NULL,
"SAMSUNG CD-ROM SC", NULL,
"SanDisk SDP3B-64", NULL,
"ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
"_NEC DV5800A", NULL,
"SAMSUNG CD-ROM SN-124", "N001"
};
static int ata_strim(char *s, size_t len)
{
len = strnlen(s, len);
/* ATAPI specifies that empty space is blank-filled; remove blanks */
while ((len > 0) && (s[len - 1] == ' ')) {
len--;
s[len] = 0;
}
return len;
}
static int ata_dma_blacklisted(const struct ata_device *dev)
{
unsigned char model_num[40];
unsigned char model_rev[16];
unsigned int nlen, rlen;
int i;
ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
sizeof(model_num));
ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
sizeof(model_rev));
nlen = ata_strim(model_num, sizeof(model_num));
rlen = ata_strim(model_rev, sizeof(model_rev));
for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
if (ata_dma_blacklist[i+1] == NULL)
return 1;
if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
return 1;
}
}
return 0;
}
/**
* ata_dev_xfermask - Compute supported xfermask of the given device
* @dev: Device to compute xfermask for
*
* Compute supported xfermask of @dev and store it in
* dev->*_mask. This function is responsible for applying all
* known limits including host controller limits, device
* blacklist, etc...
*
* FIXME: The current implementation limits all transfer modes to
* the fastest of the lowested device on the port. This is not
* required on most controllers.
*
* LOCKING:
* None.
*/
static void ata_dev_xfermask(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
struct ata_host_set *hs = ap->host_set;
unsigned long xfer_mask;
int i;
xfer_mask = ata_pack_xfermask(ap->pio_mask,
ap->mwdma_mask, ap->udma_mask);
/* Apply cable rule here. Don't apply it early because when
* we handle hot plug the cable type can itself change.
*/
if (ap->cbl == ATA_CBL_PATA40)
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
/* FIXME: Use port-wide xfermask for now */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *d = &ap->device[i];
if (ata_dev_absent(d))
continue;
if (ata_dev_disabled(d)) {
/* to avoid violating device selection timing */
xfer_mask &= ata_pack_xfermask(d->pio_mask,
UINT_MAX, UINT_MAX);
continue;
}
xfer_mask &= ata_pack_xfermask(d->pio_mask,
d->mwdma_mask, d->udma_mask);
xfer_mask &= ata_id_xfermask(d->id);
if (ata_dma_blacklisted(d))
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
}
if (ata_dma_blacklisted(dev))
ata_dev_printk(dev, KERN_WARNING,
"device is on DMA blacklist, disabling DMA\n");
if (hs->flags & ATA_HOST_SIMPLEX) {
if (hs->simplex_claimed)
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
}
if (ap->ops->mode_filter)
xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
&dev->mwdma_mask, &dev->udma_mask);
}
/**
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
* @dev: Device to which command will be sent
*
* Issue SET FEATURES - XFER MODE command to device @dev
* on port @ap.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* set up set-features taskfile */
DPRINTK("set features - xfer mode\n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = SETFEATURES_XFER;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = dev->xfer_mode;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_dev_init_params - Issue INIT DEV PARAMS command
* @dev: Device to which command will be sent
* @heads: Number of heads (taskfile parameter)
* @sectors: Number of sectors (taskfile parameter)
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* Number of sectors per track 1-255. Number of heads 1-16 */
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return AC_ERR_INVALID;
/* set up init dev params taskfile */
DPRINTK("init dev params \n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
2005-05-30 19:49:12 -04:00
* ata_sg_clean - Unmap DMA memory associated with command
* @qc: Command containing DMA memory to be released
*
* Unmap all mapped DMA memory associated with this command.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* spin_lock_irqsave(host_set lock)
*/
static void ata_sg_clean(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
int dir = qc->dma_dir;
void *pad_buf = NULL;
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
WARN_ON(sg == NULL);
if (qc->flags & ATA_QCFLAG_SINGLE)
2006-02-20 16:55:56 -05:00
WARN_ON(qc->n_elem > 1);
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
/* if we padded the buffer out to 32-bit bound, and data
* xfer direction is from-device, we must copy from the
* pad buffer back into the supplied buffer
*/
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
if (qc->flags & ATA_QCFLAG_SG) {
if (qc->n_elem)
dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
/* restore last sg */
sg[qc->orig_n_elem - 1].length += qc->pad_len;
if (pad_buf) {
struct scatterlist *psg = &qc->pad_sgent;
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
} else {
if (qc->n_elem)
dma_unmap_single(ap->dev,
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
dir);
/* restore sg */
sg->length += qc->pad_len;
if (pad_buf)
memcpy(qc->buf_virt + sg->length - qc->pad_len,
pad_buf, qc->pad_len);
}
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->__sg = NULL;
}
/**
* ata_fill_sg - Fill PCI IDE PRD table
* @qc: Metadata associated with taskfile to be transferred
*
* Fill PCI IDE PRD (scatter-gather) table with segments
* associated with the current disk command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
*/
static void ata_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg;
unsigned int idx;
WARN_ON(qc->__sg == NULL);
2006-02-20 16:55:56 -05:00
WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
idx = 0;
ata_for_each_sg(sg, qc) {
u32 addr, offset;
u32 sg_len, len;
/* determine if physical DMA addr spans 64K boundary.
* Note h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & 0xffff;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
ap->prd[idx].addr = cpu_to_le32(addr);
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
idx++;
sg_len -= len;
addr += len;
}
}
if (idx)
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
}
/**
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
* @qc: Metadata associated with taskfile to check
*
* Allow low-level driver to filter ATA PACKET commands, returning
* a status indicating whether or not it is OK to use DMA for the
* supplied PACKET command.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* spin_lock_irqsave(host_set lock)
*
* RETURNS: 0 when ATAPI DMA can be used
* nonzero otherwise
*/
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int rc = 0; /* Assume ATAPI DMA is OK by default */
if (ap->ops->check_atapi_dma)
rc = ap->ops->check_atapi_dma(qc);
/* We don't support polling DMA.
* Use PIO if the LLDD handles only interrupts in
* the HSM_ST_LAST state and the ATAPI device
* generates CDB interrupts.
*/
if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
(qc->dev->flags & ATA_DFLAG_CDB_INTR))
rc = 1;
return rc;
}
/**
* ata_qc_prep - Prepare taskfile for submission
* @qc: Metadata associated with taskfile to be prepared
*
* Prepare ATA taskfile for submission.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
ata_fill_sg(qc);
}
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2005-05-30 19:49:12 -04:00
/**
* ata_sg_init_one - Associate command with memory buffer
* @qc: Command to be associated
* @buf: Memory buffer
* @buflen: Length of memory buffer, in bytes.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a single memory buffer, @buf of byte length @buflen.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
{
struct scatterlist *sg;
qc->flags |= ATA_QCFLAG_SINGLE;
memset(&qc->sgent, 0, sizeof(qc->sgent));
qc->__sg = &qc->sgent;
qc->n_elem = 1;
qc->orig_n_elem = 1;
qc->buf_virt = buf;
sg = qc->__sg;
2005-10-30 01:58:18 -05:00
sg_init_one(sg, buf, buflen);
}
2005-05-30 19:49:12 -04:00
/**
* ata_sg_init - Associate command with scatter-gather table.
* @qc: Command to be associated
* @sg: Scatter-gather table.
* @n_elem: Number of elements in s/g table.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a scatter-gather table @sg, containing @n_elem
* elements.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
unsigned int n_elem)
{
qc->flags |= ATA_QCFLAG_SG;
qc->__sg = sg;
qc->n_elem = n_elem;
qc->orig_n_elem = n_elem;
}
/**
2005-05-30 19:49:12 -04:00
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
* @qc: Command with memory buffer to be mapped.
*
* DMA-map the memory buffer associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
2005-05-30 19:49:12 -04:00
* Zero on success, negative on error.
