linux-stable/include/net/netlabel.h

697 lines
21 KiB
C
Raw Normal View History

/*
* NetLabel System
*
* The NetLabel system manages static and dynamic label mappings for network
* protocols such as CIPSO and RIPSO.
*
* Author: Paul Moore <paul@paul-moore.com>
*
*/
/*
* (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef _NETLABEL_H
#define _NETLABEL_H
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <net/netlink.h>
netlabel: Label incoming TCP connections correctly in SELinux The current NetLabel/SELinux behavior for incoming TCP connections works but only through a series of happy coincidences that rely on the limited nature of standard CIPSO (only able to convey MLS attributes) and the write equality imposed by the SELinux MLS constraints. The problem is that network sockets created as the result of an incoming TCP connection were not on-the-wire labeled based on the security attributes of the parent socket but rather based on the wire label of the remote peer. The issue had to do with how IP options were managed as part of the network stack and where the LSM hooks were in relation to the code which set the IP options on these newly created child sockets. While NetLabel/SELinux did correctly set the socket's on-the-wire label it was promptly cleared by the network stack and reset based on the IP options of the remote peer. This patch, in conjunction with a prior patch that adjusted the LSM hook locations, works to set the correct on-the-wire label format for new incoming connections through the security_inet_conn_request() hook. Besides the correct behavior there are many advantages to this change, the most significant is that all of the NetLabel socket labeling code in SELinux now lives in hooks which can return error codes to the core stack which allows us to finally get ride of the selinux_netlbl_inode_permission() logic which greatly simplfies the NetLabel/SELinux glue code. In the process of developing this patch I also ran into a small handful of AF_INET6 cleanliness issues that have been fixed which should make the code safer and easier to extend in the future. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-03-27 21:10:34 +00:00
#include <net/request_sock.h>
#include <linux/atomic.h>
struct cipso_v4_doi;
struct calipso_doi;
/*
* NetLabel - A management interface for maintaining network packet label
* mapping tables for explicit packet labling protocols.
*
* Network protocols such as CIPSO and RIPSO require a label translation layer
* to convert the label on the packet into something meaningful on the host
* machine. In the current Linux implementation these mapping tables live
* inside the kernel; NetLabel provides a mechanism for user space applications
* to manage these mapping tables.
*
* NetLabel makes use of the Generic NETLINK mechanism as a transport layer to
* send messages between kernel and user space. The general format of a
* NetLabel message is shown below:
*
* +-----------------+-------------------+--------- --- -- -
* | struct nlmsghdr | struct genlmsghdr | payload
* +-----------------+-------------------+--------- --- -- -
*
* The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal.
* The payload is dependent on the subsystem specified in the
* 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions
* should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c
* file. All of the fields in the NetLabel payload are NETLINK attributes, see
* the include/net/netlink.h file for more information on NETLINK attributes.
*
*/
/*
* NetLabel NETLINK protocol
*/
/* NetLabel NETLINK protocol version
* 1: initial version
* 2: added static labels for unlabeled connections
* 3: network selectors added to the NetLabel/LSM domain mapping and the
* CIPSO_V4_MAP_LOCAL CIPSO mapping was added
*/
#define NETLBL_PROTO_VERSION 3
/* NetLabel NETLINK types/families */
#define NETLBL_NLTYPE_NONE 0
#define NETLBL_NLTYPE_MGMT 1
#define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT"
#define NETLBL_NLTYPE_RIPSO 2
#define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO"
#define NETLBL_NLTYPE_CIPSOV4 3
#define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4"
#define NETLBL_NLTYPE_CIPSOV6 4
#define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6"
#define NETLBL_NLTYPE_UNLABELED 5
#define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL"
#define NETLBL_NLTYPE_ADDRSELECT 6
#define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL"
#define NETLBL_NLTYPE_CALIPSO 7
#define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO"
/*
* NetLabel - Kernel API for accessing the network packet label mappings.
*
* The following functions are provided for use by other kernel modules,
* specifically kernel LSM modules, to provide a consistent, transparent API
* for dealing with explicit packet labeling protocols such as CIPSO and
* RIPSO. The functions defined here are implemented in the
* net/netlabel/netlabel_kapi.c file.
