2005-04-16 15:20:36 -07:00
|
|
|
/*
|
2006-06-09 14:48:12 +10:00
|
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
2005-11-02 14:58:39 +11:00
|
|
|
* All Rights Reserved.
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
2005-11-02 14:58:39 +11:00
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
2005-04-16 15:20:36 -07:00
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
2005-11-02 14:58:39 +11:00
|
|
|
* This program is distributed in the hope that it would be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
2005-11-02 14:58:39 +11:00
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2007-11-23 16:30:51 +11:00
|
|
|
#include <linux/log2.h>
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_fs.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_types.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_bit.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_log.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_inum.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_trans.h"
|
|
|
|
#include "xfs_trans_priv.h"
|
|
|
|
#include "xfs_sb.h"
|
|
|
|
#include "xfs_ag.h"
|
|
|
|
#include "xfs_mount.h"
|
|
|
|
#include "xfs_bmap_btree.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_alloc_btree.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_ialloc_btree.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_attr_sf.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_dinode.h"
|
|
|
|
#include "xfs_inode.h"
|
|
|
|
#include "xfs_buf_item.h"
|
2005-11-02 14:38:42 +11:00
|
|
|
#include "xfs_inode_item.h"
|
|
|
|
#include "xfs_btree.h"
|
|
|
|
#include "xfs_alloc.h"
|
|
|
|
#include "xfs_ialloc.h"
|
|
|
|
#include "xfs_bmap.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
#include "xfs_error.h"
|
|
|
|
#include "xfs_utils.h"
|
|
|
|
#include "xfs_quota.h"
|
2007-07-11 11:09:12 +10:00
|
|
|
#include "xfs_filestream.h"
|
2007-08-29 10:58:01 +10:00
|
|
|
#include "xfs_vnodeops.h"
|
2009-12-14 23:14:59 +00:00
|
|
|
#include "xfs_trace.h"
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
kmem_zone_t *xfs_ifork_zone;
|
|
|
|
kmem_zone_t *xfs_inode_zone;
|
|
|
|
|
|
|
|
/*
|
2011-07-08 14:34:34 +02:00
|
|
|
* Used in xfs_itruncate_extents(). This is the maximum number of extents
|
2005-04-16 15:20:36 -07:00
|
|
|
* freed from a file in a single transaction.
|
|
|
|
*/
|
|
|
|
#define XFS_ITRUNC_MAX_EXTENTS 2
|
|
|
|
|
|
|
|
STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
|
|
|
|
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
|
|
|
|
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
|
|
|
|
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
/*
|
|
|
|
* Make sure that the extents in the given memory buffer
|
|
|
|
* are valid.
|
|
|
|
*/
|
|
|
|
STATIC void
|
|
|
|
xfs_validate_extents(
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_ifork_t *ifp,
|
2005-04-16 15:20:36 -07:00
|
|
|
int nrecs,
|
|
|
|
xfs_exntfmt_t fmt)
|
|
|
|
{
|
|
|
|
xfs_bmbt_irec_t irec;
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t rec;
|
2005-04-16 15:20:36 -07:00
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < nrecs; i++) {
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
|
|
|
rec.l0 = get_unaligned(&ep->l0);
|
|
|
|
rec.l1 = get_unaligned(&ep->l1);
|
|
|
|
xfs_bmbt_get_all(&rec, &irec);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (fmt == XFS_EXTFMT_NOSTATE)
|
|
|
|
ASSERT(irec.br_state == XFS_EXT_NORM);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else /* DEBUG */
|
2007-08-16 16:23:40 +10:00
|
|
|
#define xfs_validate_extents(ifp, nrecs, fmt)
|
2005-04-16 15:20:36 -07:00
|
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check that none of the inode's in the buffer have a next
|
|
|
|
* unlinked field of 0.
|
|
|
|
*/
|
|
|
|
#if defined(DEBUG)
|
|
|
|
void
|
|
|
|
xfs_inobp_check(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_buf_t *bp)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
|
|
|
|
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
|
|
|
|
|
|
|
|
for (i = 0; i < j; i++) {
|
|
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
|
|
|
i * mp->m_sb.sb_inodesize);
|
|
|
|
if (!dip->di_next_unlinked) {
|
2011-03-07 10:05:35 +11:00
|
|
|
xfs_alert(mp,
|
|
|
|
"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
|
2005-04-16 15:20:36 -07:00
|
|
|
bp);
|
|
|
|
ASSERT(dip->di_next_unlinked);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-03-06 13:43:34 +11:00
|
|
|
/*
|
|
|
|
* Find the buffer associated with the given inode map
|
|
|
|
* We do basic validation checks on the buffer once it has been
|
|
|
|
* retrieved from disk.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_imap_to_bp(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_trans_t *tp,
|
2008-11-28 14:23:41 +11:00
|
|
|
struct xfs_imap *imap,
|
2008-03-06 13:43:34 +11:00
|
|
|
xfs_buf_t **bpp,
|
|
|
|
uint buf_flags,
|
2008-11-28 14:23:41 +11:00
|
|
|
uint iget_flags)
|
2008-03-06 13:43:34 +11:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
int i;
|
|
|
|
int ni;
|
|
|
|
xfs_buf_t *bp;
|
|
|
|
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
|
2008-03-06 13:43:42 +11:00
|
|
|
(int)imap->im_len, buf_flags, &bp);
|
2008-03-06 13:43:34 +11:00
|
|
|
if (error) {
|
2008-03-06 13:43:42 +11:00
|
|
|
if (error != EAGAIN) {
|
2011-03-07 10:08:35 +11:00
|
|
|
xfs_warn(mp,
|
|
|
|
"%s: xfs_trans_read_buf() returned error %d.",
|
|
|
|
__func__, error);
|
2008-03-06 13:43:42 +11:00
|
|
|
} else {
|
2010-01-19 09:56:44 +00:00
|
|
|
ASSERT(buf_flags & XBF_TRYLOCK);
|
2008-03-06 13:43:42 +11:00
|
|
|
}
|
2008-03-06 13:43:34 +11:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate the magic number and version of every inode in the buffer
|
|
|
|
* (if DEBUG kernel) or the first inode in the buffer, otherwise.
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
|
|
ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
|
|
|
|
#else /* usual case */
|
|
|
|
ni = 1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (i = 0; i < ni; i++) {
|
|
|
|
int di_ok;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
|
|
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
|
|
|
(i << mp->m_sb.sb_inodelog));
|
2011-07-08 14:36:05 +02:00
|
|
|
di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
|
2008-11-28 14:23:39 +11:00
|
|
|
XFS_DINODE_GOOD_VERSION(dip->di_version);
|
2008-03-06 13:43:34 +11:00
|
|
|
if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
|
|
|
|
XFS_ERRTAG_ITOBP_INOTOBP,
|
|
|
|
XFS_RANDOM_ITOBP_INOTOBP))) {
|
2010-06-24 11:15:47 +10:00
|
|
|
if (iget_flags & XFS_IGET_UNTRUSTED) {
|
2008-03-06 13:43:34 +11:00
|
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
return XFS_ERROR(EINVAL);
|
|
|
|
}
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
|
|
|
|
XFS_ERRLEVEL_HIGH, mp, dip);
|
|
|
|
#ifdef DEBUG
|
2011-03-07 10:08:35 +11:00
|
|
|
xfs_emerg(mp,
|
|
|
|
"bad inode magic/vsn daddr %lld #%d (magic=%x)",
|
2008-03-06 13:43:34 +11:00
|
|
|
(unsigned long long)imap->im_blkno, i,
|
2008-11-28 14:23:39 +11:00
|
|
|
be16_to_cpu(dip->di_magic));
|
2011-03-07 10:08:35 +11:00
|
|
|
ASSERT(0);
|
2008-03-06 13:43:34 +11:00
|
|
|
#endif
|
|
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
xfs_inobp_check(mp, bp);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the buffer as an inode buffer now that it looks good
|
|
|
|
*/
|
|
|
|
XFS_BUF_SET_VTYPE(bp, B_FS_INO);
|
|
|
|
|
|
|
|
*bpp = bp;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* This routine is called to map an inode number within a file
|
|
|
|
* system to the buffer containing the on-disk version of the
|
|
|
|
* inode. It returns a pointer to the buffer containing the
|
|
|
|
* on-disk inode in the bpp parameter, and in the dip parameter
|
|
|
|
* it returns a pointer to the on-disk inode within that buffer.
|
|
|
|
*
|
|
|
|
* If a non-zero error is returned, then the contents of bpp and
|
|
|
|
* dipp are undefined.
|
|
|
|
*
|
|
|
|
* Use xfs_imap() to determine the size and location of the
|
|
|
|
* buffer to read from disk.
|
|
|
|
*/
|
2008-10-30 18:04:13 +11:00
|
|
|
int
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_inotobp(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_ino_t ino,
|
|
|
|
xfs_dinode_t **dipp,
|
|
|
|
xfs_buf_t **bpp,
|
2008-10-30 18:04:13 +11:00
|
|
|
int *offset,
|
|
|
|
uint imap_flags)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-11-28 14:23:41 +11:00
|
|
|
struct xfs_imap imap;
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_buf_t *bp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
imap.im_blkno = 0;
|
2008-11-28 14:23:40 +11:00
|
|
|
error = xfs_imap(mp, tp, ino, &imap, imap_flags);
|
2008-03-06 13:43:34 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
|
2010-01-19 09:56:44 +00:00
|
|
|
error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
|
2008-03-06 13:43:34 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
|
|
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
|
|
|
|
*bpp = bp;
|
|
|
|
*offset = imap.im_boffset;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine is called to map an inode to the buffer containing
|
|
|
|
* the on-disk version of the inode. It returns a pointer to the
|
|
|
|
* buffer containing the on-disk inode in the bpp parameter, and in
|
|
|
|
* the dip parameter it returns a pointer to the on-disk inode within
|
|
|
|
* that buffer.
|
|
|
|
*
|
|
|
|
* If a non-zero error is returned, then the contents of bpp and
|
|
|
|
* dipp are undefined.
|
|
|
|
*
|
2008-11-28 14:23:40 +11:00
|
|
|
* The inode is expected to already been mapped to its buffer and read
|
|
|
|
* in once, thus we can use the mapping information stored in the inode
|
|
|
|
* rather than calling xfs_imap(). This allows us to avoid the overhead
|
|
|
|
* of looking at the inode btree for small block file systems
|
2008-11-28 14:23:41 +11:00
|
|
|
* (see xfs_imap()).
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_itobp(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t **dipp,
|
|
|
|
xfs_buf_t **bpp,
|
2008-03-06 13:43:42 +11:00
|
|
|
uint buf_flags)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
xfs_buf_t *bp;
|
|
|
|
int error;
|
|
|
|
|
2008-11-28 14:23:41 +11:00
|
|
|
ASSERT(ip->i_imap.im_blkno != 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-11-28 14:23:41 +11:00
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
|
2008-03-06 13:43:34 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
|
2008-03-06 13:43:42 +11:00
|
|
|
if (!bp) {
|
2010-01-19 09:56:44 +00:00
|
|
|
ASSERT(buf_flags & XBF_TRYLOCK);
|
2008-03-06 13:43:42 +11:00
|
|
|
ASSERT(tp == NULL);
|
|
|
|
*bpp = NULL;
|
|
|
|
return EAGAIN;
|
|
|
|
}
|
|
|
|
|
2008-11-28 14:23:41 +11:00
|
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
|
2005-04-16 15:20:36 -07:00
|
|
|
*bpp = bp;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Move inode type and inode format specific information from the
|
|
|
|
* on-disk inode to the in-core inode. For fifos, devs, and sockets
|
|
|
|
* this means set if_rdev to the proper value. For files, directories,
|
|
|
|
* and symlinks this means to bring in the in-line data or extent
|
|
|
|
* pointers. For a file in B-tree format, only the root is immediately
|
|
|
|
* brought in-core. The rest will be in-lined in if_extents when it
|
|
|
|
* is first referenced (see xfs_iread_extents()).
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_iformat(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t *dip)
|
|
|
|
{
|
|
|
|
xfs_attr_shortform_t *atp;
|
|
|
|
int size;
|
|
|
|
int error;
|
|
|
|
xfs_fsize_t di_size;
|
|
|
|
ip->i_df.if_ext_max =
|
|
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
error = 0;
|
|
|
|
|
2008-11-28 14:23:39 +11:00
|
|
|
if (unlikely(be32_to_cpu(dip->di_nextents) +
|
|
|
|
be16_to_cpu(dip->di_anextents) >
|
|
|
|
be64_to_cpu(dip->di_nblocks))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
2006-01-12 10:29:53 +11:00
|
|
|
"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long)ip->i_ino,
|
2008-11-28 14:23:39 +11:00
|
|
|
(int)(be32_to_cpu(dip->di_nextents) +
|
|
|
|
be16_to_cpu(dip->di_anextents)),
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long)
|
2008-11-28 14:23:39 +11:00
|
|
|
be64_to_cpu(dip->di_nblocks));
|
2005-04-16 15:20:36 -07:00
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2008-11-28 14:23:39 +11:00
|
|
|
if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long)ip->i_ino,
|
2008-11-28 14:23:39 +11:00
|
|
|
dip->di_forkoff);
|
2005-04-16 15:20:36 -07:00
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2009-08-10 11:32:18 -03:00
|
|
|
if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
|
|
|
|
!ip->i_mount->m_rtdev_targp)) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
2009-08-10 11:32:18 -03:00
|
|
|
"corrupt dinode %Lu, has realtime flag set.",
|
|
|
|
ip->i_ino);
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
|
|
|
|
XFS_ERRLEVEL_LOW, ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
|
|
|
case S_IFIFO:
|
|
|
|
case S_IFCHR:
|
|
|
|
case S_IFBLK:
|
|
|
|
case S_IFSOCK:
|
2008-11-28 14:23:39 +11:00
|
|
|
if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
ip->i_d.di_size = 0;
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
ip->i_size = 0;
|
2008-11-28 14:23:39 +11:00
|
|
|
ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
|
2005-04-16 15:20:36 -07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case S_IFREG:
|
|
|
|
case S_IFLNK:
|
|
|
|
case S_IFDIR:
|
2008-11-28 14:23:39 +11:00
|
|
|
switch (dip->di_format) {
|
2005-04-16 15:20:36 -07:00
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
|
|
/*
|
|
|
|
* no local regular files yet
|
|
|
|
*/
|
2011-07-26 02:31:30 -04:00
|
|
|
if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
|
|
|
"corrupt inode %Lu (local format for regular file).",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long) ip->i_ino);
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(4)",
|
|
|
|
XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2008-11-28 14:23:39 +11:00
|
|
|
di_size = be64_to_cpu(dip->di_size);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
|
|
|
"corrupt inode %Lu (bad size %Ld for local inode).",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long) ip->i_ino,
|
|
|
|
(long long) di_size);
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(5)",
|
|
|
|
XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
|
|
|
size = (int)di_size;
|
|
|
|
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
|
|
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
|
|
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
|
|
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
|
|
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
if (error) {
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
if (!XFS_DFORK_Q(dip))
|
|
|
|
return 0;
|
|
|
|
ASSERT(ip->i_afp == NULL);
|
2010-07-20 17:53:59 +10:00
|
|
|
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_afp->if_ext_max =
|
|
|
|
XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
2008-11-28 14:23:39 +11:00
|
|
|
switch (dip->di_aformat) {
|
2005-04-16 15:20:36 -07:00
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
|
|
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
|
2006-03-17 17:29:25 +11:00
|
|
|
size = be16_to_cpu(atp->hdr.totsize);
|
2009-01-19 02:04:16 +01:00
|
|
|
|
|
|
|
if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
|
|
|
"corrupt inode %Lu (bad attr fork size %Ld).",
|
2009-01-19 02:04:16 +01:00
|
|
|
(unsigned long long) ip->i_ino,
|
|
|
|
(long long) size);
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(8)",
|
|
|
|
XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
|
|
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
|
|
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
|
|
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
|
|
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error = XFS_ERROR(EFSCORRUPTED);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (error) {
|
|
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
|
|
|
ip->i_afp = NULL;
|
|
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
|
|
|
}
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The file is in-lined in the on-disk inode.
|
|
|
|
* If it fits into if_inline_data, then copy
|
|
|
|
* it there, otherwise allocate a buffer for it
|
|
|
|
* and copy the data there. Either way, set
|
|
|
|
* if_data to point at the data.
|
|
|
|
* If we allocate a buffer for the data, make
|
|
|
|
* sure that its size is a multiple of 4 and
|
|
|
|
* record the real size in i_real_bytes.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_iformat_local(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t *dip,
|
|
|
|
int whichfork,
|
|
|
|
int size)
|
|
|
|
{
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
int real_size;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the size is unreasonable, then something
|
|
|
|
* is wrong and we just bail out rather than crash in
|
|
|
|
* kmem_alloc() or memcpy() below.
|
|
|
|
*/
|
|
|
|
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount,
|
|
|
|
"corrupt inode %Lu (bad size %d for local fork, size = %d).",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long) ip->i_ino, size,
|
|
|
|
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
real_size = 0;
|
|
|
|
if (size == 0)
|
|
|
|
ifp->if_u1.if_data = NULL;
|
|
|
|
else if (size <= sizeof(ifp->if_u2.if_inline_data))
|
|
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
|
|
|
else {
|
|
|
|
real_size = roundup(size, 4);
|
2010-07-20 17:53:59 +10:00
|
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
ifp->if_bytes = size;
|
|
|
|
ifp->if_real_bytes = real_size;
|
|
|
|
if (size)
|
|
|
|
memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
|
|
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
|
|
|
ifp->if_flags |= XFS_IFINLINE;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The file consists of a set of extents all
|
|
|
|
* of which fit into the on-disk inode.
|
|
|
|
* If there are few enough extents to fit into
|
|
|
|
* the if_inline_ext, then copy them there.
|
|
|
|
* Otherwise allocate a buffer for them and copy
|
|
|
|
* them into it. Either way, set if_extents
|
|
|
|
* to point at the extents.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_iformat_extents(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t *dip,
|
|
|
|
int whichfork)
|
|
|
|
{
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_t *dp;
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
int nex;
|
|
|
|
int size;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
nex = XFS_DFORK_NEXTENTS(dip, whichfork);
|
|
|
|
size = nex * (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the number of extents is unreasonable, then something
|
|
|
|
* is wrong and we just bail out rather than crash in
|
|
|
|
* kmem_alloc() or memcpy() below.
|
|
|
|
*/
|
|
|
|
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long) ip->i_ino, nex);
|
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
ifp->if_real_bytes = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
if (nex == 0)
|
|
|
|
ifp->if_u1.if_extents = NULL;
|
|
|
|
else if (nex <= XFS_INLINE_EXTS)
|
|
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
2006-03-14 13:29:52 +11:00
|
|
|
else
|
|
|
|
xfs_iext_add(ifp, 0, nex);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_bytes = size;
|
|
|
|
if (size) {
|
|
|
|
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
|
2006-03-14 13:29:52 +11:00
|
|
|
for (i = 0; i < nex; i++, dp++) {
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
2008-08-13 16:29:21 +10:00
|
|
|
ep->l0 = get_unaligned_be64(&dp->l0);
|
|
|
|
ep->l1 = get_unaligned_be64(&dp->l1);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2007-07-11 11:09:47 +10:00
|
|
|
XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (whichfork != XFS_DATA_FORK ||
|
|
|
|
XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
|
|
|
|
if (unlikely(xfs_check_nostate_extents(
|
2006-03-14 13:29:52 +11:00
|
|
|
ifp, 0, nex))) {
|
2005-04-16 15:20:36 -07:00
|
|
|
XFS_ERROR_REPORT("xfs_iformat_extents(2)",
|
|
|
|
XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The file has too many extents to fit into
|
|
|
|
* the inode, so they are in B-tree format.
|
|
|
|
* Allocate a buffer for the root of the B-tree
|
|
|
|
* and copy the root into it. The i_extents
|
|
|
|
* field will remain NULL until all of the
|
|
|
|
* extents are read in (when they are needed).