*/
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int dir = qc->dma_dir;
struct scatterlist *sg = qc->__sg;
dma_addr_t dma_address;
int trim_sg = 0;
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = sg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
if (qc->tf.flags & ATA_TFLAG_WRITE)
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
qc->pad_len);
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim sg */
sg->length -= qc->pad_len;
if (sg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
sg->length, qc->pad_len);
}
if (trim_sg) {
qc->n_elem--;
goto skip_map;
}
dma_address = dma_map_single(ap->dev, qc->buf_virt,
sg->length, dir);
if (dma_mapping_error(dma_address)) {
/* restore sg */
sg->length += qc->pad_len;
return -1;
}
sg_dma_address(sg) = dma_address;
sg_dma_len(sg) = sg->length;
skip_map:
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
return 0;
}
/**
2005-05-30 19:49:12 -04:00
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
* @qc: Command with scatter-gather table to be mapped.
*
* DMA-map the scatter-gather table associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
2005-05-30 19:49:12 -04:00
* Zero on success, negative on error.
*
*/
static int ata_sg_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
struct scatterlist *lsg = &sg[qc->n_elem - 1];
int n_elem, pre_n_elem, dir, trim_sg = 0;
VPRINTK("ENTER, ata%u\n", ap->id);
WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = lsg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
unsigned int offset;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
/*
* psg->page/offset are used to copy to-be-written
* data in this function or read data in ata_sg_clean.
*/
offset = lsg->offset + lsg->length - qc->pad_len;
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
psg->offset = offset_in_page(offset);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim last sg */
lsg->length -= qc->pad_len;
if (lsg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
qc->n_elem - 1, lsg->length, qc->pad_len);
}
pre_n_elem = qc->n_elem;
if (trim_sg && pre_n_elem)
pre_n_elem--;
if (!pre_n_elem) {
n_elem = 0;
goto skip_map;
}
dir = qc->dma_dir;
n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
if (n_elem < 1) {
/* restore last sg */
lsg->length += qc->pad_len;
return -1;
}
DPRINTK("%d sg elements mapped\n", n_elem);
skip_map:
qc->n_elem = n_elem;
return 0;
}
2005-06-02 18:17:13 -04:00
/**
* swap_buf_le16 - swap halves of 16-bit words in place
2005-06-02 18:17:13 -04:00
* @buf: Buffer to swap
* @buf_words: Number of 16-bit words in buffer.
*
* Swap halves of 16-bit words if needed to convert from
* little-endian byte order to native cpu byte order, or
* vice-versa.
*
* LOCKING:
* Inherited from caller.
2005-06-02 18:17:13 -04:00
*/
void swap_buf_le16(u16 *buf, unsigned int buf_words)
{
#ifdef __BIG_ENDIAN
unsigned int i;
for (i = 0; i < buf_words; i++)
buf[i] = le16_to_cpu(buf[i]);
#endif /* __BIG_ENDIAN */
}
/**
* ata_mmio_data_xfer - Transfer data by MMIO
* @dev: device for this I/O
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by MMIO.
*
* LOCKING:
* Inherited from caller.
*/
void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int write_data)
{
struct ata_port *ap = adev->ap;
unsigned int i;
unsigned int words = buflen >> 1;
u16 *buf16 = (u16 *) buf;
void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
/* Transfer multiple of 2 bytes */
if (write_data) {
for (i = 0; i < words; i++)
writew(le16_to_cpu(buf16[i]), mmio);
} else {
for (i = 0; i < words; i++)
buf16[i] = cpu_to_le16(readw(mmio));
}
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
writew(le16_to_cpu(align_buf[0]), mmio);
} else {
align_buf[0] = cpu_to_le16(readw(mmio));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_pio_data_xfer - Transfer data by PIO
* @adev: device to target
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO.
*
* LOCKING:
* Inherited from caller.
*/
void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int write_data)
{
struct ata_port *ap = adev->ap;
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (write_data)
outsw(ap->ioaddr.data_addr, buf, words);
else
insw(ap->ioaddr.data_addr, buf, words);
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
} else {
align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_pio_data_xfer_noirq - Transfer data by PIO
* @adev: device to target
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO. Do the
* transfer with interrupts disabled.
*
* LOCKING:
* Inherited from caller.
*/
void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned long flags;
local_irq_save(flags);
ata_pio_data_xfer(adev, buf, buflen, write_data);
local_irq_restore(flags);
}
/**
* ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
* @qc: Command on going
*
* Transfer ATA_SECT_SIZE of data from/to the ATA device.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sector(struct ata_queued_cmd *qc)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned int offset;
unsigned char *buf;
if (qc->cursect == (qc->nsect - 1))
ap->hsm_task_state = HSM_ST_LAST;
page = sg[qc->cursg].page;
offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
if (PageHighMem(page)) {
unsigned long flags;
/* FIXME: use a bounce buffer */
local_irq_save(flags);
buf = kmap_atomic(page, KM_IRQ0);
/* do the actual data transfer */
ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
kunmap_atomic(buf, KM_IRQ0);
local_irq_restore(flags);
} else {
buf = page_address(page);
ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
}
qc->cursect++;
qc->cursg_ofs++;
if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
}
/**
* ata_pio_sectors - Transfer one or many 512-byte sectors.
* @qc: Command on going
*
* Transfer one or many ATA_SECT_SIZE of data from/to the
* ATA device for the DRQ request.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sectors(struct ata_queued_cmd *qc)
{
if (is_multi_taskfile(&qc->tf)) {
/* READ/WRITE MULTIPLE */
unsigned int nsect;
2006-02-11 18:17:32 -05:00
WARN_ON(qc->dev->multi_count == 0);
nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
while (nsect--)
ata_pio_sector(qc);
} else
ata_pio_sector(qc);
}
/**
* atapi_send_cdb - Write CDB bytes to hardware
* @ap: Port to which ATAPI device is attached.
* @qc: Taskfile currently active
*
* When device has indicated its readiness to accept
* a CDB, this function is called. Send the CDB.
*
* LOCKING:
* caller.
*/
static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
{
/* send SCSI cdb */
DPRINTK("send cdb\n");
2006-02-13 00:23:57 -05:00
WARN_ON(qc->dev->cdb_len < 12);
ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
ata_altstatus(ap); /* flush */
switch (qc->tf.protocol) {
case ATA_PROT_ATAPI:
ap->hsm_task_state = HSM_ST;
break;
case ATA_PROT_ATAPI_NODATA:
ap->hsm_task_state = HSM_ST_LAST;
break;
case ATA_PROT_ATAPI_DMA:
ap->hsm_task_state = HSM_ST_LAST;
/* initiate bmdma */
ap->ops->bmdma_start(qc);
break;
}
}
/**
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
* @bytes: number of bytes
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*
*/
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned char *buf;
unsigned int offset, count;
if (qc->curbytes + bytes >= qc->nbytes)
ap->hsm_task_state = HSM_ST_LAST;
next_sg:
if (unlikely(qc->cursg >= qc->n_elem)) {
/*
* The end of qc->sg is reached and the device expects
* more data to transfer. In order not to overrun qc->sg
* and fulfill length specified in the byte count register,
* - for read case, discard trailing data from the device
* - for write case, padding zero data to the device
*/
u16 pad_buf[1] = { 0 };
unsigned int words = bytes >> 1;
unsigned int i;
if (words) /* warning if bytes > 1 */
ata_dev_printk(qc->dev, KERN_WARNING,
"%u bytes trailing data\n", bytes);
for (i = 0; i < words; i++)
ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
ap->hsm_task_state = HSM_ST_LAST;
return;
}
sg = &qc->__sg[qc->cursg];
page = sg->page;
offset = sg->offset + qc->cursg_ofs;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
/* don't overrun current sg */
count = min(sg->length - qc->cursg_ofs, bytes);
/* don't cross page boundaries */
count = min(count, (unsigned int)PAGE_SIZE - offset);
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
if (PageHighMem(page)) {
unsigned long flags;
/* FIXME: use bounce buffer */
local_irq_save(flags);
buf = kmap_atomic(page, KM_IRQ0);
/* do the actual data transfer */
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
kunmap_atomic(buf, KM_IRQ0);
local_irq_restore(flags);
} else {
buf = page_address(page);
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
}
bytes -= count;
qc->curbytes += count;
qc->cursg_ofs += count;
if (qc->cursg_ofs == sg->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
if (bytes)
goto next_sg;
}
/**
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*/
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *dev = qc->dev;
unsigned int ireason, bc_lo, bc_hi, bytes;
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
/* Abuse qc->result_tf for temp storage of intermediate TF
* here to save some kernel stack usage.