*
*/
/* NetLabel audit information */
struct netlbl_audit {
u32 secid;
kuid_t loginuid;
unsigned int sessionid;
};
/*
* LSM security attributes
*/
/**
* struct netlbl_lsm_cache - NetLabel LSM security attribute cache
* @refcount: atomic reference counter
* @free: LSM supplied function to free the cache data
* @data: LSM supplied cache data
*
* Description:
* This structure is provided for LSMs which wish to make use of the NetLabel
* caching mechanism to store LSM specific data/attributes in the NetLabel
* cache. If the LSM has to perform a lot of translation from the NetLabel
* security attributes into it's own internal representation then the cache
* mechanism can provide a way to eliminate some or all of that translation
* overhead on a cache hit.
*
*/
struct netlbl_lsm_cache {
atomic_t refcount;
void (*free) (const void *data);
void *data;
};
/**
* struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap
* @startbit: the value of the lowest order bit in the bitmap
* @bitmap: the category bitmap
* @next: pointer to the next bitmap "node" or NULL
*
* Description:
* This structure is used to represent category bitmaps. Due to the large
* number of categories supported by most labeling protocols it is not
* practical to transfer a full bitmap internally so NetLabel adopts a sparse
* bitmap structure modeled after SELinux's ebitmap structure.
* The catmap bitmap field MUST be a power of two in length and large
* enough to hold at least 240 bits. Special care (i.e. check the code!)
* should be used when changing these values as the LSM implementation
* probably has functions which rely on the sizes of these types to speed
* processing.
*
*/
#define NETLBL_CATMAP_MAPTYPE u64
#define NETLBL_CATMAP_MAPCNT 4
#define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8)
#define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \
NETLBL_CATMAP_MAPCNT)
#define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01
struct netlbl_lsm_catmap {
u32 startbit;
NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT];
struct netlbl_lsm_catmap *next;
};
/**
* struct netlbl_lsm_secattr - NetLabel LSM security attributes
* @flags: indicate structure attributes, see NETLBL_SECATTR_*
* @type: indicate the NLTYPE of the attributes
* @domain: the NetLabel LSM domain
* @cache: NetLabel LSM specific cache
* @attr.mls: MLS sensitivity label
* @attr.mls.cat: MLS category bitmap
* @attr.mls.lvl: MLS sensitivity level
* @attr.secid: LSM specific secid token
*
* Description:
* This structure is used to pass security attributes between NetLabel and the
* LSM modules. The flags field is used to specify which fields within the
* struct are valid and valid values can be created by bitwise OR'ing the
* NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to
* specify domain specific configuration settings and is not usually used by
* NetLabel itself when returning security attributes to the LSM.
*
*/
struct netlbl_lsm_secattr {
u32 flags;
/* bitmap values for 'flags' */
#define NETLBL_SECATTR_NONE 0x00000000
#define NETLBL_SECATTR_DOMAIN 0x00000001
#define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \
NETLBL_SECATTR_FREE_DOMAIN)
#define NETLBL_SECATTR_CACHE 0x00000002
#define NETLBL_SECATTR_MLS_LVL 0x00000004
#define NETLBL_SECATTR_MLS_CAT 0x00000008
#define NETLBL_SECATTR_SECID 0x00000010
/* bitmap meta-values for 'flags' */
#define NETLBL_SECATTR_FREE_DOMAIN 0x01000000
#define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \
NETLBL_SECATTR_MLS_CAT | \
NETLBL_SECATTR_SECID)
u32 type;
char *domain;
struct netlbl_lsm_cache *cache;
struct {
struct {
struct netlbl_lsm_catmap *cat;
u32 lvl;
} mls;
u32 secid;
} attr;
};
/**
* struct netlbl_calipso_ops - NetLabel CALIPSO operations
* @doi_add: add a CALIPSO DOI
* @doi_free: free a CALIPSO DOI
* @doi_getdef: returns a reference to a DOI
* @doi_putdef: releases a reference of a DOI
* @doi_walk: enumerate the DOI list
* @sock_getattr: retrieve the socket's attr
* @sock_setattr: set the socket's attr
* @sock_delattr: remove the socket's attr
* @req_setattr: set the req socket's attr
* @req_delattr: remove the req socket's attr
* @opt_getattr: retrieve attr from memory block
* @skbuff_optptr: find option in packet
* @skbuff_setattr: set the skbuff's attr
* @skbuff_delattr: remove the skbuff's attr
* @cache_invalidate: invalidate cache
* @cache_add: add cache entry
*
* Description:
* This structure is filled out by the CALIPSO engine and passed
* to the NetLabel core via a call to netlbl_calipso_ops_register().