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_iformat_btree(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t *dip,
|
|
|
|
int whichfork)
|
|
|
|
{
|
|
|
|
xfs_bmdr_block_t *dfp;
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
/* REFERENCED */
|
|
|
|
int nrecs;
|
|
|
|
int size;
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
|
|
|
|
size = XFS_BMAP_BROOT_SPACE(dfp);
|
2008-10-30 17:11:19 +11:00
|
|
|
nrecs = be16_to_cpu(dfp->bb_numrecs);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* blow out if -- fork has less extents than can fit in
|
|
|
|
* fork (fork shouldn't be a btree format), root btree
|
|
|
|
* block has more records than can fit into the fork,
|
|
|
|
* or the number of extents is greater than the number of
|
|
|
|
* blocks.
|
|
|
|
*/
|
|
|
|
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
|
|
|
|
|| XFS_BMDR_SPACE_CALC(nrecs) >
|
|
|
|
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
|
|
|
|
|| XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
|
2011-03-07 10:03:35 +11:00
|
|
|
xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
|
2005-04-16 15:20:36 -07:00
|
|
|
(unsigned long long) ip->i_ino);
|
2011-03-07 10:03:35 +11:00
|
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount, dip);
|
2005-04-16 15:20:36 -07:00
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp->if_broot_bytes = size;
|
2010-07-20 17:53:59 +10:00
|
|
|
ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ifp->if_broot != NULL);
|
|
|
|
/*
|
|
|
|
* Copy and convert from the on-disk structure
|
|
|
|
* to the in-memory structure.
|
|
|
|
*/
|
2008-10-30 17:11:19 +11:00
|
|
|
xfs_bmdr_to_bmbt(ip->i_mount, dfp,
|
|
|
|
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
|
|
|
|
ifp->if_broot, size);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
|
|
|
ifp->if_flags |= XFS_IFBROOT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-07-02 00:09:33 -05:00
|
|
|
STATIC void
|
2007-08-28 13:57:51 +10:00
|
|
|
xfs_dinode_from_disk(
|
|
|
|
xfs_icdinode_t *to,
|
2008-11-28 14:23:39 +11:00
|
|
|
xfs_dinode_t *from)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2007-08-28 13:57:51 +10:00
|
|
|
to->di_magic = be16_to_cpu(from->di_magic);
|
|
|
|
to->di_mode = be16_to_cpu(from->di_mode);
|
|
|
|
to->di_version = from ->di_version;
|
|
|
|
to->di_format = from->di_format;
|
|
|
|
to->di_onlink = be16_to_cpu(from->di_onlink);
|
|
|
|
to->di_uid = be32_to_cpu(from->di_uid);
|
|
|
|
to->di_gid = be32_to_cpu(from->di_gid);
|
|
|
|
to->di_nlink = be32_to_cpu(from->di_nlink);
|
2010-09-26 06:10:18 +00:00
|
|
|
to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
|
|
|
|
to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
|
2007-08-28 13:57:51 +10:00
|
|
|
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
|
|
|
|
to->di_flushiter = be16_to_cpu(from->di_flushiter);
|
|
|
|
to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
|
|
|
|
to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
|
|
|
|
to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
|
|
|
|
to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
|
|
|
|
to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
|
|
|
|
to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
|
|
|
|
to->di_size = be64_to_cpu(from->di_size);
|
|
|
|
to->di_nblocks = be64_to_cpu(from->di_nblocks);
|
|
|
|
to->di_extsize = be32_to_cpu(from->di_extsize);
|
|
|
|
to->di_nextents = be32_to_cpu(from->di_nextents);
|
|
|
|
to->di_anextents = be16_to_cpu(from->di_anextents);
|
|
|
|
to->di_forkoff = from->di_forkoff;
|
|
|
|
to->di_aformat = from->di_aformat;
|
|
|
|
to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
|
|
|
|
to->di_dmstate = be16_to_cpu(from->di_dmstate);
|
|
|
|
to->di_flags = be16_to_cpu(from->di_flags);
|
|
|
|
to->di_gen = be32_to_cpu(from->di_gen);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
xfs_dinode_to_disk(
|
2008-11-28 14:23:39 +11:00
|
|
|
xfs_dinode_t *to,
|
2007-08-28 13:57:51 +10:00
|
|
|
xfs_icdinode_t *from)
|
|
|
|
{
|
|
|
|
to->di_magic = cpu_to_be16(from->di_magic);
|
|
|
|
to->di_mode = cpu_to_be16(from->di_mode);
|
|
|
|
to->di_version = from ->di_version;
|
|
|
|
to->di_format = from->di_format;
|
|
|
|
to->di_onlink = cpu_to_be16(from->di_onlink);
|
|
|
|
to->di_uid = cpu_to_be32(from->di_uid);
|
|
|
|
to->di_gid = cpu_to_be32(from->di_gid);
|
|
|
|
to->di_nlink = cpu_to_be32(from->di_nlink);
|
2010-09-26 06:10:18 +00:00
|
|
|
to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
|
|
|
|
to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
|
2007-08-28 13:57:51 +10:00
|
|
|
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
|
|
|
|
to->di_flushiter = cpu_to_be16(from->di_flushiter);
|
|
|
|
to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
|
|
|
|
to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
|
|
|
|
to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
|
|
|
|
to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
|
|
|
|
to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
|
|
|
|
to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
|
|
|
|
to->di_size = cpu_to_be64(from->di_size);
|
|
|
|
to->di_nblocks = cpu_to_be64(from->di_nblocks);
|
|
|
|
to->di_extsize = cpu_to_be32(from->di_extsize);
|
|
|
|
to->di_nextents = cpu_to_be32(from->di_nextents);
|
|
|
|
to->di_anextents = cpu_to_be16(from->di_anextents);
|
|
|
|
to->di_forkoff = from->di_forkoff;
|
|
|
|
to->di_aformat = from->di_aformat;
|
|
|
|
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
|
|
|
|
to->di_dmstate = cpu_to_be16(from->di_dmstate);
|
|
|
|
to->di_flags = cpu_to_be16(from->di_flags);
|
|
|
|
to->di_gen = cpu_to_be32(from->di_gen);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
STATIC uint
|
|
|
|
_xfs_dic2xflags(
|
|
|
|
__uint16_t di_flags)
|
|
|
|
{
|
|
|
|
uint flags = 0;
|
|
|
|
|
|
|
|
if (di_flags & XFS_DIFLAG_ANY) {
|
|
|
|
if (di_flags & XFS_DIFLAG_REALTIME)
|
|
|
|
flags |= XFS_XFLAG_REALTIME;
|
|
|
|
if (di_flags & XFS_DIFLAG_PREALLOC)
|
|
|
|
flags |= XFS_XFLAG_PREALLOC;
|
|
|
|
if (di_flags & XFS_DIFLAG_IMMUTABLE)
|
|
|
|
flags |= XFS_XFLAG_IMMUTABLE;
|
|
|
|
if (di_flags & XFS_DIFLAG_APPEND)
|
|
|
|
flags |= XFS_XFLAG_APPEND;
|
|
|
|
if (di_flags & XFS_DIFLAG_SYNC)
|
|
|
|
flags |= XFS_XFLAG_SYNC;
|
|
|
|
if (di_flags & XFS_DIFLAG_NOATIME)
|
|
|
|
flags |= XFS_XFLAG_NOATIME;
|
|
|
|
if (di_flags & XFS_DIFLAG_NODUMP)
|
|
|
|
flags |= XFS_XFLAG_NODUMP;
|
|
|
|
if (di_flags & XFS_DIFLAG_RTINHERIT)
|
|
|
|
flags |= XFS_XFLAG_RTINHERIT;
|
|
|
|
if (di_flags & XFS_DIFLAG_PROJINHERIT)
|
|
|
|
flags |= XFS_XFLAG_PROJINHERIT;
|
|
|
|
if (di_flags & XFS_DIFLAG_NOSYMLINKS)
|
|
|
|
flags |= XFS_XFLAG_NOSYMLINKS;
|
2006-01-11 15:28:28 +11:00
|
|
|
if (di_flags & XFS_DIFLAG_EXTSIZE)
|
|
|
|
flags |= XFS_XFLAG_EXTSIZE;
|
|
|
|
if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
|
|
|
|
flags |= XFS_XFLAG_EXTSZINHERIT;
|
2006-06-09 14:54:19 +10:00
|
|
|
if (di_flags & XFS_DIFLAG_NODEFRAG)
|
|
|
|
flags |= XFS_XFLAG_NODEFRAG;
|
2007-07-11 11:09:12 +10:00
|
|
|
if (di_flags & XFS_DIFLAG_FILESTREAM)
|
|
|
|
flags |= XFS_XFLAG_FILESTREAM;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint
|
|
|
|
xfs_ip2xflags(
|
|
|
|
xfs_inode_t *ip)
|
|
|
|
{
|
2007-08-28 13:57:51 +10:00
|
|
|
xfs_icdinode_t *dic = &ip->i_d;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2006-06-09 17:12:17 +10:00
|
|
|
return _xfs_dic2xflags(dic->di_flags) |
|
2007-12-07 14:07:20 +11:00
|
|
|
(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
uint
|
|
|
|
xfs_dic2xflags(
|
2007-12-07 14:07:20 +11:00
|
|
|
xfs_dinode_t *dip)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-11-28 14:23:39 +11:00
|
|
|
return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
|
2007-12-07 14:07:20 +11:00
|
|
|
(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2008-10-30 16:11:59 +11:00
|
|
|
/*
|
2008-11-28 14:23:42 +11:00
|
|
|
* Read the disk inode attributes into the in-core inode structure.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_iread(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_trans_t *tp,
|
2008-11-28 14:23:42 +11:00
|
|
|
xfs_inode_t *ip,
|
|
|
|
uint iget_flags)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
xfs_buf_t *bp;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
2008-11-28 14:23:41 +11:00
|
|
|
* Fill in the location information in the in-core inode.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2008-11-28 14:23:42 +11:00
|
|
|
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
|
2008-11-28 14:23:40 +11:00
|
|
|
if (error)
|
2008-11-28 14:23:42 +11:00
|
|
|
return error;
|
2008-11-28 14:23:40 +11:00
|
|
|
|
|
|
|
/*
|
2008-11-28 14:23:41 +11:00
|
|
|
* Get pointers to the on-disk inode and the buffer containing it.
|
2008-11-28 14:23:40 +11:00
|
|
|
*/
|
2008-11-28 14:23:41 +11:00
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
|
2010-01-19 09:56:44 +00:00
|
|
|
XBF_LOCK, iget_flags);
|
2008-10-30 18:26:04 +11:00
|
|
|
if (error)
|
2008-11-28 14:23:42 +11:00
|
|
|
return error;
|
2008-11-28 14:23:41 +11:00
|
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If we got something that isn't an inode it means someone
|
|
|
|
* (nfs or dmi) has a stale handle.
|
|
|
|
*/
|
2011-07-08 14:36:05 +02:00
|
|
|
if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
#ifdef DEBUG
|
2011-03-07 10:05:35 +11:00
|
|
|
xfs_alert(mp,
|
|
|
|
"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
|
|
|
|
__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
|
2005-04-16 15:20:36 -07:00
|
|
|
#endif /* DEBUG */
|
2008-10-30 18:26:04 +11:00
|
|
|
error = XFS_ERROR(EINVAL);
|
|
|
|
goto out_brelse;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the on-disk inode is already linked to a directory
|
|
|
|
* entry, copy all of the inode into the in-core inode.
|
|
|
|
* xfs_iformat() handles copying in the inode format
|
|
|
|
* specific information.
|
|
|
|
* Otherwise, just get the truly permanent information.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
if (dip->di_mode) {
|
|
|
|
xfs_dinode_from_disk(&ip->i_d, dip);
|
2005-04-16 15:20:36 -07:00
|
|
|
error = xfs_iformat(ip, dip);
|
|
|
|
if (error) {
|
|
|
|
#ifdef DEBUG
|
2011-03-07 10:05:35 +11:00
|
|
|
xfs_alert(mp, "%s: xfs_iformat() returned error %d",
|
|
|
|
__func__, error);
|
2005-04-16 15:20:36 -07:00
|
|
|
#endif /* DEBUG */
|
2008-10-30 18:26:04 +11:00
|
|
|
goto out_brelse;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
} else {
|
2008-11-28 14:23:39 +11:00
|
|
|
ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
|
|
|
|
ip->i_d.di_version = dip->di_version;
|
|
|
|
ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
|
|
|
|
ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Make sure to pull in the mode here as well in
|
|
|
|
* case the inode is released without being used.
|
|
|
|
* This ensures that xfs_inactive() will see that
|
|
|
|
* the inode is already free and not try to mess
|
|
|
|
* with the uninitialized part of it.
|
|
|
|
*/
|
|
|
|
ip->i_d.di_mode = 0;
|
|
|
|
/*
|
|
|
|
* Initialize the per-fork minima and maxima for a new
|
|
|
|
* inode here. xfs_iformat will do it for old inodes.
|
|
|
|
*/
|
|
|
|
ip->i_df.if_ext_max =
|
|
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The inode format changed when we moved the link count and
|
|
|
|
* made it 32 bits long. If this is an old format inode,
|
|
|
|
* convert it in memory to look like a new one. If it gets
|
|
|
|
* flushed to disk we will convert back before flushing or
|
|
|
|
* logging it. We zero out the new projid field and the old link
|
|
|
|
* count field. We'll handle clearing the pad field (the remains
|
|
|
|
* of the old uuid field) when we actually convert the inode to
|
|
|
|
* the new format. We don't change the version number so that we
|
|
|
|
* can distinguish this from a real new format inode.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
if (ip->i_d.di_version == 1) {
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_nlink = ip->i_d.di_onlink;
|
|
|
|
ip->i_d.di_onlink = 0;
|
2010-09-26 06:10:18 +00:00
|
|
|
xfs_set_projid(ip, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
ip->i_delayed_blks = 0;
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
ip->i_size = ip->i_d.di_size;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the buffer containing the inode as something to keep
|
|
|
|
* around for a while. This helps to keep recently accessed
|
|
|
|
* meta-data in-core longer.
|
|
|
|
*/
|
2010-12-02 16:31:13 +11:00
|
|
|
xfs_buf_set_ref(bp, XFS_INO_REF);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Use xfs_trans_brelse() to release the buffer containing the
|
|
|
|
* on-disk inode, because it was acquired with xfs_trans_read_buf()
|
|
|
|
* in xfs_itobp() above. If tp is NULL, this is just a normal
|
|
|
|
* brelse(). If we're within a transaction, then xfs_trans_brelse()
|
|
|
|
* will only release the buffer if it is not dirty within the
|
|
|
|
* transaction. It will be OK to release the buffer in this case,
|
|
|
|
* because inodes on disk are never destroyed and we will be
|
|
|
|
* locking the new in-core inode before putting it in the hash
|
|
|
|
* table where other processes can find it. Thus we don't have
|
|
|
|
* to worry about the inode being changed just because we released
|
|
|
|
* the buffer.
|
|
|
|
*/
|
2008-10-30 18:26:04 +11:00
|
|
|
out_brelse:
|
|
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
return error;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read in extents from a btree-format inode.
|
|
|
|
* Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_iread_extents(
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
int whichfork)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
xfs_ifork_t *ifp;
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_extnum_t nextents;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
|
|
|
|
XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
|
|
|
|
ip->i_mount);
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
2006-03-14 13:29:52 +11:00
|
|
|
nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2006-03-14 13:29:52 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* We know that the size is valid (it's checked in iformat_btree)
|
|
|
|
*/
|
2006-03-14 13:29:52 +11:00
|
|
|
ifp->if_bytes = ifp->if_real_bytes = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_iext_add(ifp, 0, nextents);
|
2005-04-16 15:20:36 -07:00
|
|
|
error = xfs_bmap_read_extents(tp, ip, whichfork);
|
|
|
|
if (error) {
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_iext_destroy(ifp);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
|
|
|
return error;
|
|
|
|
}
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
|
2005-04-16 15:20:36 -07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate an inode on disk and return a copy of its in-core version.
|
|
|
|
* The in-core inode is locked exclusively. Set mode, nlink, and rdev
|
|
|
|
* appropriately within the inode. The uid and gid for the inode are
|
|
|
|
* set according to the contents of the given cred structure.
|
|
|
|
*
|
|
|
|
* Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
|
|
|
|
* has a free inode available, call xfs_iget()
|
|
|
|
* to obtain the in-core version of the allocated inode. Finally,
|
|
|
|
* fill in the inode and log its initial contents. In this case,
|
|
|
|
* ialloc_context would be set to NULL and call_again set to false.
|
|
|
|
*
|
|
|
|
* If xfs_dialloc() does not have an available inode,
|
|
|
|
* it will replenish its supply by doing an allocation. Since we can
|
|
|
|
* only do one allocation within a transaction without deadlocks, we
|
|
|
|
* must commit the current transaction before returning the inode itself.
|
|
|
|
* In this case, therefore, we will set call_again to true and return.
|
|
|
|
* The caller should then commit the current transaction, start a new
|
|
|
|
* transaction, and call xfs_ialloc() again to actually get the inode.
|
|
|
|
*
|
|
|
|
* To ensure that some other process does not grab the inode that
|
|
|
|
* was allocated during the first call to xfs_ialloc(), this routine
|
|
|
|
* also returns the [locked] bp pointing to the head of the freelist
|
|
|
|
* as ialloc_context. The caller should hold this buffer across
|
|
|
|
* the commit and pass it back into this routine on the second call.
|
2007-07-11 11:09:33 +10:00
|
|
|
*
|
|
|
|
* If we are allocating quota inodes, we do not have a parent inode
|
|
|
|
* to attach to or associate with (i.e. pip == NULL) because they
|
|
|
|
* are not linked into the directory structure - they are attached
|
|
|
|
* directly to the superblock - and so have no parent.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_ialloc(
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *pip,
|
|
|
|
mode_t mode,
|
2005-05-05 13:25:00 -07:00
|
|
|
xfs_nlink_t nlink,
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_dev_t rdev,
|
2010-09-26 06:10:18 +00:00
|
|
|
prid_t prid,
|
2005-04-16 15:20:36 -07:00
|
|
|
int okalloc,
|
|
|
|
xfs_buf_t **ialloc_context,
|
|
|
|
boolean_t *call_again,
|
|
|
|
xfs_inode_t **ipp)
|
|
|
|
{
|
|
|
|
xfs_ino_t ino;
|
|
|
|
xfs_inode_t *ip;
|
|
|
|
uint flags;
|
|
|
|
int error;
|
2008-08-13 16:44:15 +10:00
|
|
|
timespec_t tv;
|
2008-10-30 17:36:14 +11:00
|
|
|
int filestreams = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Call the space management code to pick
|
|
|
|
* the on-disk inode to be allocated.