* For normal completion, qc->result_tf is not relevant. For
* error, qc->result_tf is later overwritten by ata_qc_complete().
* So, the correctness of qc->result_tf is not affected.
*/
ap->ops->tf_read(ap, &qc->result_tf);
ireason = qc->result_tf.nsect;
bc_lo = qc->result_tf.lbam;
bc_hi = qc->result_tf.lbah;
bytes = (bc_hi << 8) | bc_lo;
/* shall be cleared to zero, indicating xfer of data */
if (ireason & (1 << 0))
goto err_out;
/* make sure transfer direction matches expected */
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
if (do_write != i_write)
goto err_out;
VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
__atapi_pio_bytes(qc, bytes);
return;
err_out:
ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
}
/**
* ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
* @ap: the target ata_port
* @qc: qc on going
*
* RETURNS:
* 1 if ok in workqueue, 0 otherwise.
*/
static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
{
if (qc->tf.flags & ATA_TFLAG_POLLING)
return 1;
if (ap->hsm_task_state == HSM_ST_FIRST) {
if (qc->tf.protocol == ATA_PROT_PIO &&
(qc->tf.flags & ATA_TFLAG_WRITE))
return 1;
if (is_atapi_taskfile(&qc->tf) &&
!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
return 1;
}
return 0;
}
/**
* ata_hsm_qc_complete - finish a qc running on standard HSM
* @qc: Command to complete
* @in_wq: 1 if called from workqueue, 0 otherwise
*
* Finish @qc which is running on standard HSM.
*
* LOCKING:
* If @in_wq is zero, spin_lock_irqsave(host_set lock).
* Otherwise, none on entry and grabs host lock.
*/
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
{
struct ata_port *ap = qc->ap;
unsigned long flags;
if (ap->ops->error_handler) {
if (in_wq) {
spin_lock_irqsave(&ap->host_set->lock, flags);
/* EH might have kicked in while host_set lock
* is released.
*/
qc = ata_qc_from_tag(ap, qc->tag);
if (qc) {
if (likely(!(qc->err_mask & AC_ERR_HSM))) {
ata_irq_on(ap);
ata_qc_complete(qc);
} else
ata_port_freeze(ap);
}
spin_unlock_irqrestore(&ap->host_set->lock, flags);
} else {
if (likely(!(qc->err_mask & AC_ERR_HSM)))
ata_qc_complete(qc);
else
ata_port_freeze(ap);
}
} else {
if (in_wq) {
spin_lock_irqsave(&ap->host_set->lock, flags);
ata_irq_on(ap);
ata_qc_complete(qc);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
} else
ata_qc_complete(qc);
}
ata_altstatus(ap); /* flush */
}
/**
* ata_hsm_move - move the HSM to the next state.
* @ap: the target ata_port
* @qc: qc on going
* @status: current device status
* @in_wq: 1 if called from workqueue, 0 otherwise
*
* RETURNS:
* 1 when poll next status needed, 0 otherwise.
*/
int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
u8 status, int in_wq)
{
unsigned long flags = 0;
int poll_next;
WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
/* Make sure ata_qc_issue_prot() does not throw things
* like DMA polling into the workqueue. Notice that
* in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
*/
WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
fsm_start:
DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
ap->id, qc->tf.protocol, ap->hsm_task_state, status);
switch (ap->hsm_task_state) {
case HSM_ST_FIRST:
/* Send first data block or PACKET CDB */
/* If polling, we will stay in the work queue after
* sending the data. Otherwise, interrupt handler
* takes over after sending the data.
*/
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
/* check device status */
if (unlikely((status & ATA_DRQ) == 0)) {
/* handle BSY=0, DRQ=0 as error */
if (likely(status & (ATA_ERR | ATA_DF)))
/* device stops HSM for abort/error */
qc->err_mask |= AC_ERR_DEV;
else
/* HSM violation. Let EH handle this */
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* Device should not ask for data transfer (DRQ=1)
* when it finds something wrong.
* We ignore DRQ here and stop the HSM by
* changing hsm_task_state to HSM_ST_ERR and
* let the EH abort the command or reset the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
ap->id, status);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* Send the CDB (atapi) or the first data block (ata pio out).
* During the state transition, interrupt handler shouldn't
* be invoked before the data transfer is complete and
* hsm_task_state is changed. Hence, the following locking.
*/
if (in_wq)
spin_lock_irqsave(&ap->host_set->lock, flags);
if (qc->tf.protocol == ATA_PROT_PIO) {
/* PIO data out protocol.
* send first data block.
*/
/* ata_pio_sectors() might change the state
* to HSM_ST_LAST. so, the state is changed here
* before ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST;
ata_pio_sectors(qc);
ata_altstatus(ap); /* flush */
} else
/* send CDB */
atapi_send_cdb(ap, qc);
if (in_wq)
spin_unlock_irqrestore(&ap->host_set->lock, flags);
/* if polling, ata_pio_task() handles the rest.
* otherwise, interrupt handler takes over from here.
*/
break;
case HSM_ST:
/* complete command or read/write the data register */
if (qc->tf.protocol == ATA_PROT_ATAPI) {
/* ATAPI PIO protocol */
if ((status & ATA_DRQ) == 0) {
/* No more data to transfer or device error.
* Device error will be tagged in HSM_ST_LAST.
*/
ap->hsm_task_state = HSM_ST_LAST;
goto fsm_start;
}
/* Device should not ask for data transfer (DRQ=1)
* when it finds something wrong.
* We ignore DRQ here and stop the HSM by
* changing hsm_task_state to HSM_ST_ERR and
* let the EH abort the command or reset the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
ap->id, status);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
atapi_pio_bytes(qc);
if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
/* bad ireason reported by device */
goto fsm_start;
} else {
/* ATA PIO protocol */
if (unlikely((status & ATA_DRQ) == 0)) {
/* handle BSY=0, DRQ=0 as error */
if (likely(status & (ATA_ERR | ATA_DF)))
/* device stops HSM for abort/error */
qc->err_mask |= AC_ERR_DEV;
else
/* HSM violation. Let EH handle this */
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* For PIO reads, some devices may ask for
* data transfer (DRQ=1) alone with ERR=1.
* We respect DRQ here and transfer one
* block of junk data before changing the
* hsm_task_state to HSM_ST_ERR.
*
* For PIO writes, ERR=1 DRQ=1 doesn't make
* sense since the data block has been
* transferred to the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
/* data might be corrputed */
qc->err_mask |= AC_ERR_DEV;
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
ata_pio_sectors(qc);
ata_altstatus(ap);
status = ata_wait_idle(ap);
}
if (status & (ATA_BUSY | ATA_DRQ))
qc->err_mask |= AC_ERR_HSM;
/* ata_pio_sectors() might change the
* state to HSM_ST_LAST. so, the state
* is changed after ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
ata_pio_sectors(qc);
if (ap->hsm_task_state == HSM_ST_LAST &&
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* all data read */
ata_altstatus(ap);
status = ata_wait_idle(ap);
goto fsm_start;
}
}
ata_altstatus(ap); /* flush */
poll_next = 1;
break;
case HSM_ST_LAST:
if (unlikely(!ata_ok(status))) {
qc->err_mask |= __ac_err_mask(status);
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* no more data to transfer */
DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
ap->id, qc->dev->devno, status);
WARN_ON(qc->err_mask);
ap->hsm_task_state = HSM_ST_IDLE;
/* complete taskfile transaction */
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
case HSM_ST_ERR:
/* make sure qc->err_mask is available to
* know what's wrong and recover
*/
WARN_ON(qc->err_mask == 0);
ap->hsm_task_state = HSM_ST_IDLE;
/* complete taskfile transaction */
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
default:
poll_next = 0;
BUG();
}
return poll_next;
}
static void ata_pio_task(void *_data)
{
struct ata_queued_cmd *qc = _data;
struct ata_port *ap = qc->ap;
u8 status;
int poll_next;
fsm_start:
WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
/*
* This is purely heuristic. This is a fast path.