* It enables the CALIPSO engine (and hence IPv6) to be compiled
* as a module.
*/
struct netlbl_calipso_ops {
int (*doi_add)(struct calipso_doi *doi_def,
struct netlbl_audit *audit_info);
void (*doi_free)(struct calipso_doi *doi_def);
int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info);
struct calipso_doi *(*doi_getdef)(u32 doi);
void (*doi_putdef)(struct calipso_doi *doi_def);
int (*doi_walk)(u32 *skip_cnt,
int (*callback)(struct calipso_doi *doi_def, void *arg),
void *cb_arg);
int (*sock_getattr)(struct sock *sk,
struct netlbl_lsm_secattr *secattr);
int (*sock_setattr)(struct sock *sk,
const struct calipso_doi *doi_def,
const struct netlbl_lsm_secattr *secattr);
void (*sock_delattr)(struct sock *sk);
int (*req_setattr)(struct request_sock *req,
const struct calipso_doi *doi_def,
const struct netlbl_lsm_secattr *secattr);
void (*req_delattr)(struct request_sock *req);
int (*opt_getattr)(const unsigned char *calipso,
struct netlbl_lsm_secattr *secattr);
unsigned char *(*skbuff_optptr)(const struct sk_buff *skb);
int (*skbuff_setattr)(struct sk_buff *skb,
const struct calipso_doi *doi_def,
const struct netlbl_lsm_secattr *secattr);
int (*skbuff_delattr)(struct sk_buff *skb);
void (*cache_invalidate)(void);
int (*cache_add)(const unsigned char *calipso_ptr,
const struct netlbl_lsm_secattr *secattr);
};
/*
* LSM security attribute operations (inline)
*/
/**
* netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache
* @flags: the memory allocation flags
*
* Description:
* Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer
* on success, NULL on failure.
*
*/
static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags)
{
struct netlbl_lsm_cache *cache;
cache = kzalloc(sizeof(*cache), flags);
if (cache)
atomic_set(&cache->refcount, 1);
return cache;
}
/**
* netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct
* @cache: the struct to free
*
* Description:
* Frees @secattr including all of the internal buffers.
*
*/
static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache)
{
if (!atomic_dec_and_test(&cache->refcount))
return;
if (cache->free)
cache->free(cache->data);
kfree(cache);
}
/**
* netlbl_catmap_alloc - Allocate a LSM secattr catmap
* @flags: memory allocation flags
*
* Description:
* Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL
* on failure.
*
*/
static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags)
{
return kzalloc(sizeof(struct netlbl_lsm_catmap), flags);
}
/**
* netlbl_catmap_free - Free a LSM secattr catmap
* @catmap: the category bitmap
*
* Description:
* Free a LSM secattr catmap.
*
*/
static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap)
{
struct netlbl_lsm_catmap *iter;
while (catmap) {
iter = catmap;
catmap = catmap->next;
kfree(iter);
}
}
/**
* netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct
* @secattr: the struct to initialize
*
* Description:
* Initialize an already allocated netlbl_lsm_secattr struct.
*
*/
static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr)
{
memset(secattr, 0, sizeof(*secattr));
}
/**
* netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct
* @secattr: the struct to clear
*
* Description:
* Destroys the @secattr struct, including freeing all of the internal buffers.
* The struct must be reset with a call to netlbl_secattr_init() before reuse.