|
|
|
|
*/
|
2007-07-11 11:09:33 +10:00
|
|
|
error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
|
2005-04-16 15:20:36 -07:00
|
|
|
ialloc_context, call_again, &ino);
|
2008-10-30 17:36:14 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
if (*call_again || ino == NULLFSINO) {
|
|
|
|
*ipp = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
ASSERT(*ialloc_context == NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the in-core inode with the lock held exclusively.
|
|
|
|
* This is because we're setting fields here we need
|
|
|
|
* to prevent others from looking at until we're done.
|
|
|
|
*/
|
2011-02-13 13:26:42 +00:00
|
|
|
error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
|
|
|
|
XFS_ILOCK_EXCL, &ip);
|
2008-10-30 17:36:14 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
ASSERT(ip != NULL);
|
|
|
|
|
|
|
|
ip->i_d.di_mode = (__uint16_t)mode;
|
|
|
|
ip->i_d.di_onlink = 0;
|
|
|
|
ip->i_d.di_nlink = nlink;
|
|
|
|
ASSERT(ip->i_d.di_nlink == nlink);
|
2008-08-13 16:20:04 +01:00
|
|
|
ip->i_d.di_uid = current_fsuid();
|
|
|
|
ip->i_d.di_gid = current_fsgid();
|
2010-09-26 06:10:18 +00:00
|
|
|
xfs_set_projid(ip, prid);
|
2005-04-16 15:20:36 -07:00
|
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the superblock version is up to where we support new format
|
|
|
|
* inodes and this is currently an old format inode, then change
|
|
|
|
* the inode version number now. This way we only do the conversion
|
|
|
|
* here rather than here and in the flush/logging code.
|
|
|
|
*/
|
2008-03-06 13:44:28 +11:00
|
|
|
if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
|
2008-11-28 14:23:39 +11:00
|
|
|
ip->i_d.di_version == 1) {
|
|
|
|
ip->i_d.di_version = 2;
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* We've already zeroed the old link count, the projid field,
|
|
|
|
* and the pad field.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Project ids won't be stored on disk if we are using a version 1 inode.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
if ((prid != 0) && (ip->i_d.di_version == 1))
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_bump_ino_vers2(tp, ip);
|
|
|
|
|
2007-08-30 17:21:12 +10:00
|
|
|
if (pip && XFS_INHERIT_GID(pip)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_gid = pip->i_d.di_gid;
|
2011-07-26 02:31:30 -04:00
|
|
|
if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_mode |= S_ISGID;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the group ID of the new file does not match the effective group
|
|
|
|
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
|
|
|
|
* (and only if the irix_sgid_inherit compatibility variable is set).
|
|
|
|
*/
|
|
|
|
if ((irix_sgid_inherit) &&
|
|
|
|
(ip->i_d.di_mode & S_ISGID) &&
|
|
|
|
(!in_group_p((gid_t)ip->i_d.di_gid))) {
|
|
|
|
ip->i_d.di_mode &= ~S_ISGID;
|
|
|
|
}
|
|
|
|
|
|
|
|
ip->i_d.di_size = 0;
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
ip->i_size = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_nextents = 0;
|
|
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
2008-08-13 16:44:15 +10:00
|
|
|
|
|
|
|
nanotime(&tv);
|
|
|
|
ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
|
|
|
|
ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
|
|
|
|
ip->i_d.di_atime = ip->i_d.di_mtime;
|
|
|
|
ip->i_d.di_ctime = ip->i_d.di_mtime;
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* di_gen will have been taken care of in xfs_iread.
|
|
|
|
*/
|
|
|
|
ip->i_d.di_extsize = 0;
|
|
|
|
ip->i_d.di_dmevmask = 0;
|
|
|
|
ip->i_d.di_dmstate = 0;
|
|
|
|
ip->i_d.di_flags = 0;
|
|
|
|
flags = XFS_ILOG_CORE;
|
|
|
|
switch (mode & S_IFMT) {
|
|
|
|
case S_IFIFO:
|
|
|
|
case S_IFCHR:
|
|
|
|
case S_IFBLK:
|
|
|
|
case S_IFSOCK:
|
|
|
|
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
|
|
|
|
ip->i_df.if_u2.if_rdev = rdev;
|
|
|
|
ip->i_df.if_flags = 0;
|
|
|
|
flags |= XFS_ILOG_DEV;
|
|
|
|
break;
|
|
|
|
case S_IFREG:
|
2008-10-30 17:36:14 +11:00
|
|
|
/*
|
|
|
|
* we can't set up filestreams until after the VFS inode
|
|
|
|
* is set up properly.
|
|
|
|
*/
|
|
|
|
if (pip && xfs_inode_is_filestream(pip))
|
|
|
|
filestreams = 1;
|
2007-07-11 11:09:12 +10:00
|
|
|
/* fall through */
|
2005-04-16 15:20:36 -07:00
|
|
|
case S_IFDIR:
|
2007-07-11 11:09:33 +10:00
|
|
|
if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
|
2005-06-21 15:39:12 +10:00
|
|
|
uint di_flags = 0;
|
|
|
|
|
2011-07-26 02:31:30 -04:00
|
|
|
if (S_ISDIR(mode)) {
|
2005-06-21 15:39:12 +10:00
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
|
|
|
|
di_flags |= XFS_DIFLAG_RTINHERIT;
|
2006-01-11 15:28:28 +11:00
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
|
|
di_flags |= XFS_DIFLAG_EXTSZINHERIT;
|
|
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
|
|
|
}
|
2011-07-26 02:31:30 -04:00
|
|
|
} else if (S_ISREG(mode)) {
|
2007-10-11 17:44:08 +10:00
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
|
2005-06-21 15:39:12 +10:00
|
|
|
di_flags |= XFS_DIFLAG_REALTIME;
|
2006-01-11 15:28:28 +11:00
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
|
|
di_flags |= XFS_DIFLAG_EXTSIZE;
|
|
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
|
|
|
|
xfs_inherit_noatime)
|
2005-06-21 15:39:12 +10:00
|
|
|
di_flags |= XFS_DIFLAG_NOATIME;
|
2005-04-16 15:20:36 -07:00
|
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
|
|
|
|
xfs_inherit_nodump)
|
2005-06-21 15:39:12 +10:00
|
|
|
di_flags |= XFS_DIFLAG_NODUMP;
|
2005-04-16 15:20:36 -07:00
|
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
|
|
|
|
xfs_inherit_sync)
|
2005-06-21 15:39:12 +10:00
|
|
|
di_flags |= XFS_DIFLAG_SYNC;
|
2005-04-16 15:20:36 -07:00
|
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
|
|
|
|
xfs_inherit_nosymlinks)
|
2005-06-21 15:39:12 +10:00
|
|
|
di_flags |= XFS_DIFLAG_NOSYMLINKS;
|
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
|
|
|
|
di_flags |= XFS_DIFLAG_PROJINHERIT;
|
2006-06-09 14:54:19 +10:00
|
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
|
|
|
|
xfs_inherit_nodefrag)
|
|
|
|
di_flags |= XFS_DIFLAG_NODEFRAG;
|
2007-07-11 11:09:12 +10:00
|
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
|
|
|
|
di_flags |= XFS_DIFLAG_FILESTREAM;
|
2005-06-21 15:39:12 +10:00
|
|
|
ip->i_d.di_flags |= di_flags;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case S_IFLNK:
|
|
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
ip->i_df.if_flags = XFS_IFEXTENTS;
|
|
|
|
ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
|
|
|
|
ip->i_df.if_u1.if_extents = NULL;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ASSERT(0);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Attribute fork settings for new inode.
|
|
|
|
*/
|
|
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
ip->i_d.di_anextents = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Log the new values stuffed into the inode.
|
|
|
|
*/
|
2011-02-13 13:26:42 +00:00
|
|
|
xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_trans_log_inode(tp, ip, flags);
|
|
|
|
|
2006-06-09 16:48:30 +10:00
|
|
|
/* now that we have an i_mode we can setup inode ops and unlock */
|
2008-08-13 16:23:13 +10:00
|
|
|
xfs_setup_inode(ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-10-30 17:36:14 +11:00
|
|
|
/* now we have set up the vfs inode we can associate the filestream */
|
|
|
|
if (filestreams) {
|
|
|
|
error = xfs_filestream_associate(pip, ip);
|
|
|
|
if (error < 0)
|
|
|
|
return -error;
|
|
|
|
if (!error)
|
|
|
|
xfs_iflags_set(ip, XFS_IFILESTREAM);
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
*ipp = ip;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to make sure that there are no blocks allocated to the
|
|
|
|
* file beyond the size of the file. We don't check this for
|
|
|
|
* files with fixed size extents or real time extents, but we
|
|
|
|
* at least do it for regular files.
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
2011-07-08 14:34:34 +02:00
|
|
|
STATIC void
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_isize_check(
|
2011-07-08 14:34:34 +02:00
|
|
|
struct xfs_inode *ip,
|
|
|
|
xfs_fsize_t isize)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2011-07-08 14:34:34 +02:00
|
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
xfs_fileoff_t map_first;
|
|
|
|
int nimaps;
|
|
|
|
xfs_bmbt_irec_t imaps[2];
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-07-26 02:31:30 -04:00
|
|
|
if (!S_ISREG(ip->i_d.di_mode))
|
2005-04-16 15:20:36 -07:00
|
|
|
return;
|
|
|
|
|
2007-11-23 16:29:42 +11:00
|
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
|
2005-04-16 15:20:36 -07:00
|
|
|
return;
|
|
|
|
|
|
|
|
nimaps = 2;
|
|
|
|
map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
|
|
|
|
/*
|
|
|
|
* The filesystem could be shutting down, so bmapi may return
|
|
|
|
* an error.
|
|
|
|
*/
|
|
|
|
if (xfs_bmapi(NULL, ip, map_first,
|
|
|
|
(XFS_B_TO_FSB(mp,
|
|
|
|
(xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
|
|
|
|
map_first),
|
|
|
|
XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
|
2010-06-23 18:11:15 +10:00
|
|
|
NULL))
|
2005-04-16 15:20:36 -07:00
|
|
|
return;
|
|
|
|
ASSERT(nimaps == 1);
|
|
|
|
ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
|
|
|
|
}
|
2011-07-08 14:34:34 +02:00
|
|
|
#else /* DEBUG */
|
|
|
|
#define xfs_isize_check(ip, isize)
|
2005-04-16 15:20:36 -07:00
|
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
/*
|
2011-07-08 14:34:34 +02:00
|
|
|
* Free up the underlying blocks past new_size. The new size must be smaller
|
|
|
|
* than the current size. This routine can be used both for the attribute and
|
|
|
|
* data fork, and does not modify the inode size, which is left to the caller.
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
2008-04-17 16:50:04 +10:00
|
|
|
* The transaction passed to this routine must have made a permanent log
|
|
|
|
* reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
|
|
|
|
* given transaction and start new ones, so make sure everything involved in
|
|
|
|
* the transaction is tidy before calling here. Some transaction will be
|
|
|
|
* returned to the caller to be committed. The incoming transaction must
|
|
|
|
* already include the inode, and both inode locks must be held exclusively.
|
|
|
|
* The inode must also be "held" within the transaction. On return the inode
|
|
|
|
* will be "held" within the returned transaction. This routine does NOT
|
|
|
|
* require any disk space to be reserved for it within the transaction.
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
2008-04-17 16:50:04 +10:00
|
|
|
* If we get an error, we must return with the inode locked and linked into the
|
|
|
|
* current transaction. This keeps things simple for the higher level code,
|
|
|
|
* because it always knows that the inode is locked and held in the transaction
|
|
|
|
* that returns to it whether errors occur or not. We don't mark the inode
|
|
|
|
* dirty on error so that transactions can be easily aborted if possible.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
int
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_itruncate_extents(
|
|
|
|
struct xfs_trans **tpp,
|
|
|
|
struct xfs_inode *ip,
|
|
|
|
int whichfork,
|
|
|
|
xfs_fsize_t new_size)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2011-07-08 14:34:34 +02:00
|
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
struct xfs_trans *tp = *tpp;
|
|
|
|
struct xfs_trans *ntp;
|
|
|
|
xfs_bmap_free_t free_list;
|
|
|
|
xfs_fsblock_t first_block;
|
|
|
|
xfs_fileoff_t first_unmap_block;
|
|
|
|
xfs_fileoff_t last_block;
|
|
|
|
xfs_filblks_t unmap_len;
|
|
|
|
int committed;
|
|
|
|
int error = 0;
|
|
|
|
int done = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
|
2011-07-08 14:34:34 +02:00
|
|
|
ASSERT(new_size <= ip->i_size);
|
|
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ip->i_itemp != NULL);
|
2010-06-24 11:36:58 +10:00
|
|
|
ASSERT(ip->i_itemp->ili_lock_flags == 0);
|
2011-07-08 14:34:34 +02:00
|
|
|
ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Since it is possible for space to become allocated beyond
|
|
|
|
* the end of the file (in a crash where the space is allocated
|
|
|
|
* but the inode size is not yet updated), simply remove any
|
|
|
|
* blocks which show up between the new EOF and the maximum
|
|
|
|
* possible file size. If the first block to be removed is
|
|
|
|
* beyond the maximum file size (ie it is the same as last_block),
|
|
|
|
* then there is nothing to do.
|
|
|
|
*/
|
2011-07-08 14:34:34 +02:00
|
|
|
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
2005-04-16 15:20:36 -07:00
|
|
|
last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
|
2011-07-08 14:34:34 +02:00
|
|
|
if (first_unmap_block == last_block)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ASSERT(first_unmap_block < last_block);
|
|
|
|
unmap_len = last_block - first_unmap_block + 1;
|
2005-04-16 15:20:36 -07:00
|
|
|
while (!done) {
|
2009-01-14 23:22:07 -06:00
|
|
|
xfs_bmap_init(&free_list, &first_block);
|
2011-07-08 14:34:34 +02:00
|
|
|
error = xfs_bunmapi(tp, ip,
|
2006-06-09 14:48:12 +10:00
|
|
|
first_unmap_block, unmap_len,
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_bmapi_aflag(whichfork),
|
2005-04-16 15:20:36 -07:00
|
|
|
XFS_ITRUNC_MAX_EXTENTS,
|
2006-06-09 14:48:12 +10:00
|
|
|
&first_block, &free_list,
|
2010-06-23 18:11:15 +10:00
|
|
|
&done);
|
2011-07-08 14:34:34 +02:00
|
|
|
if (error)
|
|
|
|
goto out_bmap_cancel;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Duplicate the transaction that has the permanent
|
|
|
|
* reservation and commit the old transaction.
|
|
|
|
*/
|
2011-07-08 14:34:34 +02:00
|
|
|
error = xfs_bmap_finish(&tp, &free_list, &committed);
|
2010-06-24 11:36:58 +10:00
|
|
|
if (committed)
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_trans_ijoin(tp, ip);
|
|
|
|
if (error)
|
|
|
|
goto out_bmap_cancel;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
if (committed) {
|
|
|
|
/*
|
2008-04-17 16:50:04 +10:00
|
|
|
* Mark the inode dirty so it will be logged and
|
2008-04-10 12:21:18 +10:00
|
|
|
* moved forward in the log as part of every commit.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2008-04-17 16:50:04 +10:00
|
|
|
|
2011-07-08 14:34:34 +02:00
|
|
|
ntp = xfs_trans_dup(tp);
|
|
|
|
error = xfs_trans_commit(tp, 0);
|
|
|
|
tp = ntp;
|
2008-04-10 12:21:18 +10:00
|
|
|
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_trans_ijoin(tp, ip);
|
2008-04-17 16:50:04 +10:00
|
|
|
|
2008-11-17 17:37:10 +11:00
|
|
|
if (error)
|
2011-07-08 14:34:34 +02:00
|
|
|
goto out;
|
|
|
|
|
2008-11-17 17:37:10 +11:00
|
|
|
/*
|
2011-07-08 14:34:34 +02:00
|
|
|
* Transaction commit worked ok so we can drop the extra ticket
|
2008-11-17 17:37:10 +11:00
|
|
|
* reference that we gained in xfs_trans_dup()
|
|
|
|
*/
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_log_ticket_put(tp->t_ticket);
|
|
|
|
error = xfs_trans_reserve(tp, 0,
|
2008-04-17 16:50:04 +10:00
|
|
|
XFS_ITRUNCATE_LOG_RES(mp), 0,
|
|
|
|
XFS_TRANS_PERM_LOG_RES,
|
|
|
|
XFS_ITRUNCATE_LOG_COUNT);
|
|
|
|
if (error)
|
2011-07-08 14:34:34 +02:00
|
|
|
goto out;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2011-07-08 14:34:34 +02:00
|
|
|
|
|
|
|
out:
|
|
|
|
*tpp = tp;
|
|
|
|
return error;
|
|
|
|
out_bmap_cancel:
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
2011-07-08 14:34:34 +02:00
|
|
|
* If the bunmapi call encounters an error, return to the caller where
|
|
|
|
* the transaction can be properly aborted. We just need to make sure
|
|
|
|
* we're not holding any resources that we were not when we came in.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_bmap_cancel(&free_list);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_itruncate_data(
|
|
|
|
struct xfs_trans **tpp,
|
|
|
|
struct xfs_inode *ip,
|
|
|
|
xfs_fsize_t new_size)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
trace_xfs_itruncate_data_start(ip, new_size);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The first thing we do is set the size to new_size permanently on
|
|
|
|
* disk. This way we don't have to worry about anyone ever being able
|
|
|
|
* to look at the data being freed even in the face of a crash.
|
|
|
|
* What we're getting around here is the case where we free a block, it
|
|
|
|
* is allocated to another file, it is written to, and then we crash.
|
|
|
|
* If the new data gets written to the file but the log buffers
|
|
|
|
* containing the free and reallocation don't, then we'd end up with
|
|
|
|
* garbage in the blocks being freed. As long as we make the new_size
|
|
|
|
* permanent before actually freeing any blocks it doesn't matter if
|
|
|
|
* they get written to.
|
|
|
|
*/
|
|
|
|
if (ip->i_d.di_nextents > 0) {
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
/*
|
2011-07-08 14:34:34 +02:00
|
|
|
* If we are not changing the file size then do not update
|
|
|
|
* the on-disk file size - we may be called from
|
|
|
|
* xfs_inactive_free_eofblocks(). If we update the on-disk
|
|
|
|
* file size and then the system crashes before the contents
|
|
|
|
* of the file are flushed to disk then the files may be
|
|
|
|
* full of holes (ie NULL files bug).