* Sometimes when we enter, BSY will be cleared in
* a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then
* chk-status again. If still busy, queue delayed work.
*/
status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) {
msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
return;
}
}
/* move the HSM */
poll_next = ata_hsm_move(ap, qc, status, 1);
/* another command or interrupt handler
* may be running at this point.
*/
if (poll_next)
goto fsm_start;
}
/**
* ata_qc_new - Request an available ATA command, for queueing
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* None.
*/
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
{
struct ata_queued_cmd *qc = NULL;
unsigned int i;
/* no command while frozen */
if (unlikely(ap->flags & ATA_FLAG_FROZEN))
return NULL;
/* the last tag is reserved for internal command. */
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
if (!test_and_set_bit(i, &ap->qc_allocated)) {
qc = __ata_qc_from_tag(ap, i);
break;
}
if (qc)
qc->tag = i;
return qc;
}
/**
* ata_qc_new_init - Request an available ATA command, and initialize it
* @dev: Device from whom we request an available command structure
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* None.
*/
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
struct ata_queued_cmd *qc;
qc = ata_qc_new(ap);
if (qc) {
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
}
return qc;
}
/**
* ata_qc_free - free unused ata_queued_cmd
* @qc: Command to complete
*
* Designed to free unused ata_queued_cmd object
* in case something prevents using it.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_free(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int tag;
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
qc->flags = 0;
tag = qc->tag;
if (likely(ata_tag_valid(tag))) {
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qc_allocated);
}
}
void __ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
ata_sg_clean(qc);
/* command should be marked inactive atomically with qc completion */
if (qc->tf.protocol == ATA_PROT_NCQ)
ap->sactive &= ~(1 << qc->tag);
else
ap->active_tag = ATA_TAG_POISON;
/* atapi: mark qc as inactive to prevent the interrupt handler
* from completing the command twice later, before the error handler
* is called. (when rc != 0 and atapi request sense is needed)
*/
qc->flags &= ~ATA_QCFLAG_ACTIVE;
ap->qc_active &= ~(1 << qc->tag);
/* call completion callback */
qc->complete_fn(qc);
}
/**
* ata_qc_complete - Complete an active ATA command
* @qc: Command to complete
* @err_mask: ATA Status register contents
*
* Indicate to the mid and upper layers that an ATA
* command has completed, with either an ok or not-ok status.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* XXX: New EH and old EH use different mechanisms to
* synchronize EH with regular execution path.
*
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
* Normal execution path is responsible for not accessing a
* failed qc. libata core enforces the rule by returning NULL
* from ata_qc_from_tag() for failed qcs.
*
* Old EH depends on ata_qc_complete() nullifying completion
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
* not synchronize with interrupt handler. Only PIO task is
* taken care of.
*/
if (ap->ops->error_handler) {
WARN_ON(ap->flags & ATA_FLAG_FROZEN);
if (unlikely(qc->err_mask))
qc->flags |= ATA_QCFLAG_FAILED;
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
if (!ata_tag_internal(qc->tag)) {
/* always fill result TF for failed qc */
ap->ops->tf_read(ap, &qc->result_tf);
ata_qc_schedule_eh(qc);
return;
}
}
/* read result TF if requested */
if (qc->flags & ATA_QCFLAG_RESULT_TF)
ap->ops->tf_read(ap, &qc->result_tf);
__ata_qc_complete(qc);
} else {
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
return;
/* read result TF if failed or requested */
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
ap->ops->tf_read(ap, &qc->result_tf);
__ata_qc_complete(qc);
}
}
/**
* ata_qc_complete_multiple - Complete multiple qcs successfully
* @ap: port in question
* @qc_active: new qc_active mask
* @finish_qc: LLDD callback invoked before completing a qc
*
* Complete in-flight commands. This functions is meant to be
* called from low-level driver's interrupt routine to complete
* requests normally. ap->qc_active and @qc_active is compared
* and commands are completed accordingly.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Number of completed commands on success, -errno otherwise.
*/
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
void (*finish_qc)(struct ata_queued_cmd *))
{
int nr_done = 0;
u32 done_mask;
int i;
done_mask = ap->qc_active ^ qc_active;
if (unlikely(done_mask & qc_active)) {
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
"(%08x->%08x)\n", ap->qc_active, qc_active);
return -EINVAL;
}
for (i = 0; i < ATA_MAX_QUEUE; i++) {
struct ata_queued_cmd *qc;
if (!(done_mask & (1 << i)))
continue;
if ((qc = ata_qc_from_tag(ap, i))) {
if (finish_qc)
finish_qc(qc);
ata_qc_complete(qc);
nr_done++;
}
}
return nr_done;
}
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
switch (qc->tf.protocol) {
case ATA_PROT_NCQ:
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
return 1;
case ATA_PROT_ATAPI:
case ATA_PROT_PIO:
if (ap->flags & ATA_FLAG_PIO_DMA)
return 1;
/* fall through */
default:
return 0;
}
/* never reached */
}
/**
* ata_qc_issue - issue taskfile to device
* @qc: command to issue to device
*
* Prepare an ATA command to submission to device.
* This includes mapping the data into a DMA-able
* area, filling in the S/G table, and finally
* writing the taskfile to hardware, starting the command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* Make sure only one non-NCQ command is outstanding. The
* check is skipped for old EH because it reuses active qc to
* request ATAPI sense.
*/
WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
if (qc->tf.protocol == ATA_PROT_NCQ) {
WARN_ON(ap->sactive & (1 << qc->tag));
ap->sactive |= 1 << qc->tag;
} else {
WARN_ON(ap->sactive);
ap->active_tag = qc->tag;
}
qc->flags |= ATA_QCFLAG_ACTIVE;
ap->qc_active |= 1 << qc->tag;
if (ata_should_dma_map(qc)) {
if (qc->flags & ATA_QCFLAG_SG) {
if (ata_sg_setup(qc))
goto sg_err;
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
if (ata_sg_setup_one(qc))
goto sg_err;
}
} else {
qc->flags &= ~ATA_QCFLAG_DMAMAP;
}
ap->ops->qc_prep(qc);
qc->err_mask |= ap->ops->qc_issue(qc);
if (unlikely(qc->err_mask))
goto err;
return;
sg_err:
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->err_mask |= AC_ERR_SYSTEM;
err:
ata_qc_complete(qc);
}
/**
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
* @qc: command to issue to device
*
* Using various libata functions and hooks, this function
* starts an ATA command. ATA commands are grouped into
* classes called "protocols", and issuing each type of protocol
* is slightly different.
*
2005-06-02 18:17:13 -04:00
* May be used as the qc_issue() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* Use polling pio if the LLD doesn't handle
* interrupt driven pio and atapi CDB interrupt.
*/
if (ap->flags & ATA_FLAG_PIO_POLLING) {
switch (qc->tf.protocol) {
case ATA_PROT_PIO:
case ATA_PROT_ATAPI:
case ATA_PROT_ATAPI_NODATA:
qc->tf.flags |= ATA_TFLAG_POLLING;
break;
case ATA_PROT_ATAPI_DMA:
if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
/* see ata_check_atapi_dma() */
BUG();
break;
default:
break;
}
}
/* select the device */
ata_dev_select(ap, qc->dev->devno, 1, 0);
/* start the command */
switch (qc->tf.protocol) {
case ATA_PROT_NODATA:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST_LAST;
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
case ATA_PROT_DMA:
2006-02-11 18:17:32 -05:00
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->ops->bmdma_start(qc); /* initiate bmdma */
ap->hsm_task_state = HSM_ST_LAST;
break;
case ATA_PROT_PIO:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
/* PIO data out protocol */
ap->hsm_task_state = HSM_ST_FIRST;
ata_port_queue_task(ap, ata_pio_task, qc, 0);
/* always send first data block using
* the ata_pio_task() codepath.