*
*/
static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr)
{
if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN)
kfree(secattr->domain);
if (secattr->flags & NETLBL_SECATTR_CACHE)
netlbl_secattr_cache_free(secattr->cache);
if (secattr->flags & NETLBL_SECATTR_MLS_CAT)
netlbl_catmap_free(secattr->attr.mls.cat);
}
/**
* netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct
* @flags: the memory allocation flags
*
* Description:
* Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid
* pointer on success, or NULL on failure.
*
*/
static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags)
{
return kzalloc(sizeof(struct netlbl_lsm_secattr), flags);
}
/**
* netlbl_secattr_free - Frees a netlbl_lsm_secattr struct
* @secattr: the struct to free
*
* Description:
* Frees @secattr including all of the internal buffers.
*
*/
static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr)
{
netlbl_secattr_destroy(secattr);
kfree(secattr);
}
#ifdef CONFIG_NETLABEL
/*
* LSM configuration operations
*/
int netlbl_cfg_map_del(const char *domain,
u16 family,
const void *addr,
const void *mask,
struct netlbl_audit *audit_info);
int netlbl_cfg_unlbl_map_add(const char *domain,
u16 family,
const void *addr,
const void *mask,
struct netlbl_audit *audit_info);
int netlbl_cfg_unlbl_static_add(struct net *net,
const char *dev_name,
const void *addr,
const void *mask,
u16 family,
u32 secid,
struct netlbl_audit *audit_info);
int netlbl_cfg_unlbl_static_del(struct net *net,
const char *dev_name,
const void *addr,
const void *mask,
u16 family,
struct netlbl_audit *audit_info);
int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def,
struct netlbl_audit *audit_info);
void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info);
int netlbl_cfg_cipsov4_map_add(u32 doi,
const char *domain,
const struct in_addr *addr,
const struct in_addr *mask,
struct netlbl_audit *audit_info);
int netlbl_cfg_calipso_add(struct calipso_doi *doi_def,
struct netlbl_audit *audit_info);
void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info);
int netlbl_cfg_calipso_map_add(u32 doi,
const char *domain,
const struct in6_addr *addr,
const struct in6_addr *mask,
struct netlbl_audit *audit_info);
/*
* LSM security attribute operations
*/
int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset);
int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset);
int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap,
u32 *offset,
unsigned long *bitmap);
int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap,
u32 bit,
gfp_t flags);
int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap,
u32 start,
u32 end,
gfp_t flags);
int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap,
u32 offset,
unsigned long bitmap,
gfp_t flags);
/* Bitmap functions
*/
int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len,
u32 offset, u8 state);
void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state);
/*
* LSM protocol operations (NetLabel LSM/kernel API)
*/
int netlbl_enabled(void);
int netlbl_sock_setattr(struct sock *sk,
netlabel: Label incoming TCP connections correctly in SELinux The current NetLabel/SELinux behavior for incoming TCP connections works but only through a series of happy coincidences that rely on the limited nature of standard CIPSO (only able to convey MLS attributes) and the write equality imposed by the SELinux MLS constraints. The problem is that network sockets created as the result of an incoming TCP connection were not on-the-wire labeled based on the security attributes of the parent socket but rather based on the wire label of the remote peer. The issue had to do with how IP options were managed as part of the network stack and where the LSM hooks were in relation to the code which set the IP options on these newly created child sockets. While NetLabel/SELinux did correctly set the socket's on-the-wire label it was promptly cleared by the network stack and reset based on the IP options of the remote peer. This patch, in conjunction with a prior patch that adjusted the LSM hook locations, works to set the correct on-the-wire label format for new incoming connections through the security_inet_conn_request() hook. Besides the correct behavior there are many advantages to this change, the most significant is that all of the NetLabel socket labeling code in SELinux now lives in hooks which can return error codes to the core stack which allows us to finally get ride of the selinux_netlbl_inode_permission() logic which greatly simplfies the NetLabel/SELinux glue code. In the process of developing this patch I also ran into a small handful of AF_INET6 cleanliness issues that have been fixed which should make the code safer and easier to extend in the future. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-03-27 21:10:34 +00:00