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
*/
|
|
|
|
if (ip->i_size != new_size) {
|
|
|
|
ip->i_d.di_size = new_size;
|
|
|
|
ip->i_size = new_size;
|
2011-07-08 14:34:34 +02:00
|
|
|
xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2011-07-08 14:34:34 +02:00
|
|
|
|
|
|
|
error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we are not changing the file size then do not update the on-disk
|
|
|
|
* file size - we may be called from xfs_inactive_free_eofblocks().
|
|
|
|
* If we update the on-disk file size and then the system crashes
|
|
|
|
* before the contents of the file are flushed to disk then the files
|
|
|
|
* may be full of holes (ie NULL files bug).
|
|
|
|
*/
|
|
|
|
xfs_isize_check(ip, new_size);
|
|
|
|
if (ip->i_size != new_size) {
|
|
|
|
ip->i_d.di_size = new_size;
|
|
|
|
ip->i_size = new_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
|
|
|
|
ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Always re-log the inode so that our permanent transaction can keep
|
|
|
|
* on rolling it forward in the log.
|
|
|
|
*/
|
|
|
|
xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
|
|
|
|
|
|
|
|
trace_xfs_itruncate_data_end(ip, new_size);
|
2005-04-16 15:20:36 -07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called when the inode's link count goes to 0.
|
|
|
|
* We place the on-disk inode on a list in the AGI. It
|
|
|
|
* will be pulled from this list when the inode is freed.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_iunlink(
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *ip)
|
|
|
|
{
|
|
|
|
xfs_mount_t *mp;
|
|
|
|
xfs_agi_t *agi;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
xfs_buf_t *agibp;
|
|
|
|
xfs_buf_t *ibp;
|
|
|
|
xfs_agino_t agino;
|
|
|
|
short bucket_index;
|
|
|
|
int offset;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
|
|
|
ASSERT(ip->i_d.di_mode != 0);
|
|
|
|
|
|
|
|
mp = tp->t_mountp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the agi buffer first. It ensures lock ordering
|
|
|
|
* on the list.
|
|
|
|
*/
|
2008-11-28 14:23:37 +11:00
|
|
|
error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
|
2007-10-11 17:44:18 +10:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
2008-11-28 14:23:37 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Get the index into the agi hash table for the
|
|
|
|
* list this inode will go on.
|
|
|
|
*/
|
|
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
|
|
ASSERT(agino != 0);
|
|
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
|
|
ASSERT(agi->agi_unlinked[bucket_index]);
|
2005-11-02 15:11:25 +11:00
|
|
|
ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-07-08 14:36:05 +02:00
|
|
|
if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* There is already another inode in the bucket we need
|
|
|
|
* to add ourselves to. Add us at the front of the list.
|
|
|
|
* Here we put the head pointer into our next pointer,
|
|
|
|
* and then we fall through to point the head at us.
|
|
|
|
*/
|
2010-01-19 09:56:44 +00:00
|
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
|
2007-11-23 16:27:51 +11:00
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
2011-07-08 14:36:05 +02:00
|
|
|
ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
|
2005-04-16 15:20:36 -07:00
|
|
|
dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
|
2008-11-28 14:23:41 +11:00
|
|
|
offset = ip->i_imap.im_boffset +
|
2005-04-16 15:20:36 -07:00
|
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
|
|
|
xfs_trans_inode_buf(tp, ibp);
|
|
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
xfs_inobp_check(mp, ibp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Point the bucket head pointer at the inode being inserted.
|
|
|
|
*/
|
|
|
|
ASSERT(agino != 0);
|
2005-11-02 15:11:25 +11:00
|
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
|
2005-04-16 15:20:36 -07:00
|
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
|
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
|
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xfs_iunlink_remove(
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *ip)
|
|
|
|
{
|
|
|
|
xfs_ino_t next_ino;
|
|
|
|
xfs_mount_t *mp;
|
|
|
|
xfs_agi_t *agi;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
xfs_buf_t *agibp;
|
|
|
|
xfs_buf_t *ibp;
|
|
|
|
xfs_agnumber_t agno;
|
|
|
|
xfs_agino_t agino;
|
|
|
|
xfs_agino_t next_agino;
|
|
|
|
xfs_buf_t *last_ibp;
|
2006-06-28 10:13:52 +10:00
|
|
|
xfs_dinode_t *last_dip = NULL;
|
2005-04-16 15:20:36 -07:00
|
|
|
short bucket_index;
|
2006-06-28 10:13:52 +10:00
|
|
|
int offset, last_offset = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
int error;
|
|
|
|
|
|
|
|
mp = tp->t_mountp;
|
|
|
|
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the agi buffer first. It ensures lock ordering
|
|
|
|
* on the list.
|
|
|
|
*/
|
2008-11-28 14:23:37 +11:00
|
|
|
error = xfs_read_agi(mp, tp, agno, &agibp);
|
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
2008-11-28 14:23:37 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
2008-11-28 14:23:37 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Get the index into the agi hash table for the
|
|
|
|
* list this inode will go on.
|
|
|
|
*/
|
|
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
|
|
ASSERT(agino != 0);
|
|
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
2011-07-08 14:36:05 +02:00
|
|
|
ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(agi->agi_unlinked[bucket_index]);
|
|
|
|
|
2005-11-02 15:11:25 +11:00
|
|
|
if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* We're at the head of the list. Get the inode's
|
|
|
|
* on-disk buffer to see if there is anyone after us
|
|
|
|
* on the list. Only modify our next pointer if it
|
|
|
|
* is not already NULLAGINO. This saves us the overhead
|
|
|
|
* of dealing with the buffer when there is no need to
|
|
|
|
* change it.
|
|
|
|
*/
|
2010-01-19 09:56:44 +00:00
|
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (error) {
|
2011-03-07 10:08:35 +11:00
|
|
|
xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
|
|
|
|
__func__, error);
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
}
|
2007-08-28 13:57:51 +10:00
|
|
|
next_agino = be32_to_cpu(dip->di_next_unlinked);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(next_agino != 0);
|
|
|
|
if (next_agino != NULLAGINO) {
|
2007-08-28 13:57:51 +10:00
|
|
|
dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
2008-11-28 14:23:41 +11:00
|
|
|
offset = ip->i_imap.im_boffset +
|
2005-04-16 15:20:36 -07:00
|
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
|
|
|
xfs_trans_inode_buf(tp, ibp);
|
|
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
xfs_inobp_check(mp, ibp);
|
|
|
|
} else {
|
|
|
|
xfs_trans_brelse(tp, ibp);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Point the bucket head pointer at the next inode.
|
|
|
|
*/
|
|
|
|
ASSERT(next_agino != 0);
|
|
|
|
ASSERT(next_agino != agino);
|
2005-11-02 15:11:25 +11:00
|
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
|
2005-04-16 15:20:36 -07:00
|
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
|
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
|
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We need to search the list for the inode being freed.
|
|
|
|
*/
|
2005-11-02 15:11:25 +11:00
|
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
2005-04-16 15:20:36 -07:00
|
|
|
last_ibp = NULL;
|
|
|
|
while (next_agino != agino) {
|
|
|
|
/*
|
|
|
|
* If the last inode wasn't the one pointing to
|
|
|
|
* us, then release its buffer since we're not
|
|
|
|
* going to do anything with it.
|
|
|
|
*/
|
|
|
|
if (last_ibp != NULL) {
|
|
|
|
xfs_trans_brelse(tp, last_ibp);
|
|
|
|
}
|
|
|
|
next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
|
|
|
|
error = xfs_inotobp(mp, tp, next_ino, &last_dip,
|
2008-10-30 18:04:13 +11:00
|
|
|
&last_ibp, &last_offset, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (error) {
|
2011-03-07 10:08:35 +11:00
|
|
|
xfs_warn(mp,
|
|
|
|
"%s: xfs_inotobp() returned error %d.",
|
|
|
|
__func__, error);
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
}
|
2007-08-28 13:57:51 +10:00
|
|
|
next_agino = be32_to_cpu(last_dip->di_next_unlinked);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(next_agino != NULLAGINO);
|
|
|
|
ASSERT(next_agino != 0);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Now last_ibp points to the buffer previous to us on
|
|
|
|
* the unlinked list. Pull us from the list.
|
|
|
|
*/
|
2010-01-19 09:56:44 +00:00
|
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
|
2005-04-16 15:20:36 -07:00
|
|
|
if (error) {
|
2011-03-07 10:08:35 +11:00
|
|
|
xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
|
|
|
|
__func__, error);
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
}
|
2007-08-28 13:57:51 +10:00
|
|
|
next_agino = be32_to_cpu(dip->di_next_unlinked);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(next_agino != 0);
|
|
|
|
ASSERT(next_agino != agino);
|
|
|
|
if (next_agino != NULLAGINO) {
|
2007-08-28 13:57:51 +10:00
|
|
|
dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
2008-11-28 14:23:41 +11:00
|
|
|
offset = ip->i_imap.im_boffset +
|
2005-04-16 15:20:36 -07:00
|
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
|
|
|
xfs_trans_inode_buf(tp, ibp);
|
|
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
xfs_inobp_check(mp, ibp);
|
|
|
|
} else {
|
|
|
|
xfs_trans_brelse(tp, ibp);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Point the previous inode on the list to the next inode.
|
|
|
|
*/
|
2007-08-28 13:57:51 +10:00
|
|
|
last_dip->di_next_unlinked = cpu_to_be32(next_agino);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(next_agino != 0);
|
|
|
|
offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
|
|
|
|
xfs_trans_inode_buf(tp, last_ibp);
|
|
|
|
xfs_trans_log_buf(tp, last_ibp, offset,
|
|
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
xfs_inobp_check(mp, last_ibp);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
/*
|
|
|
|
* A big issue when freeing the inode cluster is is that we _cannot_ skip any
|
|
|
|
* inodes that are in memory - they all must be marked stale and attached to
|
|
|
|
* the cluster buffer.
|
|
|
|
*/
|
2005-06-21 15:36:52 +10:00
|
|
|
STATIC void
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_ifree_cluster(
|
|
|
|
xfs_inode_t *free_ip,
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_ino_t inum)
|
|
|
|
{
|
|
|
|
xfs_mount_t *mp = free_ip->i_mount;
|
|
|
|
int blks_per_cluster;
|
|
|
|
int nbufs;
|
|
|
|
int ninodes;
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
int i, j;
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_daddr_t blkno;
|
|
|
|
xfs_buf_t *bp;
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
xfs_inode_t *ip;
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_inode_log_item_t *iip;
|
|
|
|
xfs_log_item_t *lip;
|
2010-01-11 11:47:40 +00:00
|
|
|
struct xfs_perag *pag;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-01-11 11:47:40 +00:00
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
|
2005-04-16 15:20:36 -07:00
|
|
|
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
|
|
|
|
blks_per_cluster = 1;
|
|
|
|
ninodes = mp->m_sb.sb_inopblock;
|
|
|
|
nbufs = XFS_IALLOC_BLOCKS(mp);
|
|
|
|
} else {
|
|
|
|
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
|
|
|
|
mp->m_sb.sb_blocksize;
|
|
|
|
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
|
|
|
|
nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < nbufs; j++, inum += ninodes) {
|
|
|
|
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
|
|
|
|
XFS_INO_TO_AGBNO(mp, inum));
|
|
|
|
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
/*
|
|
|
|
* We obtain and lock the backing buffer first in the process
|
|
|
|
* here, as we have to ensure that any dirty inode that we
|
|
|
|
* can't get the flush lock on is attached to the buffer.
|
|
|
|
* If we scan the in-memory inodes first, then buffer IO can
|
|
|
|
* complete before we get a lock on it, and hence we may fail
|
|
|
|
* to mark all the active inodes on the buffer stale.
|
|
|
|
*/
|
|
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
|
|
|
|
mp->m_bsize * blks_per_cluster,
|
|
|
|
XBF_LOCK);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk the inodes already attached to the buffer and mark them
|
|
|
|
* stale. These will all have the flush locks held, so an
|
2010-08-24 11:42:41 +10:00
|
|
|
* in-memory inode walk can't lock them. By marking them all
|
|
|
|
* stale first, we will not attempt to lock them in the loop
|
|
|
|
* below as the XFS_ISTALE flag will be set.
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
*/
|
2011-07-13 13:43:49 +02:00
|
|
|
lip = bp->b_fspriv;
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
while (lip) {
|
|
|
|
if (lip->li_type == XFS_LI_INODE) {
|
|
|
|
iip = (xfs_inode_log_item_t *)lip;
|
|
|
|
ASSERT(iip->ili_logged == 1);
|
2010-06-23 18:11:15 +10:00
|
|
|
lip->li_cb = xfs_istale_done;
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail,
|
|
|
|
&iip->ili_flush_lsn,
|
|
|
|
&iip->ili_item.li_lsn);
|
|
|
|
xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
|
|
|
|
}
|
|
|
|
lip = lip->li_bio_list;
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
* For each inode in memory attempt to add it to the inode
|
|
|
|
* buffer and set it up for being staled on buffer IO
|
|
|
|
* completion. This is safe as we've locked out tail pushing
|
|
|
|
* and flushing by locking the buffer.
|
2005-04-16 15:20:36 -07:00
|
|
|
*
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
* We have already marked every inode that was part of a
|
|
|
|
* transaction stale above, which means there is no point in
|
|
|
|
* even trying to lock them.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
for (i = 0; i < ninodes; i++) {
|
2010-08-24 11:42:41 +10:00
|
|
|
retry:
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_lock();
|
2007-08-28 14:00:13 +10:00
|
|
|
ip = radix_tree_lookup(&pag->pag_ici_root,
|
|
|
|
XFS_INO_TO_AGINO(mp, (inum + i)));
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-12-17 17:29:43 +11:00
|
|
|
/* Inode not in memory, nothing to do */
|
|
|
|
if (!ip) {
|
|
|
|
rcu_read_unlock();
|
2005-04-16 15:20:36 -07:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2010-12-17 17:29:43 +11:00
|
|
|
/*
|
|
|
|
* because this is an RCU protected lookup, we could
|
|
|
|
* find a recently freed or even reallocated inode
|
|
|
|
* during the lookup. We need to check under the
|
|
|
|
* i_flags_lock for a valid inode here. Skip it if it
|
|
|
|
* is not valid, the wrong inode or stale.
|
|
|
|
*/
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
if (ip->i_ino != inum + i ||
|
|
|
|
__xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
rcu_read_unlock();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
/*
|
|
|
|
* Don't try to lock/unlock the current inode, but we
|
|
|
|
* _cannot_ skip the other inodes that we did not find
|
|
|
|
* in the list attached to the buffer and are not
|
|
|
|
* already marked stale. If we can't lock it, back off
|
|
|
|
* and retry.
|
|
|
|
*/
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
if (ip != free_ip &&
|
|
|
|
!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_unlock();
|
2010-08-24 11:42:41 +10:00
|
|
|
delay(1);
|
|
|
|
goto retry;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_unlock();
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
xfs_iflock(ip);
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
xfs_iflags_set(ip, XFS_ISTALE);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
/*
|
|
|
|
* we don't need to attach clean inodes or those only
|
|
|
|
* with unlogged changes (which we throw away, anyway).
|
|
|
|
*/
|
2005-04-16 15:20:36 -07:00
|
|
|
iip = ip->i_itemp;
|
2010-08-24 11:42:41 +10:00
|
|
|
if (!iip || xfs_inode_clean(ip)) {
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
ASSERT(ip != free_ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_update_core = 0;
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
|
|
|
iip->ili_format.ilf_fields = 0;
|
|
|
|
iip->ili_logged = 1;
|
2008-10-30 17:39:12 +11:00
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
|
|
|
|
&iip->ili_item.li_lsn);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-06-23 18:11:15 +10:00
|
|
|
xfs_buf_attach_iodone(bp, xfs_istale_done,
|
|
|
|
&iip->ili_item);
|
xfs: fix race in inode cluster freeing failing to stale inodes
When an inode cluster is freed, it needs to mark all inodes in memory as
XFS_ISTALE before marking the buffer as stale. This is eeded because the inodes
have a different life cycle to the buffer, and once the buffer is torn down
during transaction completion, we must ensure none of the inodes get written
back (which is what XFS_ISTALE does).
Unfortunately, xfs_ifree_cluster() has some bugs that lead to inodes not being
marked with XFS_ISTALE. This shows up when xfs_iflush() is called on these
inodes either during inode reclaim or tail pushing on the AIL. The buffer is
read back, but no longer contains inodes and so triggers assert failures and
shutdowns. This was reproducable with at run.dbench10 invocation from xfstests.
There are two main causes of xfs_ifree_cluster() failing. The first is simple -
it checks in-memory inodes it finds in the per-ag icache to see if they are
clean without holding the flush lock. if they are clean it skips them
completely. However, If an inode is flushed delwri, it will
appear clean, but is not guaranteed to be written back until the flush lock has
been dropped. Hence we may have raced on the clean check and the inode may
actually be dirty. Hence always mark inodes found in memory stale before we
check properly if they are clean.
The second is more complex, and makes the first problem easier to hit.
Basically the in-memory inode scan is done with full knowledge it can be racing
with inode flushing and AIl tail pushing, which means that inodes that it can't
get the flush lock on might not be attached to the buffer after then in-memory
inode scan due to IO completion occurring. This is actually documented in the
code as "needs better interlocking". i.e. this is a zero-day bug.
Effectively, the in-memory scan must be done while the inode buffer is locked
and Io cannot be issued on it while we do the in-memory inode scan. This
ensures that inodes we couldn't get the flush lock on are guaranteed to be
attached to the cluster buffer, so we can then catch all in-memory inodes and
mark them stale.