*/
} else {
/* PIO data in protocol */
ap->hsm_task_state = HSM_ST;
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_port_queue_task(ap, ata_pio_task, qc, 0);
/* if polling, ata_pio_task() handles the rest.
* otherwise, interrupt handler takes over from here.
*/
}
break;
case ATA_PROT_ATAPI:
case ATA_PROT_ATAPI_NODATA:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
2006-01-27 02:45:00 -05:00
ap->hsm_task_state = HSM_ST_FIRST;
/* send cdb by polling if no cdb interrupt */
if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
(qc->tf.flags & ATA_TFLAG_POLLING))
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
case ATA_PROT_ATAPI_DMA:
2006-02-11 18:17:32 -05:00
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->hsm_task_state = HSM_ST_FIRST;
/* send cdb by polling if no cdb interrupt */
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
default:
WARN_ON(1);
return AC_ERR_SYSTEM;
}
return 0;
}
/**
* ata_host_intr - Handle host interrupt for given (port, task)
* @ap: Port on which interrupt arrived (possibly...)
* @qc: Taskfile currently active in engine
*
* Handle host interrupt for given queued command. Currently,
* only DMA interrupts are handled. All other commands are
* handled via polling with interrupts disabled (nIEN bit).
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* One if interrupt was handled, zero if not (shared irq).
*/
inline unsigned int ata_host_intr (struct ata_port *ap,
struct ata_queued_cmd *qc)
{
u8 status, host_stat = 0;
VPRINTK("ata%u: protocol %d task_state %d\n",
ap->id, qc->tf.protocol, ap->hsm_task_state);
/* Check whether we are expecting interrupt in this state */
switch (ap->hsm_task_state) {
case HSM_ST_FIRST:
/* Some pre-ATAPI-4 devices assert INTRQ
* at this state when ready to receive CDB.
*/
/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
* The flag was turned on only for atapi devices.
* No need to check is_atapi_taskfile(&qc->tf) again.
*/
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
goto idle_irq;
break;
case HSM_ST_LAST:
if (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
/* check status of DMA engine */
host_stat = ap->ops->bmdma_status(ap);
VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
/* if it's not our irq... */
if (!(host_stat & ATA_DMA_INTR))
goto idle_irq;
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
if (unlikely(host_stat & ATA_DMA_ERR)) {
/* error when transfering data to/from memory */
qc->err_mask |= AC_ERR_HOST_BUS;
ap->hsm_task_state = HSM_ST_ERR;
}
}
break;
case HSM_ST:
break;
default:
goto idle_irq;
}
/* check altstatus */
status = ata_altstatus(ap);
if (status & ATA_BUSY)
goto idle_irq;
/* check main status, clearing INTRQ */
status = ata_chk_status(ap);
if (unlikely(status & ATA_BUSY))
goto idle_irq;
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
ata_hsm_move(ap, qc, status, 0);
return 1; /* irq handled */
idle_irq:
ap->stats.idle_irq++;
#ifdef ATA_IRQ_TRAP
if ((ap->stats.idle_irq % 1000) == 0) {
ata_irq_ack(ap, 0); /* debug trap */
ata_port_printk(ap, KERN_WARNING, "irq trap\n");
return 1;
}
#endif
return 0; /* irq not handled */
}
/**
* ata_interrupt - Default ATA host interrupt handler
2005-05-30 19:49:12 -04:00
* @irq: irq line (unused)
* @dev_instance: pointer to our ata_host_set information structure
* @regs: unused
*
2005-05-30 19:49:12 -04:00
* Default interrupt handler for PCI IDE devices. Calls
* ata_host_intr() for each port that is not disabled.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* Obtains host_set lock during operation.
*
* RETURNS:
2005-05-30 19:49:12 -04:00
* IRQ_NONE or IRQ_HANDLED.
*/
irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
spin_lock_irqsave(&host_set->lock, flags);
for (i = 0; i < host_set->n_ports; i++) {
struct ata_port *ap;
ap = host_set->ports[i];
if (ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
(qc->flags & ATA_QCFLAG_ACTIVE))
handled |= ata_host_intr(ap, qc);
}
}
spin_unlock_irqrestore(&host_set->lock, flags);
return IRQ_RETVAL(handled);
}
/**
* sata_scr_valid - test whether SCRs are accessible
* @ap: ATA port to test SCR accessibility for
*
* Test whether SCRs are accessible for @ap.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if SCRs are accessible, 0 otherwise.
*/
int sata_scr_valid(struct ata_port *ap)
{
return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
}
/**
* sata_scr_read - read SCR register of the specified port
* @ap: ATA port to read SCR for
* @reg: SCR to read
* @val: Place to store read value
*
* Read SCR register @reg of @ap into *@val. This function is
* guaranteed to succeed if the cable type of the port is SATA
* and the port implements ->scr_read.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
{
if (sata_scr_valid(ap)) {
*val = ap->ops->scr_read(ap, reg);
return 0;
}
return -EOPNOTSUPP;
}
/**
* sata_scr_write - write SCR register of the specified port
* @ap: ATA port to write SCR for
* @reg: SCR to write
* @val: value to write
*
* Write @val to SCR register @reg of @ap. This function is
* guaranteed to succeed if the cable type of the port is SATA
* and the port implements ->scr_read.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write(struct ata_port *ap, int reg, u32 val)
{
if (sata_scr_valid(ap)) {
ap->ops->scr_write(ap, reg, val);
return 0;
}
return -EOPNOTSUPP;
}
/**
* sata_scr_write_flush - write SCR register of the specified port and flush
* @ap: ATA port to write SCR for
* @reg: SCR to write
* @val: value to write
*
* This function is identical to sata_scr_write() except that this
* function performs flush after writing to the register.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
{
if (sata_scr_valid(ap)) {
ap->ops->scr_write(ap, reg, val);
ap->ops->scr_read(ap, reg);
return 0;
}
return -EOPNOTSUPP;
}
/**
* ata_port_online - test whether the given port is online
* @ap: ATA port to test
*
* Test whether @ap is online. Note that this function returns 0
* if online status of @ap cannot be obtained, so
* ata_port_online(ap) != !ata_port_offline(ap).
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if the port online status is available and online.
*/
int ata_port_online(struct ata_port *ap)
{
u32 sstatus;
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
return 1;
return 0;
}
/**
* ata_port_offline - test whether the given port is offline
* @ap: ATA port to test
*
* Test whether @ap is offline. Note that this function returns
* 0 if offline status of @ap cannot be obtained, so
* ata_port_online(ap) != !ata_port_offline(ap).
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if the port offline status is available and offline.
*/
int ata_port_offline(struct ata_port *ap)
{
u32 sstatus;
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
return 1;
return 0;
}
2005-06-02 18:17:13 -04:00
/*
* Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
* without filling any other registers
*/
static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
{
struct ata_taskfile tf;
int err;
ata_tf_init(dev, &tf);
tf.command = cmd;
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
if (err)
ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
__FUNCTION__, err);
return err;
}
static int ata_flush_cache(struct ata_device *dev)
{
u8 cmd;
if (!ata_try_flush_cache(dev))
return 0;
if (ata_id_has_flush_ext(dev->id))
cmd = ATA_CMD_FLUSH_EXT;
else
cmd = ATA_CMD_FLUSH;
return ata_do_simple_cmd(dev, cmd);
}
static int ata_standby_drive(struct ata_device *dev)
{
return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
}
static int ata_start_drive(struct ata_device *dev)
{
return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
}
/**
* ata_device_resume - wakeup a previously suspended devices
* @dev: the device to resume
*
* Kick the drive back into action, by sending it an idle immediate
* command and making sure its transfer mode matches between drive
* and host.