u16 family,
const struct netlbl_lsm_secattr *secattr);
void netlbl_sock_delattr(struct sock *sk);
int netlbl_sock_getattr(struct sock *sk,
struct netlbl_lsm_secattr *secattr);
int netlbl_conn_setattr(struct sock *sk,
struct sockaddr *addr,
const struct netlbl_lsm_secattr *secattr);
netlabel: Label incoming TCP connections correctly in SELinux The current NetLabel/SELinux behavior for incoming TCP connections works but only through a series of happy coincidences that rely on the limited nature of standard CIPSO (only able to convey MLS attributes) and the write equality imposed by the SELinux MLS constraints. The problem is that network sockets created as the result of an incoming TCP connection were not on-the-wire labeled based on the security attributes of the parent socket but rather based on the wire label of the remote peer. The issue had to do with how IP options were managed as part of the network stack and where the LSM hooks were in relation to the code which set the IP options on these newly created child sockets. While NetLabel/SELinux did correctly set the socket's on-the-wire label it was promptly cleared by the network stack and reset based on the IP options of the remote peer. This patch, in conjunction with a prior patch that adjusted the LSM hook locations, works to set the correct on-the-wire label format for new incoming connections through the security_inet_conn_request() hook. Besides the correct behavior there are many advantages to this change, the most significant is that all of the NetLabel socket labeling code in SELinux now lives in hooks which can return error codes to the core stack which allows us to finally get ride of the selinux_netlbl_inode_permission() logic which greatly simplfies the NetLabel/SELinux glue code. In the process of developing this patch I also ran into a small handful of AF_INET6 cleanliness issues that have been fixed which should make the code safer and easier to extend in the future. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-03-27 21:10:34 +00:00
int netlbl_req_setattr(struct request_sock *req,
const struct netlbl_lsm_secattr *secattr);
void netlbl_req_delattr(struct request_sock *req);
int netlbl_skbuff_setattr(struct sk_buff *skb,
u16 family,
const struct netlbl_lsm_secattr *secattr);
int netlbl_skbuff_getattr(const struct sk_buff *skb,
u16 family,
struct netlbl_lsm_secattr *secattr);
void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway);
/*
* LSM label mapping cache operations
*/
void netlbl_cache_invalidate(void);
int netlbl_cache_add(const struct sk_buff *skb, u16 family,
const struct netlbl_lsm_secattr *secattr);
/*
* Protocol engine operations
*/
struct audit_buffer *netlbl_audit_start(int type,
struct netlbl_audit *audit_info);
#else
static inline int netlbl_cfg_map_del(const char *domain,
u16 family,
const void *addr,
const void *mask,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_cfg_unlbl_map_add(const char *domain,
u16 family,
void *addr,
void *mask,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_cfg_unlbl_static_add(struct net *net,
const char *dev_name,
const void *addr,
const void *mask,
u16 family,
u32 secid,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_cfg_unlbl_static_del(struct net *net,
const char *dev_name,
const void *addr,
const void *mask,
u16 family,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline void netlbl_cfg_cipsov4_del(u32 doi,
struct netlbl_audit *audit_info)
{
return;
}
static inline int netlbl_cfg_cipsov4_map_add(u32 doi,
const char *domain,
const struct in_addr *addr,
const struct in_addr *mask,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline void netlbl_cfg_calipso_del(u32 doi,
struct netlbl_audit *audit_info)
{
return;
}
static inline int netlbl_cfg_calipso_map_add(u32 doi,
const char *domain,
const struct in6_addr *addr,
const struct in6_addr *mask,
struct netlbl_audit *audit_info)
{
return -ENOSYS;
}
static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap,
u32 offset)
{
return -ENOENT;
}
static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap,
u32 offset)
{
return -ENOENT;
}
static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap,
u32 *offset,
unsigned long *bitmap)
{
return 0;
}
static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap,
u32 bit,
gfp_t flags)
{
return 0;
}
static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap,
u32 start,
u32 end,
gfp_t flags)
{
return 0;
}
static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap,
u32 offset,
unsigned long bitmap,
gfp_t flags)
{
return 0;
}
static inline int netlbl_enabled(void)
{
return 0;
}
static inline int netlbl_sock_setattr(struct sock *sk,