Now that the inode cluster buffer is locked before the in-memory scan is done,
there is no need for the two-phase update of the in-memory inodes, so simplify
the code into two loops and remove the allocation of the temporary buffer used
to hold locked inodes across the phases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-06-03 16:22:29 +10:00
|
|
|
|
|
|
|
if (ip != free_ip)
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
}
|
|
|
|
|
2010-08-24 11:42:41 +10:00
|
|
|
xfs_trans_stale_inode_buf(tp, bp);
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_trans_binval(tp, bp);
|
|
|
|
}
|
|
|
|
|
2010-01-11 11:47:40 +00:00
|
|
|
xfs_perag_put(pag);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called to return an inode to the inode free list.
|
|
|
|
* The inode should already be truncated to 0 length and have
|
|
|
|
* no pages associated with it. This routine also assumes that
|
|
|
|
* the inode is already a part of the transaction.
|
|
|
|
*
|
|
|
|
* The on-disk copy of the inode will have been added to the list
|
|
|
|
* of unlinked inodes in the AGI. We need to remove the inode from
|
|
|
|
* that list atomically with respect to freeing it here.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_ifree(
|
|
|
|
xfs_trans_t *tp,
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_bmap_free_t *flist)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
int delete;
|
|
|
|
xfs_ino_t first_ino;
|
2007-11-23 16:27:51 +11:00
|
|
|
xfs_dinode_t *dip;
|
|
|
|
xfs_buf_t *ibp;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
|
|
|
ASSERT(ip->i_d.di_nextents == 0);
|
|
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 13:49:46 +10:00
|
|
|
ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
|
2011-07-26 02:31:30 -04:00
|
|
|
(!S_ISREG(ip->i_d.di_mode)));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
|
|
|
*/
|
|
|
|
error = xfs_iunlink_remove(tp, ip);
|
|
|
|
if (error != 0) {
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
|
|
|
|
if (error != 0) {
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
ip->i_d.di_mode = 0; /* mark incore inode as free */
|
|
|
|
ip->i_d.di_flags = 0;
|
|
|
|
ip->i_d.di_dmevmask = 0;
|
|
|
|
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
|
|
|
|
ip->i_df.if_ext_max =
|
|
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
/*
|
|
|
|
* Bump the generation count so no one will be confused
|
|
|
|
* by reincarnations of this inode.
|
|
|
|
*/
|
|
|
|
ip->i_d.di_gen++;
|
2007-11-23 16:27:51 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
|
2010-01-19 09:56:44 +00:00
|
|
|
error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
|
2007-11-23 16:27:51 +11:00
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
|
|
|
|
* from picking up this inode when it is reclaimed (its incore state
|
|
|
|
* initialzed but not flushed to disk yet). The in-core di_mode is
|
|
|
|
* already cleared and a corresponding transaction logged.
|
|
|
|
* The hack here just synchronizes the in-core to on-disk
|
|
|
|
* di_mode value in advance before the actual inode sync to disk.
|
|
|
|
* This is OK because the inode is already unlinked and would never
|
|
|
|
* change its di_mode again for this inode generation.
|
|
|
|
* This is a temporary hack that would require a proper fix
|
|
|
|
* in the future.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
dip->di_mode = 0;
|
2007-11-23 16:27:51 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
if (delete) {
|
|
|
|
xfs_ifree_cluster(ip, tp, first_ino);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reallocate the space for if_broot based on the number of records
|
|
|
|
* being added or deleted as indicated in rec_diff. Move the records
|
|
|
|
* and pointers in if_broot to fit the new size. When shrinking this
|
|
|
|
* will eliminate holes between the records and pointers created by
|
|
|
|
* the caller. When growing this will create holes to be filled in
|
|
|
|
* by the caller.
|
|
|
|
*
|
|
|
|
* The caller must not request to add more records than would fit in
|
|
|
|
* the on-disk inode root. If the if_broot is currently NULL, then
|
|
|
|
* if we adding records one will be allocated. The caller must also
|
|
|
|
* not request that the number of records go below zero, although
|
|
|
|
* it can go to zero.
|
|
|
|
*
|
|
|
|
* ip -- the inode whose if_broot area is changing
|
|
|
|
* ext_diff -- the change in the number of records, positive or negative,
|
|
|
|
* requested for the if_broot array.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iroot_realloc(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
int rec_diff,
|
|
|
|
int whichfork)
|
|
|
|
{
|
2008-10-30 17:11:19 +11:00
|
|
|
struct xfs_mount *mp = ip->i_mount;
|
2005-04-16 15:20:36 -07:00
|
|
|
int cur_max;
|
|
|
|
xfs_ifork_t *ifp;
|
2008-10-30 17:14:34 +11:00
|
|
|
struct xfs_btree_block *new_broot;
|
2005-04-16 15:20:36 -07:00
|
|
|
int new_max;
|
|
|
|
size_t new_size;
|
|
|
|
char *np;
|
|
|
|
char *op;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle the degenerate case quietly.
|
|
|
|
*/
|
|
|
|
if (rec_diff == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
if (rec_diff > 0) {
|
|
|
|
/*
|
|
|
|
* If there wasn't any memory allocated before, just
|
|
|
|
* allocate it now and get out.
|
|
|
|
*/
|
|
|
|
if (ifp->if_broot_bytes == 0) {
|
|
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
|
2010-07-20 17:53:59 +10:00
|
|
|
ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_broot_bytes = (int)new_size;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is already an existing if_broot, then we need
|
|
|
|
* to realloc() it and shift the pointers to their new
|
|
|
|
* location. The records don't change location because
|
|
|
|
* they are kept butted up against the btree block header.
|
|
|
|
*/
|
2008-10-30 17:11:19 +11:00
|
|
|
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
new_max = cur_max + rec_diff;
|
|
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
2008-10-30 17:14:34 +11:00
|
|
|
ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
|
2005-04-16 15:20:36 -07:00
|
|
|
(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
|
2010-07-20 17:53:59 +10:00
|
|
|
KM_SLEEP | KM_NOFS);
|
2008-10-30 17:11:19 +11:00
|
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
|
|
|
|
ifp->if_broot_bytes);
|
|
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
|
|
|
|
(int)new_size);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_broot_bytes = (int)new_size;
|
|
|
|
ASSERT(ifp->if_broot_bytes <=
|
|
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
|
|
|
memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* rec_diff is less than 0. In this case, we are shrinking the
|
|
|
|
* if_broot buffer. It must already exist. If we go to zero
|
|
|
|
* records, just get rid of the root and clear the status bit.
|
|
|
|
*/
|
|
|
|
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
|
2008-10-30 17:11:19 +11:00
|
|
|
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
new_max = cur_max + rec_diff;
|
|
|
|
ASSERT(new_max >= 0);
|
|
|
|
if (new_max > 0)
|
|
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
|
|
|
else
|
|
|
|
new_size = 0;
|
|
|
|
if (new_size > 0) {
|
2010-07-20 17:53:59 +10:00
|
|
|
new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* First copy over the btree block header.
|
|
|
|
*/
|
2008-10-30 17:14:34 +11:00
|
|
|
memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
|
2005-04-16 15:20:36 -07:00
|
|
|
} else {
|
|
|
|
new_broot = NULL;
|
|
|
|
ifp->if_flags &= ~XFS_IFBROOT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only copy the records and pointers if there are any.
|
|
|
|
*/
|
|
|
|
if (new_max > 0) {
|
|
|
|
/*
|
|
|
|
* First copy the records.
|
|
|
|
*/
|
2008-10-30 17:11:40 +11:00
|
|
|
op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
|
|
|
|
np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
|
2005-04-16 15:20:36 -07:00
|
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Then copy the pointers.
|
|
|
|
*/
|
2008-10-30 17:11:19 +11:00
|
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_broot_bytes);
|
2008-10-30 17:11:19 +11:00
|
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
|
2005-04-16 15:20:36 -07:00
|
|
|
(int)new_size);
|
|
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
|
|
|
|
}
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_broot);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_broot = new_broot;
|
|
|
|
ifp->if_broot_bytes = (int)new_size;
|
|
|
|
ASSERT(ifp->if_broot_bytes <=
|
|
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called when the amount of space needed for if_data
|
|
|
|
* is increased or decreased. The change in size is indicated by
|
|
|
|
* the number of bytes that need to be added or deleted in the
|
|
|
|
* byte_diff parameter.
|
|
|
|
*
|
|
|
|
* If the amount of space needed has decreased below the size of the
|
|
|
|
* inline buffer, then switch to using the inline buffer. Otherwise,
|
|
|
|
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
|
|
|
|
* to what is needed.
|
|
|
|
*
|
|
|
|
* ip -- the inode whose if_data area is changing
|
|
|
|
* byte_diff -- the change in the number of bytes, positive or negative,
|
|
|
|
* requested for the if_data array.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_idata_realloc(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
int byte_diff,
|
|
|
|
int whichfork)
|
|
|
|
{
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
int new_size;
|
|
|
|
int real_size;
|
|
|
|
|
|
|
|
if (byte_diff == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
new_size = (int)ifp->if_bytes + byte_diff;
|
|
|
|
ASSERT(new_size >= 0);
|
|
|
|
|
|
|
|
if (new_size == 0) {
|
|
|
|
if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_data);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
ifp->if_u1.if_data = NULL;
|
|
|
|
real_size = 0;
|
|
|
|
} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
|
|
|
|
/*
|
|
|
|
* If the valid extents/data can fit in if_inline_ext/data,
|
|
|
|
* copy them from the malloc'd vector and free it.
|
|
|
|
*/
|
|
|
|
if (ifp->if_u1.if_data == NULL) {
|
|
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
|
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
|
|
|
ASSERT(ifp->if_real_bytes != 0);
|
|
|
|
memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
|
|
|
|
new_size);
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_data);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
|
|
|
}
|
|
|
|
real_size = 0;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Stuck with malloc/realloc.
|
|
|
|
* For inline data, the underlying buffer must be
|
|
|
|
* a multiple of 4 bytes in size so that it can be
|
|
|
|
* logged and stay on word boundaries. We enforce
|
|
|
|
* that here.
|
|
|
|
*/
|
|
|
|
real_size = roundup(new_size, 4);
|
|
|
|
if (ifp->if_u1.if_data == NULL) {
|
|
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2010-07-20 17:53:59 +10:00
|
|
|
ifp->if_u1.if_data = kmem_alloc(real_size,
|
|
|
|
KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
|
|
|
/*
|
|
|
|
* Only do the realloc if the underlying size
|
|
|
|
* is really changing.
|
|
|
|
*/
|
|
|
|
if (ifp->if_real_bytes != real_size) {
|
|
|
|
ifp->if_u1.if_data =
|
|
|
|
kmem_realloc(ifp->if_u1.if_data,
|
|
|
|
real_size,
|
|
|
|
ifp->if_real_bytes,
|
2010-07-20 17:53:59 +10:00
|
|
|
KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2010-07-20 17:53:59 +10:00
|
|
|
ifp->if_u1.if_data = kmem_alloc(real_size,
|
|
|
|
KM_SLEEP | KM_NOFS);
|
2005-04-16 15:20:36 -07:00
|
|
|
memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
|
|
|
|
ifp->if_bytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ifp->if_real_bytes = real_size;
|
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
xfs_idestroy_fork(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
int whichfork)
|
|
|
|
{
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
if (ifp->if_broot != NULL) {
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_broot);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_broot = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the format is local, then we can't have an extents
|
|
|
|
* array so just look for an inline data array. If we're
|
|
|
|
* not local then we may or may not have an extents list,
|
|
|
|
* so check and free it up if we do.
|
|
|
|
*/
|
|
|
|
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
|
|
|
|
if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
|
|
|
|
(ifp->if_u1.if_data != NULL)) {
|
|
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_data);
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp->if_u1.if_data = NULL;
|
|
|
|
ifp->if_real_bytes = 0;
|
|
|
|
}
|
|
|
|
} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
|
2006-03-14 13:30:23 +11:00
|
|
|
((ifp->if_flags & XFS_IFEXTIREC) ||
|
|
|
|
((ifp->if_u1.if_extents != NULL) &&
|
|
|
|
(ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_iext_destroy(ifp);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
ASSERT(ifp->if_u1.if_extents == NULL ||
|
|
|
|
ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
|
|
|
|
ASSERT(ifp->if_real_bytes == 0);
|
|
|
|
if (whichfork == XFS_ATTR_FORK) {
|
|
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
|
|
|
ip->i_afp = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2010-02-17 19:43:56 +00:00
|
|
|
* This is called to unpin an inode. The caller must have the inode locked
|
|
|
|
* in at least shared mode so that the buffer cannot be subsequently pinned
|
|
|
|
* once someone is waiting for it to be unpinned.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2010-02-17 19:43:56 +00:00
|
|
|
static void
|
|
|
|
xfs_iunpin_nowait(
|
|
|
|
struct xfs_inode *ip)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-03-08 11:24:07 +11:00
|
|
|
trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
|
|
|
|
|
2008-03-06 13:43:42 +11:00
|
|
|
/* Give the log a push to start the unpinning I/O */
|
2010-02-17 19:43:56 +00:00
|
|
|
xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
|
2010-01-19 09:56:46 +00:00
|
|
|
|
2008-03-06 13:43:42 +11:00
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-02-06 12:37:26 +11:00
|
|
|
void
|
2008-03-06 13:43:42 +11:00
|
|
|
xfs_iunpin_wait(
|
2010-02-17 19:43:56 +00:00
|
|
|
struct xfs_inode *ip)
|
2008-03-06 13:43:42 +11:00
|
|
|
{
|
2010-02-17 19:43:56 +00:00
|
|
|
if (xfs_ipincount(ip)) {
|
|
|
|
xfs_iunpin_nowait(ip);
|
|
|
|
wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* xfs_iextents_copy()
|
|
|
|
*
|
|
|
|
* This is called to copy the REAL extents (as opposed to the delayed
|
|
|
|
* allocation extents) from the inode into the given buffer. It
|
|
|
|
* returns the number of bytes copied into the buffer.
|
|
|
|
*
|
|
|
|
* If there are no delayed allocation extents, then we can just
|
|
|
|
* memcpy() the extents into the buffer. Otherwise, we need to
|
|
|
|
* examine each extent in turn and skip those which are delayed.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_iextents_copy(
|
|
|
|
xfs_inode_t *ip,
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_t *dp,
|
2005-04-16 15:20:36 -07:00
|
|
|
int whichfork)
|
|
|
|
{
|
|
|
|
int copied;
|
|
|
|
int i;
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
int nrecs;
|
|
|
|
xfs_fsblock_t start_block;
|
|
|
|
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ifp->if_bytes > 0);
|
|
|
|
|
|
|
|
nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
2007-07-11 11:09:47 +10:00
|
|
|
XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(nrecs > 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are some delayed allocation extents in the
|
|
|
|
* inode, so copy the extents one at a time and skip
|
|
|
|
* the delayed ones. There must be at least one
|
|
|
|
* non-delayed extent.
|
|
|
|
*/
|
|
|
|
copied = 0;
|
|
|
|
for (i = 0; i < nrecs; i++) {
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
2005-04-16 15:20:36 -07:00
|
|
|
start_block = xfs_bmbt_get_startblock(ep);
|
2009-01-14 23:22:07 -06:00
|
|
|
if (isnullstartblock(start_block)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* It's a delayed allocation extent, so skip it.
|
|
|
|
*/
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Translate to on disk format */
|
2007-08-16 16:24:15 +10:00
|
|
|
put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
|
|
|
|
put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
|
2007-08-16 16:23:40 +10:00
|
|
|
dp++;
|
2005-04-16 15:20:36 -07:00
|
|
|
copied++;
|
|
|
|
}
|
|
|
|
ASSERT(copied != 0);
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
return (copied * (uint)sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each of the following cases stores data into the same region
|
|
|
|
* of the on-disk inode, so only one of them can be valid at
|
|
|
|
* any given time. While it is possible to have conflicting formats
|
|
|
|
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
|
|
|
|
* in EXTENTS format, this can only happen when the fork has
|
|
|
|
* changed formats after being modified but before being flushed.
|
|
|
|
* In these cases, the format always takes precedence, because the
|
|
|
|
* format indicates the current state of the fork.
|
|
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
2008-04-10 12:23:58 +10:00
|
|
|
STATIC void
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_iflush_fork(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_dinode_t *dip,
|
|
|
|
xfs_inode_log_item_t *iip,
|
|
|
|
int whichfork,
|
|
|
|
xfs_buf_t *bp)
|
|
|
|
{
|
|
|
|
char *cp;
|
|
|
|
xfs_ifork_t *ifp;
|
|
|
|
xfs_mount_t *mp;
|
|
|
|
#ifdef XFS_TRANS_DEBUG
|
|
|
|
int first;
|
|
|
|
#endif
|
|
|
|
static const short brootflag[2] =
|
|
|
|
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
|
|
|
|
static const short dataflag[2] =
|
|
|
|
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
|
|
|
|
static const short extflag[2] =
|
|
|
|
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
|
|
|
|
|
2008-04-10 12:23:58 +10:00
|
|
|
if (!iip)
|
|
|
|
return;
|
2005-04-16 15:20:36 -07:00
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
|
|
/*
|
|
|
|
* This can happen if we gave up in iformat in an error path,
|
|
|
|
* for the attribute fork.
|
|
|
|
*/
|
2008-04-10 12:23:58 +10:00
|
|
|
if (!ifp) {
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(whichfork == XFS_ATTR_FORK);
|
2008-04-10 12:23:58 +10:00
|
|
|
return;
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
cp = XFS_DFORK_PTR(dip, whichfork);
|
|
|
|
mp = ip->i_mount;
|
|
|
|
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
|
|
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
|
|
if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
|
|
|
|
(ifp->if_bytes > 0)) {
|
|
|
|
ASSERT(ifp->if_u1.if_data != NULL);
|
|
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
|
|
|
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
|
|
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
|
|
|
|
!(iip->ili_format.ilf_fields & extflag[whichfork]));
|
|
|
|
if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
|
|
|
|
(ifp->if_bytes > 0)) {
|
2011-05-11 15:04:10 +00:00
|
|
|
ASSERT(xfs_iext_get_ext(ifp, 0));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
|
|
|
|
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
|
|
|
|
whichfork);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
|
|
if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
|
|
|
|
(ifp->if_broot_bytes > 0)) {
|
|
|
|
ASSERT(ifp->if_broot != NULL);
|
|
|
|
ASSERT(ifp->if_broot_bytes <=
|
|
|
|
(XFS_IFORK_SIZE(ip, whichfork) +
|
|
|
|
XFS_BROOT_SIZE_ADJ));
|
2008-10-30 17:11:19 +11:00
|
|
|
xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
|
2005-04-16 15:20:36 -07:00
|
|
|
(xfs_bmdr_block_t *)cp,
|
|
|
|
XFS_DFORK_SIZE(dip, mp, whichfork));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
|
|
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
2008-11-28 14:23:39 +11:00
|
|
|
xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XFS_DINODE_FMT_UUID:
|
|
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
|
|
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
2008-11-28 14:23:39 +11:00
|
|
|
memcpy(XFS_DFORK_DPTR(dip),
|
|
|
|
&ip->i_df.if_u2.if_uuid,
|
|
|
|
sizeof(uuid_t));
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ASSERT(0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-03-06 13:43:49 +11:00
|
|
|
STATIC int
|
|
|
|
xfs_iflush_cluster(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_buf_t *bp)
|
|
|
|
{
|
|
|
|
xfs_mount_t *mp = ip->i_mount;
|
2010-01-11 11:47:40 +00:00
|
|
|
struct xfs_perag *pag;
|
2008-03-06 13:43:49 +11:00
|
|
|
unsigned long first_index, mask;
|
2008-05-20 11:30:15 +10:00
|
|
|
unsigned long inodes_per_cluster;
|
2008-03-06 13:43:49 +11:00
|
|
|
int ilist_size;
|
|
|
|
xfs_inode_t **ilist;
|
|
|
|
xfs_inode_t *iq;
|
|
|
|
int nr_found;
|
|
|
|
int clcount = 0;
|
|
|
|
int bufwasdelwri;
|
|
|
|
int i;
|
|
|
|
|
2010-01-11 11:47:40 +00:00
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
2008-03-06 13:43:49 +11:00
|
|
|
|
2008-05-20 11:30:15 +10:00
|
|
|
inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
|
|
|
|
ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
|
2008-05-19 16:29:34 +10:00
|
|
|
ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
|
2008-03-06 13:43:49 +11:00
|
|
|
if (!ilist)
|
2010-01-11 11:47:43 +00:00
|
|
|
goto out_put;
|
2008-03-06 13:43:49 +11:00
|
|
|
|
|
|
|
mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
|
|
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_lock();
|
2008-03-06 13:43:49 +11:00
|
|
|
/* really need a gang lookup range call here */
|
|
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
|
2008-05-20 11:30:15 +10:00
|
|
|
first_index, inodes_per_cluster);
|
2008-03-06 13:43:49 +11:00
|
|
|
if (nr_found == 0)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
|
|
iq = ilist[i];
|
|
|
|
if (iq == ip)
|
|
|
|
continue;
|
2010-12-17 17:29:43 +11:00
|
|
|
|
|
|
|
/*
|
|
|
|
* because this is an RCU protected lookup, we could find a
|
|
|
|
* recently freed or even reallocated inode during the lookup.
|
|
|
|
* We need to check under the i_flags_lock for a valid inode
|
|
|
|
* here. Skip it if it is not valid or the wrong inode.