*
*/
int ata_device_resume(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
if (ap->flags & ATA_FLAG_SUSPENDED) {
struct ata_device *failed_dev;
ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
ap->flags &= ~ATA_FLAG_SUSPENDED;
while (ata_set_mode(ap, &failed_dev))
ata_dev_disable(failed_dev);
}
if (!ata_dev_enabled(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_start_drive(dev);
return 0;
}
/**
* ata_device_suspend - prepare a device for suspend
* @dev: the device to suspend
* @state: target power management state
*
* Flush the cache on the drive, if appropriate, then issue a
* standbynow command.
*/
int ata_device_suspend(struct ata_device *dev, pm_message_t state)
{
struct ata_port *ap = dev->ap;
if (!ata_dev_enabled(dev))
return 0;
if (dev->class == ATA_DEV_ATA)
ata_flush_cache(dev);
if (state.event != PM_EVENT_FREEZE)
ata_standby_drive(dev);
ap->flags |= ATA_FLAG_SUSPENDED;
return 0;
}
/**
* ata_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates space for PRD table.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_port_start (struct ata_port *ap)
{
struct device *dev = ap->dev;
int rc;
ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
if (!ap->prd)
return -ENOMEM;
rc = ata_pad_alloc(ap, dev);
if (rc) {
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
return rc;
}
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
return 0;
}
2005-06-02 18:17:13 -04:00
/**
* ata_port_stop - Undo ata_port_start()
* @ap: Port to shut down
*
* Frees the PRD table.
*
* May be used as the port_stop() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
2005-06-02 18:17:13 -04:00
*/
void ata_port_stop (struct ata_port *ap)
{
struct device *dev = ap->dev;
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
ata_pad_free(ap, dev);
}
void ata_host_stop (struct ata_host_set *host_set)
{
if (host_set->mmio_base)
iounmap(host_set->mmio_base);
}
/**
* ata_host_remove - Unregister SCSI host structure with upper layers
* @ap: Port to unregister
* @do_unregister: 1 if we fully unregister, 0 to just stop the port
*
* LOCKING:
* Inherited from caller.
*/
static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
{
struct Scsi_Host *sh = ap->host;
DPRINTK("ENTER\n");
if (do_unregister)
scsi_remove_host(sh);
ap->ops->port_stop(ap);
}
/**
* ata_dev_init - Initialize an ata_device structure
* @dev: Device structure to initialize
*
* Initialize @dev in preparation for probing.
*
* LOCKING:
* Inherited from caller.
*/
void ata_dev_init(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
unsigned long flags;
/* SATA spd limit is bound to the first device */
ap->sata_spd_limit = ap->hw_sata_spd_limit;
/* High bits of dev->flags are used to record warm plug
* requests which occur asynchronously. Synchronize using
* host_set lock.
*/
spin_lock_irqsave(&ap->host_set->lock, flags);
dev->flags &= ~ATA_DFLAG_INIT_MASK;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
dev->pio_mask = UINT_MAX;
dev->mwdma_mask = UINT_MAX;
dev->udma_mask = UINT_MAX;
}
/**
* ata_host_init - Initialize an ata_port structure
* @ap: Structure to initialize
* @host: associated SCSI mid-layer structure
* @host_set: Collection of hosts to which @ap belongs
* @ent: Probe information provided by low-level driver
* @port_no: Port number associated with this ata_port
*
2005-05-30 19:49:12 -04:00
* Initialize a new ata_port structure, and its associated
* scsi_host.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* Inherited from caller.
*/
static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
struct ata_host_set *host_set,
const struct ata_probe_ent *ent, unsigned int port_no)
{
unsigned int i;
host->max_id = 16;
host->max_lun = 1;
host->max_channel = 1;
host->unique_id = ata_unique_id++;
host->max_cmd_len = 12;
ap->flags = ATA_FLAG_DISABLED;
ap->id = host->unique_id;
ap->host = host;
ap->ctl = ATA_DEVCTL_OBS;
ap->host_set = host_set;
ap->dev = ent->dev;
ap->port_no = port_no;
ap->hard_port_no =
ent->legacy_mode ? ent->hard_port_no : port_no;
ap->pio_mask = ent->pio_mask;
ap->mwdma_mask = ent->mwdma_mask;
ap->udma_mask = ent->udma_mask;
ap->flags |= ent->host_flags;
ap->ops = ent->port_ops;
ap->hw_sata_spd_limit = UINT_MAX;
ap->active_tag = ATA_TAG_POISON;
ap->last_ctl = 0xFF;
ap->msg_enable = ATA_MSG_DRV;
INIT_WORK(&ap->port_task, NULL, NULL);
INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
INIT_LIST_HEAD(&ap->eh_done_q);
init_waitqueue_head(&ap->eh_wait_q);
/* set cable type */
ap->cbl = ATA_CBL_NONE;
if (ap->flags & ATA_FLAG_SATA)
ap->cbl = ATA_CBL_SATA;
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
dev->ap = ap;
dev->devno = i;
ata_dev_init(dev);
}
#ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1;
ap->stats.idle_irq = 1;
#endif
memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
}
/**
* ata_host_add - Attach low-level ATA driver to system
* @ent: Information provided by low-level driver
* @host_set: Collections of ports to which we add
* @port_no: Port number associated with this host
*
2005-05-30 19:49:12 -04:00
* Attach low-level ATA driver to system.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
* RETURNS:
2005-05-30 19:49:12 -04:00
* New ata_port on success, for NULL on error.
*/
static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
struct ata_host_set *host_set,
unsigned int port_no)
{
struct Scsi_Host *host;
struct ata_port *ap;
int rc;
DPRINTK("ENTER\n");
if (!ent->port_ops->error_handler &&
!(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
printk(KERN_ERR "ata%u: no reset mechanism available\n",
port_no);
return NULL;
}
host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
if (!host)
return NULL;
host->transportt = &ata_scsi_transport_template;
2006-04-11 13:12:34 -04:00
ap = ata_shost_to_port(host);
ata_host_init(ap, host, host_set, ent, port_no);
rc = ap->ops->port_start(ap);
if (rc)
goto err_out;
return ap;
err_out:
scsi_host_put(host);
return NULL;
}
/**
2005-05-30 19:49:12 -04:00
* ata_device_add - Register hardware device with ATA and SCSI layers
* @ent: Probe information describing hardware device to be registered
*
* This function processes the information provided in the probe
* information struct @ent, allocates the necessary ATA and SCSI
* host information structures, initializes them, and registers
* everything with requisite kernel subsystems.
*
* This function requests irqs, probes the ATA bus, and probes
* the SCSI bus.
*
* LOCKING:
2005-05-30 19:49:12 -04:00
* PCI/etc. bus probe sem.
*
* RETURNS:
2005-05-30 19:49:12 -04:00
* Number of ports registered. Zero on error (no ports registered).