netlabel: Label incoming TCP connections correctly in SELinux The current NetLabel/SELinux behavior for incoming TCP connections works but only through a series of happy coincidences that rely on the limited nature of standard CIPSO (only able to convey MLS attributes) and the write equality imposed by the SELinux MLS constraints. The problem is that network sockets created as the result of an incoming TCP connection were not on-the-wire labeled based on the security attributes of the parent socket but rather based on the wire label of the remote peer. The issue had to do with how IP options were managed as part of the network stack and where the LSM hooks were in relation to the code which set the IP options on these newly created child sockets. While NetLabel/SELinux did correctly set the socket's on-the-wire label it was promptly cleared by the network stack and reset based on the IP options of the remote peer. This patch, in conjunction with a prior patch that adjusted the LSM hook locations, works to set the correct on-the-wire label format for new incoming connections through the security_inet_conn_request() hook. Besides the correct behavior there are many advantages to this change, the most significant is that all of the NetLabel socket labeling code in SELinux now lives in hooks which can return error codes to the core stack which allows us to finally get ride of the selinux_netlbl_inode_permission() logic which greatly simplfies the NetLabel/SELinux glue code. In the process of developing this patch I also ran into a small handful of AF_INET6 cleanliness issues that have been fixed which should make the code safer and easier to extend in the future. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-03-27 21:10:34 +00:00
u16 family,
const struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
static inline void netlbl_sock_delattr(struct sock *sk)
{
}
static inline int netlbl_sock_getattr(struct sock *sk,
struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
static inline int netlbl_conn_setattr(struct sock *sk,
struct sockaddr *addr,
const struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
netlabel: Label incoming TCP connections correctly in SELinux The current NetLabel/SELinux behavior for incoming TCP connections works but only through a series of happy coincidences that rely on the limited nature of standard CIPSO (only able to convey MLS attributes) and the write equality imposed by the SELinux MLS constraints. The problem is that network sockets created as the result of an incoming TCP connection were not on-the-wire labeled based on the security attributes of the parent socket but rather based on the wire label of the remote peer. The issue had to do with how IP options were managed as part of the network stack and where the LSM hooks were in relation to the code which set the IP options on these newly created child sockets. While NetLabel/SELinux did correctly set the socket's on-the-wire label it was promptly cleared by the network stack and reset based on the IP options of the remote peer. This patch, in conjunction with a prior patch that adjusted the LSM hook locations, works to set the correct on-the-wire label format for new incoming connections through the security_inet_conn_request() hook. Besides the correct behavior there are many advantages to this change, the most significant is that all of the NetLabel socket labeling code in SELinux now lives in hooks which can return error codes to the core stack which allows us to finally get ride of the selinux_netlbl_inode_permission() logic which greatly simplfies the NetLabel/SELinux glue code. In the process of developing this patch I also ran into a small handful of AF_INET6 cleanliness issues that have been fixed which should make the code safer and easier to extend in the future. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-03-27 21:10:34 +00:00
static inline int netlbl_req_setattr(struct request_sock *req,
const struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
static inline void netlbl_req_delattr(struct request_sock *req)
{
return;
}
static inline int netlbl_skbuff_setattr(struct sk_buff *skb,
u16 family,
const struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
static inline int netlbl_skbuff_getattr(const struct sk_buff *skb,
u16 family,
struct netlbl_lsm_secattr *secattr)
{
return -ENOSYS;
}
static inline void netlbl_skbuff_err(struct sk_buff *skb,
int error,
int gateway)
{
return;
}
static inline void netlbl_cache_invalidate(void)
{
return;
}
static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family,
const struct netlbl_lsm_secattr *secattr)
{
return 0;
}
static inline struct audit_buffer *netlbl_audit_start(int type,
struct netlbl_audit *audit_info)
{
return NULL;
}
#endif /* CONFIG_NETLABEL */
const struct netlbl_calipso_ops *
netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops);
#endif /* _NETLABEL_H */