|
|
|
|
*/
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
if (!ip->i_ino ||
|
|
|
|
(XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
|
2008-03-06 13:43:49 +11:00
|
|
|
/*
|
|
|
|
* Do an un-protected check to see if the inode is dirty and
|
|
|
|
* is a candidate for flushing. These checks will be repeated
|
|
|
|
* later after the appropriate locks are acquired.
|
|
|
|
*/
|
2008-03-06 13:43:59 +11:00
|
|
|
if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
|
2008-03-06 13:43:49 +11:00
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to get locks. If any are unavailable or it is pinned,
|
|
|
|
* then this inode cannot be flushed and is skipped.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
|
|
|
|
continue;
|
|
|
|
if (!xfs_iflock_nowait(iq)) {
|
|
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (xfs_ipincount(iq)) {
|
|
|
|
xfs_ifunlock(iq);
|
|
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* arriving here means that this inode can be flushed. First
|
|
|
|
* re-check that it's dirty before flushing.
|
|
|
|
*/
|
2008-03-06 13:43:59 +11:00
|
|
|
if (!xfs_inode_clean(iq)) {
|
|
|
|
int error;
|
2008-03-06 13:43:49 +11:00
|
|
|
error = xfs_iflush_int(iq, bp);
|
|
|
|
if (error) {
|
|
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
|
|
|
goto cluster_corrupt_out;
|
|
|
|
}
|
|
|
|
clcount++;
|
|
|
|
} else {
|
|
|
|
xfs_ifunlock(iq);
|
|
|
|
}
|
|
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (clcount) {
|
|
|
|
XFS_STATS_INC(xs_icluster_flushcnt);
|
|
|
|
XFS_STATS_ADD(xs_icluster_flushinode, clcount);
|
|
|
|
}
|
|
|
|
|
|
|
|
out_free:
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_unlock();
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ilist);
|
2010-01-11 11:47:43 +00:00
|
|
|
out_put:
|
|
|
|
xfs_perag_put(pag);
|
2008-03-06 13:43:49 +11:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
|
|
cluster_corrupt_out:
|
|
|
|
/*
|
|
|
|
* Corruption detected in the clustering loop. Invalidate the
|
|
|
|
* inode buffer and shut down the filesystem.
|
|
|
|
*/
|
2010-12-17 17:29:43 +11:00
|
|
|
rcu_read_unlock();
|
2008-03-06 13:43:49 +11:00
|
|
|
/*
|
|
|
|
* Clean up the buffer. If it was B_DELWRI, just release it --
|
|
|
|
* brelse can handle it with no problems. If not, shut down the
|
|
|
|
* filesystem before releasing the buffer.
|
|
|
|
*/
|
|
|
|
bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
|
|
|
|
if (bufwasdelwri)
|
|
|
|
xfs_buf_relse(bp);
|
|
|
|
|
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
|
|
|
|
|
|
if (!bufwasdelwri) {
|
|
|
|
/*
|
|
|
|
* Just like incore_relse: if we have b_iodone functions,
|
|
|
|
* mark the buffer as an error and call them. Otherwise
|
|
|
|
* mark it as stale and brelse.
|
|
|
|
*/
|
2011-07-13 13:43:49 +02:00
|
|
|
if (bp->b_iodone) {
|
2008-03-06 13:43:49 +11:00
|
|
|
XFS_BUF_UNDONE(bp);
|
|
|
|
XFS_BUF_STALE(bp);
|
2011-07-22 23:39:51 +00:00
|
|
|
xfs_buf_ioerror(bp, EIO);
|
2010-10-06 18:41:18 +00:00
|
|
|
xfs_buf_ioend(bp, 0);
|
2008-03-06 13:43:49 +11:00
|
|
|
} else {
|
|
|
|
XFS_BUF_STALE(bp);
|
|
|
|
xfs_buf_relse(bp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unlocks the flush lock
|
|
|
|
*/
|
|
|
|
xfs_iflush_abort(iq);
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ilist);
|
2010-01-11 11:47:43 +00:00
|
|
|
xfs_perag_put(pag);
|
2008-03-06 13:43:49 +11:00
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* xfs_iflush() will write a modified inode's changes out to the
|
|
|
|
* inode's on disk home. The caller must have the inode lock held
|
2008-08-13 16:41:16 +10:00
|
|
|
* in at least shared mode and the inode flush completion must be
|
|
|
|
* active as well. The inode lock will still be held upon return from
|
2005-04-16 15:20:36 -07:00
|
|
|
* the call and the caller is free to unlock it.
|
2008-08-13 16:41:16 +10:00
|
|
|
* The inode flush will be completed when the inode reaches the disk.
|
2005-04-16 15:20:36 -07:00
|
|
|
* The flags indicate how the inode's buffer should be written out.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_iflush(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
uint flags)
|
|
|
|
{
|
|
|
|
xfs_inode_log_item_t *iip;
|
|
|
|
xfs_buf_t *bp;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
xfs_mount_t *mp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
XFS_STATS_INC(xs_iflush_count);
|
|
|
|
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
2008-08-13 16:41:16 +10:00
|
|
|
ASSERT(!completion_done(&ip->i_flush));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
|
|
|
|
|
|
|
iip = ip->i_itemp;
|
|
|
|
mp = ip->i_mount;
|
|
|
|
|
|
|
|
/*
|
2008-03-06 13:43:42 +11:00
|
|
|
* We can't flush the inode until it is unpinned, so wait for it if we
|
2011-03-30 22:57:33 -03:00
|
|
|
* are allowed to block. We know no one new can pin it, because we are
|
2008-03-06 13:43:42 +11:00
|
|
|
* holding the inode lock shared and you need to hold it exclusively to
|
|
|
|
* pin the inode.
|
|
|
|
*
|
|
|
|
* If we are not allowed to block, force the log out asynchronously so
|
|
|
|
* that when we come back the inode will be unpinned. If other inodes
|
|
|
|
* in the same cluster are dirty, they will probably write the inode
|
|
|
|
* out for us if they occur after the log force completes.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2010-02-06 12:39:36 +11:00
|
|
|
if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
|
2008-03-06 13:43:42 +11:00
|
|
|
xfs_iunpin_nowait(ip);
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
return EAGAIN;
|
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_iunpin_wait(ip);
|
|
|
|
|
2010-01-11 11:45:21 +00:00
|
|
|
/*
|
|
|
|
* For stale inodes we cannot rely on the backing buffer remaining
|
|
|
|
* stale in cache for the remaining life of the stale inode and so
|
|
|
|
* xfs_itobp() below may give us a buffer that no longer contains
|
|
|
|
* inodes below. We have to check this after ensuring the inode is
|
|
|
|
* unpinned so that it is safe to reclaim the stale inode after the
|
|
|
|
* flush call.
|
|
|
|
*/
|
|
|
|
if (xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* This may have been unpinned because the filesystem is shutting
|
|
|
|
* down forcibly. If that's the case we must not write this inode
|
|
|
|
* to disk, because the log record didn't make it to disk!
|
|
|
|
*/
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
|
|
ip->i_update_core = 0;
|
|
|
|
if (iip)
|
|
|
|
iip->ili_format.ilf_fields = 0;
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
|
2008-03-06 13:43:42 +11:00
|
|
|
/*
|
|
|
|
* Get the buffer containing the on-disk inode.
|
|
|
|
*/
|
2008-11-28 14:23:40 +11:00
|
|
|
error = xfs_itobp(mp, NULL, ip, &dip, &bp,
|
2011-03-26 09:13:55 +11:00
|
|
|
(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
|
2008-03-06 13:43:42 +11:00
|
|
|
if (error || !bp) {
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* First flush out the inode that xfs_iflush was called with.
|
|
|
|
*/
|
|
|
|
error = xfs_iflush_int(ip, bp);
|
2008-03-06 13:43:49 +11:00
|
|
|
if (error)
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
|
2008-03-06 13:43:42 +11:00
|
|
|
/*
|
|
|
|
* If the buffer is pinned then push on the log now so we won't
|
|
|
|
* get stuck waiting in the write for too long.
|
|
|
|
*/
|
2011-07-22 23:40:27 +00:00
|
|
|
if (xfs_buf_ispinned(bp))
|
2010-01-19 09:56:46 +00:00
|
|
|
xfs_log_force(mp, 0);
|
2008-03-06 13:43:42 +11:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* inode clustering:
|
|
|
|
* see if other inodes can be gathered into this write
|
|
|
|
*/
|
2008-03-06 13:43:49 +11:00
|
|
|
error = xfs_iflush_cluster(ip, bp);
|
|
|
|
if (error)
|
|
|
|
goto cluster_corrupt_out;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2010-02-06 12:39:36 +11:00
|
|
|
if (flags & SYNC_WAIT)
|
2011-08-23 08:28:07 +00:00
|
|
|
error = xfs_bwrite(bp);
|
|
|
|
else
|
2011-08-23 08:28:06 +00:00
|
|
|
xfs_buf_delwri_queue(bp);
|
2011-08-23 08:28:07 +00:00
|
|
|
|
|
|
|
xfs_buf_relse(bp);
|
2005-04-16 15:20:36 -07:00
|
|
|
return error;
|
|
|
|
|
|
|
|
corrupt_out:
|
|
|
|
xfs_buf_relse(bp);
|
2006-06-09 14:58:38 +10:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
2005-04-16 15:20:36 -07:00
|
|
|
cluster_corrupt_out:
|
|
|
|
/*
|
|
|
|
* Unlocks the flush lock
|
|
|
|
*/
|
2008-03-06 13:43:49 +11:00
|
|
|
xfs_iflush_abort(ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
STATIC int
|
|
|
|
xfs_iflush_int(
|
|
|
|
xfs_inode_t *ip,
|
|
|
|
xfs_buf_t *bp)
|
|
|
|
{
|
|
|
|
xfs_inode_log_item_t *iip;
|
|
|
|
xfs_dinode_t *dip;
|
|
|
|
xfs_mount_t *mp;
|
|
|
|
#ifdef XFS_TRANS_DEBUG
|
|
|
|
int first;
|
|
|
|
#endif
|
|
|
|
|
2008-04-22 17:34:00 +10:00
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
2008-08-13 16:41:16 +10:00
|
|
|
ASSERT(!completion_done(&ip->i_flush));
|
2005-04-16 15:20:36 -07:00
|
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
|
|
|
|
|
|
|
iip = ip->i_itemp;
|
|
|
|
mp = ip->i_mount;
|
|
|
|
|
|
|
|
/* set *dip = inode's place in the buffer */
|
2008-11-28 14:23:41 +11:00
|
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear i_update_core before copying out the data.
|
|
|
|
* This is for coordination with our timestamp updates
|
|
|
|
* that don't hold the inode lock. They will always
|
|
|
|
* update the timestamps BEFORE setting i_update_core,
|
|
|
|
* so if we clear i_update_core after they set it we
|
|
|
|
* are guaranteed to see their updates to the timestamps.
|
|
|
|
* I believe that this depends on strongly ordered memory
|
|
|
|
* semantics, but we have that. We use the SYNCHRONIZE
|
|
|
|
* macro to make sure that the compiler does not reorder
|
|
|
|
* the i_update_core access below the data copy below.
|
|
|
|
*/
|
|
|
|
ip->i_update_core = 0;
|
|
|
|
SYNCHRONIZE();
|
|
|
|
|
2006-01-11 15:35:17 +11:00
|
|
|
/*
|
2009-10-06 20:29:26 +00:00
|
|
|
* Make sure to get the latest timestamps from the Linux inode.
|
2006-01-11 15:35:17 +11:00
|
|
|
*/
|
2009-10-06 20:29:26 +00:00
|
|
|
xfs_synchronize_times(ip);
|
2006-01-11 15:35:17 +11:00
|
|
|
|
2011-07-08 14:36:05 +02:00
|
|
|
if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
|
2005-04-16 15:20:36 -07:00
|
|
|
mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
|
|
|
|
__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
|
|
|
if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
|
|
|
|
mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
|
|
|
|
__func__, ip->i_ino, ip, ip->i_d.di_magic);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
2011-07-26 02:31:30 -04:00
|
|
|
if (S_ISREG(ip->i_d.di_mode)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
if (XFS_TEST_ERROR(
|
|
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
|
|
|
|
mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: Bad regular inode %Lu, ptr 0x%p",
|
|
|
|
__func__, ip->i_ino, ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
2011-07-26 02:31:30 -04:00
|
|
|
} else if (S_ISDIR(ip->i_d.di_mode)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
if (XFS_TEST_ERROR(
|
|
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
|
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
|
|
|
|
mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: Bad directory inode %Lu, ptr 0x%p",
|
|
|
|
__func__, ip->i_ino, ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
|
|
|
|
ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
|
|
|
|
XFS_RANDOM_IFLUSH_5)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: detected corrupt incore inode %Lu, "
|
|
|
|
"total extents = %d, nblocks = %Ld, ptr 0x%p",
|
|
|
|
__func__, ip->i_ino,
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_nextents + ip->i_d.di_anextents,
|
2011-03-07 10:02:35 +11:00
|
|
|
ip->i_d.di_nblocks, ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
|
|
|
if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
|
|
|
|
mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
|
2011-03-07 10:02:35 +11:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
|
|
"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
|
|
|
|
__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
|
2005-04-16 15:20:36 -07:00
|
|
|
goto corrupt_out;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* bump the flush iteration count, used to detect flushes which
|
|
|
|
* postdate a log record during recovery.
|
|
|
|
*/
|
|
|
|
|
|
|
|
ip->i_d.di_flushiter++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy the dirty parts of the inode into the on-disk
|
|
|
|
* inode. We always copy out the core of the inode,
|
|
|
|
* because if the inode is dirty at all the core must
|
|
|
|
* be.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
xfs_dinode_to_disk(dip, &ip->i_d);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* Wrap, we never let the log put out DI_MAX_FLUSH */
|
|
|
|
if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
|
|
|
|
ip->i_d.di_flushiter = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is really an old format inode and the superblock version
|
|
|
|
* has not been updated to support only new format inodes, then
|
|
|
|
* convert back to the old inode format. If the superblock version
|
|
|
|
* has been updated, then make the conversion permanent.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
|
|
|
|
if (ip->i_d.di_version == 1) {
|
2008-03-06 13:44:28 +11:00
|
|
|
if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Convert it back.
|
|
|
|
*/
|
|
|
|
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
|
2008-11-28 14:23:39 +11:00
|
|
|
dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
|
2005-04-16 15:20:36 -07:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The superblock version has already been bumped,
|
|
|
|
* so just make the conversion to the new inode
|
|
|
|
* format permanent.
|
|
|
|
*/
|
2008-11-28 14:23:39 +11:00
|
|
|
ip->i_d.di_version = 2;
|
|
|
|
dip->di_version = 2;
|
2005-04-16 15:20:36 -07:00
|
|
|
ip->i_d.di_onlink = 0;
|
2008-11-28 14:23:39 +11:00
|
|
|
dip->di_onlink = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
2008-11-28 14:23:39 +11:00
|
|
|
memset(&(dip->di_pad[0]), 0,
|
|
|
|
sizeof(dip->di_pad));
|
2010-09-26 06:10:18 +00:00
|
|
|
ASSERT(xfs_get_projid(ip) == 0);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-04-10 12:23:58 +10:00
|
|
|
xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
|
|
|
|
if (XFS_IFORK_Q(ip))
|
|
|
|
xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
|
2005-04-16 15:20:36 -07:00
|
|
|
xfs_inobp_check(mp, bp);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We've recorded everything logged in the inode, so we'd
|
|
|
|
* like to clear the ilf_fields bits so we don't log and
|
|
|
|
* flush things unnecessarily. However, we can't stop
|
|
|
|
* logging all this information until the data we've copied
|
|
|
|
* into the disk buffer is written to disk. If we did we might
|
|
|
|
* overwrite the copy of the inode in the log with all the
|
|
|
|
* data after re-logging only part of it, and in the face of
|
|
|
|
* a crash we wouldn't have all the data we need to recover.
|
|
|
|
*
|
|
|
|
* What we do is move the bits to the ili_last_fields field.
|
|
|
|
* When logging the inode, these bits are moved back to the
|
|
|
|
* ilf_fields field. In the xfs_iflush_done() routine we
|
|
|
|
* clear ili_last_fields, since we know that the information
|
|
|
|
* those bits represent is permanently on disk. As long as
|
|
|
|
* the flush completes before the inode is logged again, then
|
|
|
|
* both ilf_fields and ili_last_fields will be cleared.
|
|
|
|
*
|
|
|
|
* We can play with the ilf_fields bits here, because the inode
|
|
|
|
* lock must be held exclusively in order to set bits there
|
|
|
|
* and the flush lock protects the ili_last_fields bits.
|
|
|
|
* Set ili_logged so the flush done
|
|
|
|
* routine can tell whether or not to look in the AIL.
|
|
|
|
* Also, store the current LSN of the inode so that we can tell
|
|
|
|
* whether the item has moved in the AIL from xfs_iflush_done().
|
|
|
|
* In order to read the lsn we need the AIL lock, because
|
|
|
|
* it is a 64 bit value that cannot be read atomically.
|
|
|
|
*/
|
|
|
|
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
|
|
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
|
|
|
iip->ili_format.ilf_fields = 0;
|
|
|
|
iip->ili_logged = 1;
|
|
|
|
|
2008-10-30 17:39:12 +11:00
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
|
|
|
|
&iip->ili_item.li_lsn);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Attach the function xfs_iflush_done to the inode's
|
|
|
|
* buffer. This will remove the inode from the AIL
|
|
|
|
* and unlock the inode's flush lock when the inode is
|
|
|
|
* completely written to disk.
|
|
|
|
*/
|
2010-06-23 18:11:15 +10:00
|
|
|
xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-07-13 13:43:49 +02:00
|
|
|
ASSERT(bp->b_fspriv != NULL);
|
2011-07-13 13:43:49 +02:00
|
|
|
ASSERT(bp->b_iodone != NULL);
|
2005-04-16 15:20:36 -07:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We're flushing an inode which is not in the AIL and has
|
|
|
|
* not been logged but has i_update_core set. For this
|
|
|
|
* case we can use a B_DELWRI flush and immediately drop
|
|
|
|
* the inode flush lock because we can avoid the whole
|
|
|
|
* AIL state thing. It's OK to drop the flush lock now,
|
|
|
|
* because we've already locked the buffer and to do anything
|
|
|
|
* you really need both.
|
|
|
|
*/
|
|
|
|
if (iip != NULL) {
|
|
|
|
ASSERT(iip->ili_logged == 0);
|
|
|
|
ASSERT(iip->ili_last_fields == 0);
|
|
|
|
ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
|
|
|
|
}
|
|
|
|
xfs_ifunlock(ip);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
corrupt_out:
|
|
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
/*
|
|
|
|
* Return a pointer to the extent record at file index idx.