*/
int ata_device_add(const struct ata_probe_ent *ent)
{
unsigned int count = 0, i;
struct device *dev = ent->dev;
struct ata_host_set *host_set;
DPRINTK("ENTER\n");
/* alloc a container for our list of ATA ports (buses) */
host_set = kzalloc(sizeof(struct ata_host_set) +
(ent->n_ports * sizeof(void *)), GFP_KERNEL);
if (!host_set)
return 0;
spin_lock_init(&host_set->lock);
host_set->dev = dev;
host_set->n_ports = ent->n_ports;
host_set->irq = ent->irq;
host_set->mmio_base = ent->mmio_base;
host_set->private_data = ent->private_data;
host_set->ops = ent->port_ops;
host_set->flags = ent->host_set_flags;
/* register each port bound to this device */
for (i = 0; i < ent->n_ports; i++) {
struct ata_port *ap;
unsigned long xfer_mode_mask;
ap = ata_host_add(ent, host_set, i);
if (!ap)
goto err_out;
host_set->ports[i] = ap;
xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
(ap->pio_mask << ATA_SHIFT_PIO);
/* print per-port info to dmesg */
ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
"ctl 0x%lX bmdma 0x%lX irq %lu\n",
ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
ata_mode_string(xfer_mode_mask),
ap->ioaddr.cmd_addr,
ap->ioaddr.ctl_addr,
ap->ioaddr.bmdma_addr,
ent->irq);
ata_chk_status(ap);
host_set->ops->irq_clear(ap);
ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
count++;
}
if (!count)
goto err_free_ret;
/* obtain irq, that is shared between channels */
if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
DRV_NAME, host_set))
goto err_out;
/* perform each probe synchronously */
DPRINTK("probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap;
u32 scontrol;
int rc;
ap = host_set->ports[i];
/* init sata_spd_limit to the current value */
if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
int spd = (scontrol >> 4) & 0xf;
ap->hw_sata_spd_limit &= (1 << spd) - 1;
}
ap->sata_spd_limit = ap->hw_sata_spd_limit;
rc = scsi_add_host(ap->host, dev);
if (rc) {
ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
/* FIXME: do something useful here */
/* FIXME: handle unconditional calls to
* scsi_scan_host and ata_host_remove, below,
* at the very least
*/
}
if (ap->ops->error_handler) {
unsigned long flags;
ata_port_probe(ap);
/* kick EH for boot probing */
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
ap->eh_info.action |= ATA_EH_SOFTRESET;
ap->flags |= ATA_FLAG_LOADING;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
/* wait for EH to finish */
ata_port_wait_eh(ap);
} else {
DPRINTK("ata%u: bus probe begin\n", ap->id);
rc = ata_bus_probe(ap);
DPRINTK("ata%u: bus probe end\n", ap->id);
if (rc) {
/* FIXME: do something useful here?
* Current libata behavior will
* tear down everything when
* the module is removed
* or the h/w is unplugged.
*/
}
}
}
/* probes are done, now scan each port's disk(s) */
DPRINTK("host probe begin\n");
for (i = 0; i < count; i++) {
struct ata_port *ap = host_set->ports[i];
ata_scsi_scan_host(ap);
}
dev_set_drvdata(dev, host_set);
VPRINTK("EXIT, returning %u\n", ent->n_ports);
return ent->n_ports; /* success */
err_out:
for (i = 0; i < count; i++) {
ata_host_remove(host_set->ports[i], 1);
scsi_host_put(host_set->ports[i]->host);
}
err_free_ret:
kfree(host_set);
VPRINTK("EXIT, returning 0\n");
return 0;
}
/**
* ata_port_detach - Detach ATA port in prepration of device removal
* @ap: ATA port to be detached
*
* Detach all ATA devices and the associated SCSI devices of @ap;
* then, remove the associated SCSI host. @ap is guaranteed to
* be quiescent on return from this function.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_port_detach(struct ata_port *ap)
{
unsigned long flags;
int i;
if (!ap->ops->error_handler)
return;
/* tell EH we're leaving & flush EH */
spin_lock_irqsave(&ap->host_set->lock, flags);
ap->flags |= ATA_FLAG_UNLOADING;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
ata_port_wait_eh(ap);
/* EH is now guaranteed to see UNLOADING, so no new device
* will be attached. Disable all existing devices.
*/
spin_lock_irqsave(&ap->host_set->lock, flags);
for (i = 0; i < ATA_MAX_DEVICES; i++)
ata_dev_disable(&ap->device[i]);
spin_unlock_irqrestore(&ap->host_set->lock, flags);
/* Final freeze & EH. All in-flight commands are aborted. EH
* will be skipped and retrials will be terminated with bad
* target.
*/
spin_lock_irqsave(&ap->host_set->lock, flags);
ata_port_freeze(ap); /* won't be thawed */
spin_unlock_irqrestore(&ap->host_set->lock, flags);
ata_port_wait_eh(ap);
/* Flush hotplug task. The sequence is similar to
* ata_port_flush_task().
*/
flush_workqueue(ata_aux_wq);
cancel_delayed_work(&ap->hotplug_task);
flush_workqueue(ata_aux_wq);
/* remove the associated SCSI host */
scsi_remove_host(ap->host);
}
/**
* ata_host_set_remove - PCI layer callback for device removal
* @host_set: ATA host set that was removed
*
* Unregister all objects associated with this host set. Free those
* objects.
*
* LOCKING:
* Inherited from calling layer (may sleep).
*/
void ata_host_set_remove(struct ata_host_set *host_set)
{
unsigned int i;
for (i = 0; i < host_set->n_ports; i++)
ata_port_detach(host_set->ports[i]);
free_irq(host_set->irq, host_set);
for (i = 0; i < host_set->n_ports; i++) {
struct ata_port *ap = host_set->ports[i];
ata_scsi_release(ap->host);
if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
struct ata_ioports *ioaddr = &ap->ioaddr;
if (ioaddr->cmd_addr == 0x1f0)
release_region(0x1f0, 8);
else if (ioaddr->cmd_addr == 0x170)
release_region(0x170, 8);
}
scsi_host_put(ap->host);
}
if (host_set->ops->host_stop)
host_set->ops->host_stop(host_set);
kfree(host_set);
}
/**
* ata_scsi_release - SCSI layer callback hook for host unload
* @host: libata host to be unloaded
*
* Performs all duties necessary to shut down a libata port...
* Kill port kthread, disable port, and release resources.
*
* LOCKING:
* Inherited from SCSI layer.
*
* RETURNS:
* One.
*/
int ata_scsi_release(struct Scsi_Host *host)
{
2006-04-11 13:12:34 -04:00
struct ata_port *ap = ata_shost_to_port(host);
DPRINTK("ENTER\n");
ap->ops->port_disable(ap);
ata_host_remove(ap, 0);
DPRINTK("EXIT\n");
return 1;
}
/**
* ata_std_ports - initialize ioaddr with standard port offsets.
* @ioaddr: IO address structure to be initialized
2005-06-02 18:17:13 -04:00
*
* Utility function which initializes data_addr, error_addr,
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
* device_addr, status_addr, and command_addr to standard offsets
* relative to cmd_addr.
*
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
*/
2005-06-02 18:17:13 -04:00
void ata_std_ports(struct ata_ioports *ioaddr)
{
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
}
2005-06-02 18:17:13 -04:00
#ifdef CONFIG_PCI
void ata_pci_host_stop (struct ata_host_set *host_set)
{
struct pci_dev *pdev = to_pci_dev(host_set->dev);
pci_iounmap(pdev, host_set->mmio_base);
}
/**
* ata_pci_remove_one - PCI layer callback for device removal
* @pdev: PCI device that was removed
*
* PCI layer indicates to libata via this hook that
* hot-unplug or module unload event has occurred.
* Handle this by unregistering all objects associated
* with this PCI device. Free those objects. Then finally
* release PCI resources and disable device.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*/
void ata_pci_remove_one (struct pci_dev *pdev)
{
struct device *dev = pci_dev_to_dev(pdev);
struct ata_host_set *host_set = dev_get_drvdata(dev);
ata_host_set_remove(host_set);
pci_release_regions(pdev);
pci_disable_device(pdev);
dev_set_drvdata(dev, NULL);
}
/* move to PCI subsystem */
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
{
unsigned long tmp = 0;
switch (bits->width) {
case 1: {
u8 tmp8 = 0;
pci_read_config_byte(pdev, bits->reg, &tmp8);
tmp = tmp8;
break;
}
case 2: {
u16 tmp16 = 0;
pci_read_config_word(pdev, bits->reg, &tmp16);
tmp = tmp16;
break;
}
case 4: {
u32 tmp32 = 0;
pci_read_config_dword(pdev, bits->reg, &tmp32);
tmp = tmp32;
break;
}
default:
return -EINVAL;
}
tmp &= bits->mask;
return (tmp == bits->val) ? 1 : 0;
}
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
int ata_pci_device_resume(struct pci_dev *pdev)
{
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_device(pdev);
pci_set_master(pdev);
return 0;
}
#endif /* CONFIG_PCI */
static int __init ata_init(void)
{
ata_wq = create_workqueue("ata");
if (!ata_wq)
return -ENOMEM;
ata_aux_wq = create_singlethread_workqueue("ata_aux");
if (!ata_aux_wq) {
destroy_workqueue(ata_wq);
return -ENOMEM;
}
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0;
}
static void __exit ata_exit(void)
{
destroy_workqueue(ata_wq);
destroy_workqueue(ata_aux_wq);
}
module_init(ata_init);
module_exit(ata_exit);
static unsigned long ratelimit_time;
static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
int ata_ratelimit(void)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&ata_ratelimit_lock, flags);
if (time_after(jiffies, ratelimit_time)) {
rc = 1;
ratelimit_time = jiffies + (HZ/5);
} else
rc = 0;
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
return rc;
}
/**
* ata_wait_register - wait until register value changes
* @reg: IO-mapped register
* @mask: Mask to apply to read register value
* @val: Wait condition
* @interval_msec: polling interval in milliseconds
* @timeout_msec: timeout in milliseconds
*
* Waiting for some bits of register to change is a common
* operation for ATA controllers. This function reads 32bit LE
* IO-mapped register @reg and tests for the following condition.