|
|
|
|
*/
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_iext_get_ext(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t idx) /* index of target extent */
|
|
|
|
{
|
|
|
|
ASSERT(idx >= 0);
|
2011-05-11 15:04:11 +00:00
|
|
|
ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
|
|
|
|
return ifp->if_u1.if_ext_irec->er_extbuf;
|
|
|
|
} else if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
xfs_ext_irec_t *erp; /* irec pointer */
|
|
|
|
int erp_idx = 0; /* irec index */
|
|
|
|
xfs_extnum_t page_idx = idx; /* ext index in target list */
|
|
|
|
|
|
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
|
|
|
|
return &erp->er_extbuf[page_idx];
|
|
|
|
} else if (ifp->if_bytes) {
|
2006-03-14 13:29:52 +11:00
|
|
|
return &ifp->if_u1.if_extents[idx];
|
|
|
|
} else {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Insert new item(s) into the extent records for incore inode
|
|
|
|
* fork 'ifp'. 'count' new items are inserted at index 'idx'.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_insert(
|
2009-11-25 00:00:21 +00:00
|
|
|
xfs_inode_t *ip, /* incore inode pointer */
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_extnum_t idx, /* starting index of new items */
|
|
|
|
xfs_extnum_t count, /* number of inserted items */
|
2009-11-25 00:00:21 +00:00
|
|
|
xfs_bmbt_irec_t *new, /* items to insert */
|
|
|
|
int state) /* type of extent conversion */
|
2006-03-14 13:29:52 +11:00
|
|
|
{
|
2009-11-25 00:00:21 +00:00
|
|
|
xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_extnum_t i; /* extent record index */
|
|
|
|
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTENTS);
|
|
|
|
xfs_iext_add(ifp, idx, count);
|
2007-08-16 16:23:40 +10:00
|
|
|
for (i = idx; i < idx + count; i++, new++)
|
|
|
|
xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
|
2006-03-14 13:29:52 +11:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called when the amount of space required for incore file
|
|
|
|
* extents needs to be increased. The ext_diff parameter stores the
|
|
|
|
* number of new extents being added and the idx parameter contains
|
|
|
|
* the extent index where the new extents will be added. If the new
|
|
|
|
* extents are being appended, then we just need to (re)allocate and
|
|
|
|
* initialize the space. Otherwise, if the new extents are being
|
|
|
|
* inserted into the middle of the existing entries, a bit more work
|
|
|
|
* is required to make room for the new extents to be inserted. The
|
|
|
|
* caller is responsible for filling in the new extent entries upon
|
|
|
|
* return.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_add(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t idx, /* index to begin adding exts */
|
2006-03-29 08:55:14 +10:00
|
|
|
int ext_diff) /* number of extents to add */
|
2006-03-14 13:29:52 +11:00
|
|
|
{
|
|
|
|
int byte_diff; /* new bytes being added */
|
|
|
|
int new_size; /* size of extents after adding */
|
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ASSERT((idx >= 0) && (idx <= nextents));
|
|
|
|
byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
|
|
|
|
new_size = ifp->if_bytes + byte_diff;
|
|
|
|
/*
|
|
|
|
* If the new number of extents (nextents + ext_diff)
|
|
|
|
* fits inside the inode, then continue to use the inline
|
|
|
|
* extent buffer.
|
|
|
|
*/
|
|
|
|
if (nextents + ext_diff <= XFS_INLINE_EXTS) {
|
|
|
|
if (idx < nextents) {
|
|
|
|
memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
|
|
|
|
&ifp->if_u2.if_inline_ext[idx],
|
|
|
|
(nextents - idx) * sizeof(xfs_bmbt_rec_t));
|
|
|
|
memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
|
|
|
|
}
|
|
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
|
|
|
ifp->if_real_bytes = 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Otherwise use a linear (direct) extent list.
|
|
|
|
* If the extents are currently inside the inode,
|
|
|
|
* xfs_iext_realloc_direct will switch us from
|
|
|
|
* inline to direct extent allocation mode.
|
|
|
|
*/
|
2006-03-14 13:30:23 +11:00
|
|
|
else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_iext_realloc_direct(ifp, new_size);
|
|
|
|
if (idx < nextents) {
|
|
|
|
memmove(&ifp->if_u1.if_extents[idx + ext_diff],
|
|
|
|
&ifp->if_u1.if_extents[idx],
|
|
|
|
(nextents - idx) * sizeof(xfs_bmbt_rec_t));
|
|
|
|
memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
|
|
|
|
}
|
|
|
|
}
|
2006-03-14 13:30:23 +11:00
|
|
|
/* Indirection array */
|
|
|
|
else {
|
|
|
|
xfs_ext_irec_t *erp;
|
|
|
|
int erp_idx = 0;
|
|
|
|
int page_idx = idx;
|
|
|
|
|
|
|
|
ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
|
|
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
|
|
|
|
} else {
|
|
|
|
xfs_iext_irec_init(ifp);
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
erp = ifp->if_u1.if_ext_irec;
|
|
|
|
}
|
|
|
|
/* Extents fit in target extent page */
|
|
|
|
if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
|
|
|
|
if (page_idx < erp->er_extcount) {
|
|
|
|
memmove(&erp->er_extbuf[page_idx + ext_diff],
|
|
|
|
&erp->er_extbuf[page_idx],
|
|
|
|
(erp->er_extcount - page_idx) *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
memset(&erp->er_extbuf[page_idx], 0, byte_diff);
|
|
|
|
}
|
|
|
|
erp->er_extcount += ext_diff;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
|
|
|
}
|
|
|
|
/* Insert a new extent page */
|
|
|
|
else if (erp) {
|
|
|
|
xfs_iext_add_indirect_multi(ifp,
|
|
|
|
erp_idx, page_idx, ext_diff);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If extent(s) are being appended to the last page in
|
|
|
|
* the indirection array and the new extent(s) don't fit
|
|
|
|
* in the page, then erp is NULL and erp_idx is set to
|
|
|
|
* the next index needed in the indirection array.
|
|
|
|
*/
|
|
|
|
else {
|
|
|
|
int count = ext_diff;
|
|
|
|
|
|
|
|
while (count) {
|
|
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
|
|
|
erp->er_extcount = count;
|
|
|
|
count -= MIN(count, (int)XFS_LINEAR_EXTS);
|
|
|
|
if (count) {
|
|
|
|
erp_idx++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-03-14 13:29:52 +11:00
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
/*
|
|
|
|
* This is called when incore extents are being added to the indirection
|
|
|
|
* array and the new extents do not fit in the target extent list. The
|
|
|
|
* erp_idx parameter contains the irec index for the target extent list
|
|
|
|
* in the indirection array, and the idx parameter contains the extent
|
|
|
|
* index within the list. The number of extents being added is stored
|
|
|
|
* in the count parameter.
|
|
|
|
*
|
|
|
|
* |-------| |-------|
|
|
|
|
* | | | | idx - number of extents before idx
|
|
|
|
* | idx | | count |
|
|
|
|
* | | | | count - number of extents being inserted at idx
|
|
|
|
* |-------| |-------|
|
|
|
|
* | count | | nex2 | nex2 - number of extents after idx + count
|
|
|
|
* |-------| |-------|
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_add_indirect_multi(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int erp_idx, /* target extent irec index */
|
|
|
|
xfs_extnum_t idx, /* index within target list */
|
|
|
|
int count) /* new extents being added */
|
|
|
|
{
|
|
|
|
int byte_diff; /* new bytes being added */
|
|
|
|
xfs_ext_irec_t *erp; /* pointer to irec entry */
|
|
|
|
xfs_extnum_t ext_diff; /* number of extents to add */
|
|
|
|
xfs_extnum_t ext_cnt; /* new extents still needed */
|
|
|
|
xfs_extnum_t nex2; /* extents after idx + count */
|
|
|
|
xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
|
|
|
|
int nlists; /* number of irec's (lists) */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
nex2 = erp->er_extcount - idx;
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Save second part of target extent list
|
|
|
|
* (all extents past */
|
|
|
|
if (nex2) {
|
|
|
|
byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
|
2008-08-13 16:02:51 +10:00
|
|
|
nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
|
2006-03-14 13:30:23 +11:00
|
|
|
memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
|
|
|
|
erp->er_extcount -= nex2;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
|
|
|
|
memset(&erp->er_extbuf[idx], 0, byte_diff);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add the new extents to the end of the target
|
|
|
|
* list, then allocate new irec record(s) and
|
|
|
|
* extent buffer(s) as needed to store the rest
|
|
|
|
* of the new extents.
|
|
|
|
*/
|
|
|
|
ext_cnt = count;
|
|
|
|
ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
|
|
|
|
if (ext_diff) {
|
|
|
|
erp->er_extcount += ext_diff;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
|
|
|
ext_cnt -= ext_diff;
|
|
|
|
}
|
|
|
|
while (ext_cnt) {
|
|
|
|
erp_idx++;
|
|
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
|
|
|
ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
|
|
|
|
erp->er_extcount = ext_diff;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
|
|
|
ext_cnt -= ext_diff;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add nex2 extents back to indirection array */
|
|
|
|
if (nex2) {
|
|
|
|
xfs_extnum_t ext_avail;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
|
|
|
|
ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
|
|
|
|
i = 0;
|
|
|
|
/*
|
|
|
|
* If nex2 extents fit in the current page, append
|
|
|
|
* nex2_ep after the new extents.
|
|
|
|
*/
|
|
|
|
if (nex2 <= ext_avail) {
|
|
|
|
i = erp->er_extcount;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Otherwise, check if space is available in the
|
|
|
|
* next page.
|
|
|
|
*/
|
|
|
|
else if ((erp_idx < nlists - 1) &&
|
|
|
|
(nex2 <= (ext_avail = XFS_LINEAR_EXTS -
|
|
|
|
ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
|
|
|
|
erp_idx++;
|
|
|
|
erp++;
|
|
|
|
/* Create a hole for nex2 extents */
|
|
|
|
memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
|
|
|
|
erp->er_extcount * sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Final choice, create a new extent page for
|
|
|
|
* nex2 extents.
|
|
|
|
*/
|
|
|
|
else {
|
|
|
|
erp_idx++;
|
|
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
|
|
|
}
|
|
|
|
memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(nex2_ep);
|
2006-03-14 13:30:23 +11:00
|
|
|
erp->er_extcount += nex2;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
/*
|
|
|
|
* This is called when the amount of space required for incore file
|
|
|
|
* extents needs to be decreased. The ext_diff parameter stores the
|
|
|
|
* number of extents to be removed and the idx parameter contains
|
|
|
|
* the extent index where the extents will be removed from.
|
2006-03-14 13:30:23 +11:00
|
|
|
*
|
|
|
|
* If the amount of space needed has decreased below the linear
|
|
|
|
* limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
|
|
|
|
* extent array. Otherwise, use kmem_realloc() to adjust the
|
|
|
|
* size to what is needed.
|
2006-03-14 13:29:52 +11:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_remove(
|
2009-11-25 00:00:21 +00:00
|
|
|
xfs_inode_t *ip, /* incore inode pointer */
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
2009-11-25 00:00:21 +00:00
|
|
|
int ext_diff, /* number of extents to remove */
|
|
|
|
int state) /* type of extent conversion */
|
2006-03-14 13:29:52 +11:00
|
|
|
{
|
2009-11-25 00:00:21 +00:00
|
|
|
xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
|
2006-03-14 13:29:52 +11:00
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
int new_size; /* size of extents after removal */
|
|
|
|
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
ASSERT(ext_diff > 0);
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
|
|
|
|
|
|
|
|
if (new_size == 0) {
|
|
|
|
xfs_iext_destroy(ifp);
|
2006-03-14 13:30:23 +11:00
|
|
|
} else if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
xfs_iext_remove_indirect(ifp, idx, ext_diff);
|
2006-03-14 13:29:52 +11:00
|
|
|
} else if (ifp->if_real_bytes) {
|
|
|
|
xfs_iext_remove_direct(ifp, idx, ext_diff);
|
|
|
|
} else {
|
|
|
|
xfs_iext_remove_inline(ifp, idx, ext_diff);
|
|
|
|
}
|
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This removes ext_diff extents from the inline buffer, beginning
|
|
|
|
* at extent index idx.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_remove_inline(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
|
|
|
int ext_diff) /* number of extents to remove */
|
|
|
|
{
|
|
|
|
int nextents; /* number of extents in file */
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
2006-03-14 13:29:52 +11:00
|
|
|
ASSERT(idx < XFS_INLINE_EXTS);
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ASSERT(((nextents - ext_diff) > 0) &&
|
|
|
|
(nextents - ext_diff) < XFS_INLINE_EXTS);
|
|
|
|
|
|
|
|
if (idx + ext_diff < nextents) {
|
|
|
|
memmove(&ifp->if_u2.if_inline_ext[idx],
|
|
|
|
&ifp->if_u2.if_inline_ext[idx + ext_diff],
|
|
|
|
(nextents - (idx + ext_diff)) *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
|
|
|
|
0, ext_diff * sizeof(xfs_bmbt_rec_t));
|
|
|
|
} else {
|
|
|
|
memset(&ifp->if_u2.if_inline_ext[idx], 0,
|
|
|
|
ext_diff * sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This removes ext_diff extents from a linear (direct) extent list,
|
|
|
|
* beginning at extent index idx. If the extents are being removed
|
|
|
|
* from the end of the list (ie. truncate) then we just need to re-
|
|
|
|
* allocate the list to remove the extra space. Otherwise, if the
|
|
|
|
* extents are being removed from the middle of the existing extent
|
|
|
|
* entries, then we first need to move the extent records beginning
|
|
|
|
* at idx + ext_diff up in the list to overwrite the records being
|
|
|
|
* removed, then remove the extra space via kmem_realloc.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_remove_direct(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
|
|
|
int ext_diff) /* number of extents to remove */
|
|
|
|
{
|
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
int new_size; /* size of extents after removal */
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
2006-03-14 13:29:52 +11:00
|
|
|
new_size = ifp->if_bytes -
|
|
|
|
(ext_diff * sizeof(xfs_bmbt_rec_t));
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
|
|
|
|
if (new_size == 0) {
|
|
|
|
xfs_iext_destroy(ifp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Move extents up in the list (if needed) */
|
|
|
|
if (idx + ext_diff < nextents) {
|
|
|
|
memmove(&ifp->if_u1.if_extents[idx],
|
|
|
|
&ifp->if_u1.if_extents[idx + ext_diff],
|
|
|
|
(nextents - (idx + ext_diff)) *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
memset(&ifp->if_u1.if_extents[nextents - ext_diff],
|
|
|
|
0, ext_diff * sizeof(xfs_bmbt_rec_t));
|
|
|
|
/*
|
|
|
|
* Reallocate the direct extent list. If the extents
|
|
|
|
* will fit inside the inode then xfs_iext_realloc_direct
|
|
|
|
* will switch from direct to inline extent allocation
|
|
|
|
* mode for us.
|
|
|
|
*/
|
|
|
|
xfs_iext_realloc_direct(ifp, new_size);
|
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
/*
|
|
|
|
* This is called when incore extents are being removed from the
|
|
|
|
* indirection array and the extents being removed span multiple extent
|
|
|
|
* buffers. The idx parameter contains the file extent index where we
|
|
|
|
* want to begin removing extents, and the count parameter contains
|
|
|
|
* how many extents need to be removed.
|
|
|
|
*
|
|
|
|
* |-------| |-------|
|
|
|
|
* | nex1 | | | nex1 - number of extents before idx
|
|
|
|
* |-------| | count |
|
|
|
|
* | | | | count - number of extents being removed at idx
|
|
|
|
* | count | |-------|
|
|
|
|
* | | | nex2 | nex2 - number of extents after idx + count
|
|
|
|
* |-------| |-------|
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_remove_indirect(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t idx, /* index to begin removing extents */
|
|
|
|
int count) /* number of extents to remove */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
|
|
|
int erp_idx = 0; /* indirection array index */
|
|
|
|
xfs_extnum_t ext_cnt; /* extents left to remove */
|
|
|
|
xfs_extnum_t ext_diff; /* extents to remove in current list */
|
|
|
|
xfs_extnum_t nex1; /* number of extents before idx */
|
|
|
|
xfs_extnum_t nex2; /* extents after idx + count */
|
|
|
|
int page_idx = idx; /* index in target extent list */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
|
|
|
|
ASSERT(erp != NULL);
|
|
|
|
nex1 = page_idx;
|
|
|
|
ext_cnt = count;
|
|
|
|
while (ext_cnt) {
|
|
|
|
nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
|
|
|
|
ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
|
|
|
|
/*
|
|
|
|
* Check for deletion of entire list;
|
|
|
|
* xfs_iext_irec_remove() updates extent offsets.
|
|
|
|
*/
|
|
|
|
if (ext_diff == erp->er_extcount) {
|
|
|
|
xfs_iext_irec_remove(ifp, erp_idx);
|
|
|
|
ext_cnt -= ext_diff;
|
|
|
|
nex1 = 0;
|
|
|
|
if (ext_cnt) {
|
|
|
|
ASSERT(erp_idx < ifp->if_real_bytes /
|
|
|
|
XFS_IEXT_BUFSZ);
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
nex1 = 0;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Move extents up (if needed) */
|
|
|
|
if (nex2) {
|
|
|
|
memmove(&erp->er_extbuf[nex1],
|
|
|
|
&erp->er_extbuf[nex1 + ext_diff],
|
|
|
|
nex2 * sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
/* Zero out rest of page */
|
|
|
|
memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
|
|
|
|
((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
|
|
|
|
/* Update remaining counters */
|
|
|
|
erp->er_extcount -= ext_diff;
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
|
|
|
|
ext_cnt -= ext_diff;
|
|
|
|
nex1 = 0;
|
|
|
|
erp_idx++;
|
|
|
|
erp++;
|
|
|
|
}
|
|
|
|
ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
|
|
|
|
xfs_iext_irec_compact(ifp);
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
/*
|
|
|
|
* Create, destroy, or resize a linear (direct) block of extents.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_realloc_direct(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int new_size) /* new size of extents */
|
|
|
|
{
|
|
|
|
int rnew_size; /* real new size of extents */
|
|
|
|
|
|
|
|
rnew_size = new_size;
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
|
|
|
|
((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
|
|
|
|
(new_size != ifp->if_real_bytes)));
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
/* Free extent records */
|
|
|
|
if (new_size == 0) {
|
|
|
|
xfs_iext_destroy(ifp);
|
|
|
|
}
|
|
|
|
/* Resize direct extent list and zero any new bytes */
|
|
|
|
else if (ifp->if_real_bytes) {
|
|
|
|
/* Check if extents will fit inside the inode */
|
|
|
|
if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
|
|
|
|
xfs_iext_direct_to_inline(ifp, new_size /
|
|
|
|
(uint)sizeof(xfs_bmbt_rec_t));
|
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
return;
|
|
|
|
}
|
2007-06-28 16:46:37 +10:00
|
|
|
if (!is_power_of_2(new_size)){
|
2007-11-23 16:30:51 +11:00
|
|
|
rnew_size = roundup_pow_of_two(new_size);
|
2006-03-14 13:29:52 +11:00
|
|
|
}
|
|
|
|
if (rnew_size != ifp->if_real_bytes) {
|
2007-08-16 16:23:40 +10:00
|
|
|
ifp->if_u1.if_extents =
|
2006-03-14 13:29:52 +11:00
|
|
|
kmem_realloc(ifp->if_u1.if_extents,
|
|
|
|
rnew_size,
|
2008-08-13 16:02:51 +10:00
|
|
|
ifp->if_real_bytes, KM_NOFS);
|
2006-03-14 13:29:52 +11:00
|
|
|
}
|
|
|
|
if (rnew_size > ifp->if_real_bytes) {
|
|
|
|
memset(&ifp->if_u1.if_extents[ifp->if_bytes /
|
|
|
|
(uint)sizeof(xfs_bmbt_rec_t)], 0,
|
|
|
|
rnew_size - ifp->if_real_bytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Switch from the inline extent buffer to a direct
|
|
|
|
* extent list. Be sure to include the inline extent
|
|
|
|
* bytes in new_size.
|
|
|
|
*/
|
|
|
|
else {
|
|
|
|
new_size += ifp->if_bytes;
|
2007-06-28 16:46:37 +10:00
|
|
|
if (!is_power_of_2(new_size)) {
|
2007-11-23 16:30:51 +11:00
|
|
|
rnew_size = roundup_pow_of_two(new_size);
|
2006-03-14 13:29:52 +11:00
|
|
|
}
|
|
|
|
xfs_iext_inline_to_direct(ifp, rnew_size);
|
|
|
|
}
|
|
|
|
ifp->if_real_bytes = rnew_size;
|
|
|
|
ifp->if_bytes = new_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch from linear (direct) extent records to inline buffer.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_direct_to_inline(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t nextents) /* number of extents in file */
|
|
|
|
{
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTENTS);
|
|
|
|
ASSERT(nextents <= XFS_INLINE_EXTS);
|
|
|
|
/*
|
|
|
|
* The inline buffer was zeroed when we switched
|
|
|
|
* from inline to direct extent allocation mode,
|
|
|
|
* so we don't need to clear it here.
|
|
|
|
*/
|
|
|
|
memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
|
|
|
|
nextents * sizeof(xfs_bmbt_rec_t));
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_extents);
|
2006-03-14 13:29:52 +11:00
|
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
|
|
|
ifp->if_real_bytes = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch from inline buffer to linear (direct) extent records.
|
|
|
|
* new_size should already be rounded up to the next power of 2
|
|
|
|
* by the caller (when appropriate), so use new_size as it is.
|
|
|
|
* However, since new_size may be rounded up, we can't update
|
|
|
|
* if_bytes here. It is the caller's responsibility to update
|
|
|
|
* if_bytes upon return.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_inline_to_direct(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int new_size) /* number of extents in file */
|
|
|
|
{
|
2008-08-13 16:02:51 +10:00
|
|
|
ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
|
2006-03-14 13:29:52 +11:00
|
|
|
memset(ifp->if_u1.if_extents, 0, new_size);
|
|
|
|
if (ifp->if_bytes) {
|
|
|
|
memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
|
|
|
|
ifp->if_bytes);
|
|
|
|
memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
ifp->if_real_bytes = new_size;
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
/*
|
|
|
|
* Resize an extent indirection array to new_size bytes.
|
|
|
|
*/
|
2009-07-02 00:09:33 -05:00
|
|
|
STATIC void
|
2006-03-14 13:30:23 +11:00
|
|
|
xfs_iext_realloc_indirect(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int new_size) /* new indirection array size */
|
|
|
|
{
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
int size; /* current indirection array size */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
size = nlists * sizeof(xfs_ext_irec_t);
|
|
|
|
ASSERT(ifp->if_real_bytes);
|
|
|
|
ASSERT((new_size >= 0) && (new_size != size));
|
|
|
|
if (new_size == 0) {
|
|
|
|
xfs_iext_destroy(ifp);
|
|
|
|
} else {
|
|
|
|
ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
|
|
|
|
kmem_realloc(ifp->if_u1.if_ext_irec,
|
2008-08-13 16:02:51 +10:00
|
|
|
new_size, size, KM_NOFS);
|
2006-03-14 13:30:23 +11:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch from indirection array to linear (direct) extent allocations.
|
|
|
|
*/
|
2009-07-02 00:09:33 -05:00
|
|
|
STATIC void
|
2006-03-14 13:30:23 +11:00
|
|
|
xfs_iext_indirect_to_direct(
|
|
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
|
|
|
{
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *ep; /* extent record pointer */
|
2006-03-14 13:30:23 +11:00
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
int size; /* size of file extents */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ASSERT(nextents <= XFS_LINEAR_EXTS);
|
|
|
|
size = nextents * sizeof(xfs_bmbt_rec_t);
|
|
|
|
|
2008-09-26 12:17:57 +10:00
|
|
|
xfs_iext_irec_compact_pages(ifp);
|
2006-03-14 13:30:23 +11:00
|
|
|
ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
|
|
|
|
|
|
|
|
ep = ifp->if_u1.if_ext_irec->er_extbuf;
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_ext_irec);
|
2006-03-14 13:30:23 +11:00
|
|
|
ifp->if_flags &= ~XFS_IFEXTIREC;
|
|
|
|
ifp->if_u1.if_extents = ep;
|
|
|
|
ifp->if_bytes = size;
|
|
|
|
if (nextents < XFS_LINEAR_EXTS) {
|
|
|
|
xfs_iext_realloc_direct(ifp, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:29:52 +11:00
|
|
|
/*
|
|
|
|
* Free incore file extents.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_destroy(
|
|
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
|
|
|
{
|
2006-03-14 13:30:23 +11:00
|
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
int erp_idx;
|
|
|
|
int nlists;
|
|
|
|
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
|
|
|
|
xfs_iext_irec_remove(ifp, erp_idx);
|
|
|
|
}
|
|
|
|
ifp->if_flags &= ~XFS_IFEXTIREC;
|
|
|
|
} else if (ifp->if_real_bytes) {
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_extents);
|
2006-03-14 13:29:52 +11:00
|
|
|
} else if (ifp->if_bytes) {
|
|
|
|
memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
}
|
|
|
|
ifp->if_u1.if_extents = NULL;
|
|
|
|
ifp->if_real_bytes = 0;
|
|
|
|
ifp->if_bytes = 0;
|
|
|
|
}
|
2006-03-14 13:30:23 +11:00
|
|
|
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
/*
|
|
|
|
* Return a pointer to the extent record for file system block bno.
|
|
|
|
*/
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t * /* pointer to found extent record */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_iext_bno_to_ext(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_fileoff_t bno, /* block number to search for */
|
|
|
|
xfs_extnum_t *idxp) /* index of target extent */
|
|
|
|
{
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *base; /* pointer to first extent */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_filblks_t blockcount = 0; /* number of blocks in extent */
|
2007-08-16 16:23:40 +10:00
|
|
|
xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
|
2006-03-29 08:55:14 +10:00
|
|
|
int high; /* upper boundary in search */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_extnum_t idx = 0; /* index of target extent */
|
2006-03-29 08:55:14 +10:00
|
|
|
int low; /* lower boundary in search */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_extnum_t nextents; /* number of file extents */
|
|
|
|
xfs_fileoff_t startoff = 0; /* start offset of extent */
|
|
|
|
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
if (nextents == 0) {
|
|
|
|
*idxp = 0;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
low = 0;
|
|
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
/* Find target extent list */
|
|
|
|
int erp_idx = 0;
|
|
|
|
erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
|
|
|
|
base = erp->er_extbuf;
|
|
|
|
high = erp->er_extcount - 1;
|
|
|
|
} else {
|
|
|
|
base = ifp->if_u1.if_extents;
|
|
|
|
high = nextents - 1;
|
|
|
|
}
|
|
|
|
/* Binary search extent records */
|
|
|
|
while (low <= high) {
|
|
|
|
idx = (low + high) >> 1;
|
|
|
|
ep = base + idx;
|
|
|
|
startoff = xfs_bmbt_get_startoff(ep);
|
|
|
|
blockcount = xfs_bmbt_get_blockcount(ep);
|
|
|
|
if (bno < startoff) {
|
|
|
|
high = idx - 1;
|
|
|
|
} else if (bno >= startoff + blockcount) {
|
|
|
|
low = idx + 1;
|
|
|
|
} else {
|
|
|
|
/* Convert back to file-based extent index */
|
|
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
idx += erp->er_extoff;
|
|
|
|
}
|
|
|
|
*idxp = idx;
|
|
|
|
return ep;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Convert back to file-based extent index */
|
|
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
|
|
|
idx += erp->er_extoff;
|
|
|
|
}
|
|
|
|
if (bno >= startoff + blockcount) {
|
|
|
|
if (++idx == nextents) {
|
|
|
|
ep = NULL;
|
|
|
|
} else {
|
|
|
|
ep = xfs_iext_get_ext(ifp, idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*idxp = idx;
|
|
|
|
return ep;
|
|
|
|
}
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
/*
|
|
|
|
* Return a pointer to the indirection array entry containing the
|
|
|
|
* extent record for filesystem block bno. Store the index of the
|
|
|
|
* target irec in *erp_idxp.
|
|
|
|
*/
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
xfs_ext_irec_t * /* pointer to found extent record */
|
2006-03-14 13:30:23 +11:00
|
|
|
xfs_iext_bno_to_irec(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_fileoff_t bno, /* block number to search for */
|
|
|
|
int *erp_idxp) /* irec index of target ext list */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
|
|
|
|
xfs_ext_irec_t *erp_next; /* next indirection array entry */
|
[XFS] There are a few problems with the new
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-17 17:25:04 +11:00
|
|
|
int erp_idx; /* indirection array index */
|
2006-03-14 13:30:23 +11:00
|
|
|
int nlists; /* number of extent irec's (lists) */
|
|
|
|
int high; /* binary search upper limit */
|
|
|
|
int low; /* binary search lower limit */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
erp_idx = 0;
|
|
|
|
low = 0;
|
|
|
|
high = nlists - 1;
|
|
|
|
while (low <= high) {
|
|
|
|
erp_idx = (low + high) >> 1;
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
|
|
|
|
if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
|
|
|
|
high = erp_idx - 1;
|
|
|
|
} else if (erp_next && bno >=
|
|
|
|
xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
|
|
|
|
low = erp_idx + 1;
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*erp_idxp = erp_idx;
|
|
|
|
return erp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return a pointer to the indirection array entry containing the
|
|
|
|
* extent record at file extent index *idxp. Store the index of the
|
|
|
|
* target irec in *erp_idxp and store the page index of the target
|
|
|
|
* extent record in *idxp.
|
|
|
|
*/
|
|
|
|
xfs_ext_irec_t *
|
|
|
|
xfs_iext_idx_to_irec(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
xfs_extnum_t *idxp, /* extent index (file -> page) */
|
|
|
|
int *erp_idxp, /* pointer to target irec */
|
|
|
|
int realloc) /* new bytes were just added */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *prev; /* pointer to previous irec */
|
|
|
|
xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
|
|
|
|
int erp_idx; /* indirection array index */
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
int high; /* binary search upper limit */
|
|
|
|
int low; /* binary search lower limit */
|
|
|
|
xfs_extnum_t page_idx = *idxp; /* extent index in target list */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
2011-05-11 15:04:11 +00:00
|
|
|
ASSERT(page_idx >= 0);
|
|
|
|
ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
|
|
|
|
ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
|
|
|
|
|
2006-03-14 13:30:23 +11:00
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
erp_idx = 0;
|
|
|
|
low = 0;
|
|
|
|
high = nlists - 1;
|
|
|
|
|
|
|
|
/* Binary search extent irec's */
|
|
|
|
while (low <= high) {
|
|
|
|
erp_idx = (low + high) >> 1;
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
prev = erp_idx > 0 ? erp - 1 : NULL;
|
|
|
|
if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
|
|
|
|
realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
|
|
|
|
high = erp_idx - 1;
|
|
|
|
} else if (page_idx > erp->er_extoff + erp->er_extcount ||
|
|
|
|
(page_idx == erp->er_extoff + erp->er_extcount &&
|
|
|
|
!realloc)) {
|
|
|
|
low = erp_idx + 1;
|
|
|
|
} else if (page_idx == erp->er_extoff + erp->er_extcount &&
|
|
|
|
erp->er_extcount == XFS_LINEAR_EXTS) {
|
|
|
|
ASSERT(realloc);
|
|
|
|
page_idx = 0;
|
|
|
|
erp_idx++;
|
|
|
|
erp = erp_idx < nlists ? erp + 1 : NULL;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
page_idx -= erp->er_extoff;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*idxp = page_idx;
|
|
|
|
*erp_idxp = erp_idx;
|
|
|
|
return(erp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and initialize an indirection array once the space needed
|
|
|
|
* for incore extents increases above XFS_IEXT_BUFSZ.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_irec_init(
|
|
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
|
|
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ASSERT(nextents <= XFS_LINEAR_EXTS);
|
|
|
|
|
2008-08-13 16:02:51 +10:00
|
|
|
erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
|
2006-03-14 13:30:23 +11:00
|
|
|
|
|
|
|
if (nextents == 0) {
|
2008-08-13 16:02:51 +10:00
|
|
|
ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
|
2006-03-14 13:30:23 +11:00
|
|
|
} else if (!ifp->if_real_bytes) {
|
|
|
|
xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
|
|
|
|
} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
|
|
|
|
xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
|
|
|
|
}
|
|
|
|
erp->er_extbuf = ifp->if_u1.if_extents;
|
|
|
|
erp->er_extcount = nextents;
|
|
|
|
erp->er_extoff = 0;
|
|
|
|
|
|
|
|
ifp->if_flags |= XFS_IFEXTIREC;
|
|
|
|
ifp->if_real_bytes = XFS_IEXT_BUFSZ;
|
|
|
|
ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
|
|
|
|
ifp->if_u1.if_ext_irec = erp;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and initialize a new entry in the indirection array.
|
|
|
|
*/
|
|
|
|
xfs_ext_irec_t *
|
|
|
|
xfs_iext_irec_new(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int erp_idx) /* index for new irec */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
|
|
|
int i; /* loop counter */
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
|
|
|
|
/* Resize indirection array */
|
|
|
|
xfs_iext_realloc_indirect(ifp, ++nlists *
|
|
|
|
sizeof(xfs_ext_irec_t));
|
|
|
|
/*
|
|
|
|
* Move records down in the array so the
|
|
|
|
* new page can use erp_idx.
|
|
|
|
*/
|
|
|
|
erp = ifp->if_u1.if_ext_irec;
|
|
|
|
for (i = nlists - 1; i > erp_idx; i--) {
|
|
|
|
memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
|
|
|
|
}
|
|
|
|
ASSERT(i == erp_idx);
|
|
|
|
|
|
|
|
/* Initialize new extent record */
|
|
|
|
erp = ifp->if_u1.if_ext_irec;
|
2008-08-13 16:02:51 +10:00
|
|
|
erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
|
2006-03-14 13:30:23 +11:00
|
|
|
ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
|
|
|
|
memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
|
|
|
|
erp[erp_idx].er_extcount = 0;
|
|
|
|
erp[erp_idx].er_extoff = erp_idx > 0 ?
|
|
|
|
erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
|
|
|
|
return (&erp[erp_idx]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a record from the indirection array.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_irec_remove(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int erp_idx) /* irec index to remove */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
|
|
|
int i; /* loop counter */
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
if (erp->er_extbuf) {
|
|
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
|
|
|
|
-erp->er_extcount);
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(erp->er_extbuf);
|
2006-03-14 13:30:23 +11:00
|
|
|
}
|
|
|
|
/* Compact extent records */
|
|
|
|
erp = ifp->if_u1.if_ext_irec;
|
|
|
|
for (i = erp_idx; i < nlists - 1; i++) {
|
|
|
|
memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Manually free the last extent record from the indirection
|
|
|
|
* array. A call to xfs_iext_realloc_indirect() with a size
|
|
|
|
* of zero would result in a call to xfs_iext_destroy() which
|
|
|
|
* would in turn call this function again, creating a nasty
|
|
|
|
* infinite loop.
|
|
|
|
*/
|
|
|
|
if (--nlists) {
|
|
|
|
xfs_iext_realloc_indirect(ifp,
|
|
|
|
nlists * sizeof(xfs_ext_irec_t));
|
|
|
|
} else {
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(ifp->if_u1.if_ext_irec);
|
2006-03-14 13:30:23 +11:00
|
|
|
}
|
|
|
|
ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called to clean up large amounts of unused memory allocated
|
|
|
|
* by the indirection array. Before compacting anything though, verify
|
|
|
|
* that the indirection array is still needed and switch back to the
|
|
|
|
* linear extent list (or even the inline buffer) if possible. The
|
|
|
|
* compaction policy is as follows:
|
|
|
|
*
|
|
|
|
* Full Compaction: Extents fit into a single page (or inline buffer)
|
2008-09-26 12:17:57 +10:00
|
|
|
* Partial Compaction: Extents occupy less than 50% of allocated space
|
2006-03-14 13:30:23 +11:00
|
|
|
* No Compaction: Extents occupy at least 50% of allocated space
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_irec_compact(
|
|
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
|
|
|
{
|
|
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
|
|
|
|
if (nextents == 0) {
|
|
|
|
xfs_iext_destroy(ifp);
|
|
|
|
} else if (nextents <= XFS_INLINE_EXTS) {
|
|
|
|
xfs_iext_indirect_to_direct(ifp);
|
|
|
|
xfs_iext_direct_to_inline(ifp, nextents);
|
|
|
|
} else if (nextents <= XFS_LINEAR_EXTS) {
|
|
|
|
xfs_iext_indirect_to_direct(ifp);
|
|
|
|
} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
|
|
|
|
xfs_iext_irec_compact_pages(ifp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Combine extents from neighboring extent pages.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_irec_compact_pages(
|
|
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
|
|
|
{
|
|
|
|
xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
|
|
|
|
int erp_idx = 0; /* indirection array index */
|
|
|
|
int nlists; /* number of irec's (ex lists) */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
while (erp_idx < nlists - 1) {
|
|
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
|
|
|
erp_next = erp + 1;
|
|
|
|
if (erp_next->er_extcount <=
|
|
|
|
(XFS_LINEAR_EXTS - erp->er_extcount)) {
|
2008-09-26 12:17:57 +10:00
|
|
|
memcpy(&erp->er_extbuf[erp->er_extcount],
|
2006-03-14 13:30:23 +11:00
|
|
|
erp_next->er_extbuf, erp_next->er_extcount *
|
|
|
|
sizeof(xfs_bmbt_rec_t));
|
|
|
|
erp->er_extcount += erp_next->er_extcount;
|
|
|
|
/*
|
|
|
|
* Free page before removing extent record
|
|
|
|
* so er_extoffs don't get modified in
|
|
|
|
* xfs_iext_irec_remove.
|
|
|
|
*/
|
2008-05-19 16:31:57 +10:00
|
|
|
kmem_free(erp_next->er_extbuf);
|
2006-03-14 13:30:23 +11:00
|
|
|
erp_next->er_extbuf = NULL;
|
|
|
|
xfs_iext_irec_remove(ifp, erp_idx + 1);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
} else {
|
|
|
|
erp_idx++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called to update the er_extoff field in the indirection
|
|
|
|
* array when extents have been added or removed from one of the
|
|
|
|
* extent lists. erp_idx contains the irec index to begin updating
|
|
|
|
* at and ext_diff contains the number of extents that were added
|
|
|
|
* or removed.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_iext_irec_update_extoffs(
|
|
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
|
|
|
int erp_idx, /* irec index to update */
|
|
|
|
int ext_diff) /* number of new extents */
|
|
|
|
{
|
|
|
|
int i; /* loop counter */
|
|
|
|
int nlists; /* number of irec's (ex lists */
|
|
|
|
|
|
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
|
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
|
|
|
for (i = erp_idx; i < nlists; i++) {
|
|
|
|
ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
|
|
|
|
}
|
|
|
|
}
|