*
* (*@reg & mask) != val
*
* If the condition is met, it returns; otherwise, the process is
* repeated after @interval_msec until timeout.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* The final register value.
*/
u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
unsigned long interval_msec,
unsigned long timeout_msec)
{
unsigned long timeout;
u32 tmp;
tmp = ioread32(reg);
/* Calculate timeout _after_ the first read to make sure
* preceding writes reach the controller before starting to
* eat away the timeout.
*/
timeout = jiffies + (timeout_msec * HZ) / 1000;
while ((tmp & mask) == val && time_before(jiffies, timeout)) {
msleep(interval_msec);
tmp = ioread32(reg);
}
return tmp;
}
/*
* libata is essentially a library of internal helper functions for
* low-level ATA host controller drivers. As such, the API/ABI is
* likely to change as new drivers are added and updated.
* Do not depend on ABI/API stability.
*/
EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
EXPORT_SYMBOL_GPL(ata_std_bios_param);
EXPORT_SYMBOL_GPL(ata_std_ports);
EXPORT_SYMBOL_GPL(ata_device_add);
EXPORT_SYMBOL_GPL(ata_port_detach);
EXPORT_SYMBOL_GPL(ata_host_set_remove);
EXPORT_SYMBOL_GPL(ata_sg_init);
EXPORT_SYMBOL_GPL(ata_sg_init_one);
EXPORT_SYMBOL_GPL(ata_hsm_move);
EXPORT_SYMBOL_GPL(ata_qc_complete);
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
EXPORT_SYMBOL_GPL(ata_tf_load);
EXPORT_SYMBOL_GPL(ata_tf_read);
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
EXPORT_SYMBOL_GPL(ata_std_dev_select);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_check_status);
EXPORT_SYMBOL_GPL(ata_altstatus);
EXPORT_SYMBOL_GPL(ata_exec_command);
EXPORT_SYMBOL_GPL(ata_port_start);
EXPORT_SYMBOL_GPL(ata_port_stop);
EXPORT_SYMBOL_GPL(ata_host_stop);
EXPORT_SYMBOL_GPL(ata_interrupt);
EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
EXPORT_SYMBOL_GPL(ata_qc_prep);
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
EXPORT_SYMBOL_GPL(ata_bmdma_start);
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
EXPORT_SYMBOL_GPL(ata_bmdma_status);
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
EXPORT_SYMBOL_GPL(ata_port_probe);
EXPORT_SYMBOL_GPL(sata_set_spd);
EXPORT_SYMBOL_GPL(sata_phy_debounce);
EXPORT_SYMBOL_GPL(sata_phy_resume);
EXPORT_SYMBOL_GPL(sata_phy_reset);
EXPORT_SYMBOL_GPL(__sata_phy_reset);
EXPORT_SYMBOL_GPL(ata_bus_reset);
[PATCH] libata-hp-prep: add prereset() method and implement ata_std_prereset() With hotplug, every reset might be a probing reset and thus something similar to probe_init() is needed. prereset() method is called before a series of resets to a port and is the counterpart of postreset(). prereset() can tell EH to use different type of reset or skip reset by modifying ehc->i.action. This patch also implements ata_std_prereset(). Most controllers should be able to use this function directly or with some wrapping. After hotplug, different controllers need different actions to resume the PHY and detect the newly attached device. Controllers can be categorized as follows. * Controllers which can wait for the first D2H FIS after hotplug. Note that if the waiting is implemented by polling TF status, there needs to be a way to set BSY on PHY status change. It can be implemented by hardware or with the help of the driver. * Controllers which can wait for the first D2H FIS after sending COMRESET. These controllers need to issue COMRESET to wait for the first FIS. Note that the received D2H FIS could be the first D2H FIS after POR (power-on-reset) or D2H FIS in response to the COMRESET. Some controllers use COMRESET as TF status synchronization point and clear TF automatically (sata_sil). * Controllers which cannot wait for the first D2H FIS reliably. Blindly issuing SRST to spinning-up device often results in command issue failure or timeout, causing extended delay. For these controllers, ata_std_prereset() explicitly waits ATA_SPINUP_WAIT (currently 8s) to give newly attached device time to spin up, then issues reset. Note that failing to getting ready in ATA_SPINUP_WAIT is not critical. libata will retry. So, the timeout needs to be long enough to spin up most devices. LLDDs can tell ata_std_prereset() which of above action is needed with ATA_FLAG_HRST_TO_RESUME and ATA_FLAG_SKIP_D2H_BSY flags. These flags are PHY-specific property and will be moved to ata_link later. While at it, this patch unifies function typedef's such that they all have named arguments. Signed-off-by: Tejun Heo <htejun@gmail.com>
2006-05-31 18:27:48 +09:00
EXPORT_SYMBOL_GPL(ata_std_prereset);
EXPORT_SYMBOL_GPL(ata_std_softreset);
EXPORT_SYMBOL_GPL(sata_std_hardreset);
EXPORT_SYMBOL_GPL(ata_std_postreset);
EXPORT_SYMBOL_GPL(ata_dev_revalidate);
EXPORT_SYMBOL_GPL(ata_dev_classify);
EXPORT_SYMBOL_GPL(ata_dev_pair);
EXPORT_SYMBOL_GPL(ata_port_disable);
EXPORT_SYMBOL_GPL(ata_ratelimit);
EXPORT_SYMBOL_GPL(ata_wait_register);
EXPORT_SYMBOL_GPL(ata_busy_sleep);
EXPORT_SYMBOL_GPL(ata_port_queue_task);
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
EXPORT_SYMBOL_GPL(ata_scsi_release);
EXPORT_SYMBOL_GPL(ata_host_intr);
EXPORT_SYMBOL_GPL(sata_scr_valid);
EXPORT_SYMBOL_GPL(sata_scr_read);
EXPORT_SYMBOL_GPL(sata_scr_write);
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
EXPORT_SYMBOL_GPL(ata_port_online);
EXPORT_SYMBOL_GPL(ata_port_offline);
EXPORT_SYMBOL_GPL(ata_id_string);
EXPORT_SYMBOL_GPL(ata_id_c_string);
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
EXPORT_SYMBOL_GPL(ata_timing_compute);
EXPORT_SYMBOL_GPL(ata_timing_merge);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(pci_test_config_bits);
EXPORT_SYMBOL_GPL(ata_pci_host_stop);
EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
EXPORT_SYMBOL_GPL(ata_pci_init_one);
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
EXPORT_SYMBOL_GPL(ata_pci_default_filter);
EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
#endif /* CONFIG_PCI */
EXPORT_SYMBOL_GPL(ata_device_suspend);
EXPORT_SYMBOL_GPL(ata_device_resume);
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
EXPORT_SYMBOL_GPL(ata_eng_timeout);
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
EXPORT_SYMBOL_GPL(ata_port_abort);
EXPORT_SYMBOL_GPL(ata_port_freeze);
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
EXPORT_SYMBOL_GPL(ata_do_eh);