linux-stable/net/sched/sch_mqprio.c

778 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/*
* net/sched/sch_mqprio.c
*
* Copyright (c) 2010 John Fastabend <john.r.fastabend@intel.com>
*/
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
#include <linux/ethtool_netlink.h>
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/module.h>
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/sch_generic.h>
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
#include <net/pkt_cls.h>
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
#include "sch_mqprio_lib.h"
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
struct mqprio_sched {
struct Qdisc **qdiscs;
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
u16 mode;
u16 shaper;
int hw_offload;
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
u32 flags;
u64 min_rate[TC_QOPT_MAX_QUEUE];
u64 max_rate[TC_QOPT_MAX_QUEUE];
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
u32 fp[TC_QOPT_MAX_QUEUE];
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
};
static int mqprio_enable_offload(struct Qdisc *sch,
const struct tc_mqprio_qopt *qopt,
struct netlink_ext_ack *extack)
{
struct mqprio_sched *priv = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_mqprio_qopt_offload mqprio = {
.qopt = *qopt,
.extack = extack,
};
int err, i;
switch (priv->mode) {
case TC_MQPRIO_MODE_DCB:
if (priv->shaper != TC_MQPRIO_SHAPER_DCB)
return -EINVAL;
break;
case TC_MQPRIO_MODE_CHANNEL:
mqprio.flags = priv->flags;
if (priv->flags & TC_MQPRIO_F_MODE)
mqprio.mode = priv->mode;
if (priv->flags & TC_MQPRIO_F_SHAPER)
mqprio.shaper = priv->shaper;
if (priv->flags & TC_MQPRIO_F_MIN_RATE)
for (i = 0; i < mqprio.qopt.num_tc; i++)
mqprio.min_rate[i] = priv->min_rate[i];
if (priv->flags & TC_MQPRIO_F_MAX_RATE)
for (i = 0; i < mqprio.qopt.num_tc; i++)
mqprio.max_rate[i] = priv->max_rate[i];
break;
default:
return -EINVAL;
}
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
mqprio_fp_to_offload(priv->fp, &mqprio);
err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_MQPRIO,
&mqprio);
if (err)
return err;
priv->hw_offload = mqprio.qopt.hw;
return 0;
}
static void mqprio_disable_offload(struct Qdisc *sch)
{
struct tc_mqprio_qopt_offload mqprio = { { 0 } };
struct mqprio_sched *priv = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
switch (priv->mode) {
case TC_MQPRIO_MODE_DCB:
case TC_MQPRIO_MODE_CHANNEL:
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_MQPRIO,
&mqprio);
break;
}
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
static void mqprio_destroy(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct mqprio_sched *priv = qdisc_priv(sch);
unsigned int ntx;
if (priv->qdiscs) {
for (ntx = 0;
ntx < dev->num_tx_queues && priv->qdiscs[ntx];
ntx++)
qdisc_put(priv->qdiscs[ntx]);
kfree(priv->qdiscs);
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (priv->hw_offload && dev->netdev_ops->ndo_setup_tc)
mqprio_disable_offload(sch);
else
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
netdev_set_num_tc(dev, 0);
}
static int mqprio_parse_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt,
const struct tc_mqprio_caps *caps,
struct netlink_ext_ack *extack)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
{
int err;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* Limit qopt->hw to maximum supported offload value. Drivers have
* the option of overriding this later if they don't support the a
* given offload type.
*/
if (qopt->hw > TC_MQPRIO_HW_OFFLOAD_MAX)
qopt->hw = TC_MQPRIO_HW_OFFLOAD_MAX;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* If hardware offload is requested, we will leave 3 options to the
* device driver:
* - populate the queue counts itself (and ignore what was requested)
* - validate the provided queue counts by itself (and apply them)
* - request queue count validation here (and apply them)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
*/
err = mqprio_validate_qopt(dev, qopt,
!qopt->hw || caps->validate_queue_counts,
false, extack);
if (err)
return err;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* If ndo_setup_tc is not present then hardware doesn't support offload
* and we should return an error.
*/
if (qopt->hw && !dev->netdev_ops->ndo_setup_tc) {
NL_SET_ERR_MSG(extack,
"Device does not support hardware offload");
return -EINVAL;
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return 0;
}
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
static const struct
nla_policy mqprio_tc_entry_policy[TCA_MQPRIO_TC_ENTRY_MAX + 1] = {
[TCA_MQPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32,
TC_QOPT_MAX_QUEUE),
[TCA_MQPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32,
TC_FP_EXPRESS,
TC_FP_PREEMPTIBLE),
};
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
static const struct nla_policy mqprio_policy[TCA_MQPRIO_MAX + 1] = {
[TCA_MQPRIO_MODE] = { .len = sizeof(u16) },
[TCA_MQPRIO_SHAPER] = { .len = sizeof(u16) },
[TCA_MQPRIO_MIN_RATE64] = { .type = NLA_NESTED },
[TCA_MQPRIO_MAX_RATE64] = { .type = NLA_NESTED },
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
[TCA_MQPRIO_TC_ENTRY] = { .type = NLA_NESTED },
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
};
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
static int mqprio_parse_tc_entry(u32 fp[TC_QOPT_MAX_QUEUE],
struct nlattr *opt,
unsigned long *seen_tcs,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_MQPRIO_TC_ENTRY_MAX + 1];
int err, tc;
err = nla_parse_nested(tb, TCA_MQPRIO_TC_ENTRY_MAX, opt,
mqprio_tc_entry_policy, extack);
if (err < 0)
return err;
if (NL_REQ_ATTR_CHECK(extack, opt, tb, TCA_MQPRIO_TC_ENTRY_INDEX)) {
NL_SET_ERR_MSG(extack, "TC entry index missing");
return -EINVAL;
}
tc = nla_get_u32(tb[TCA_MQPRIO_TC_ENTRY_INDEX]);
if (*seen_tcs & BIT(tc)) {
NL_SET_ERR_MSG_ATTR(extack, tb[TCA_MQPRIO_TC_ENTRY_INDEX],
"Duplicate tc entry");
return -EINVAL;
}
*seen_tcs |= BIT(tc);
if (tb[TCA_MQPRIO_TC_ENTRY_FP])
fp[tc] = nla_get_u32(tb[TCA_MQPRIO_TC_ENTRY_FP]);
return 0;
}
static int mqprio_parse_tc_entries(struct Qdisc *sch, struct nlattr *nlattr_opt,
int nlattr_opt_len,
struct netlink_ext_ack *extack)
{
struct mqprio_sched *priv = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
bool have_preemption = false;
unsigned long seen_tcs = 0;
u32 fp[TC_QOPT_MAX_QUEUE];
struct nlattr *n;
int tc, rem;
int err = 0;
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
fp[tc] = priv->fp[tc];
nla_for_each_attr(n, nlattr_opt, nlattr_opt_len, rem) {
if (nla_type(n) != TCA_MQPRIO_TC_ENTRY)
continue;
err = mqprio_parse_tc_entry(fp, n, &seen_tcs, extack);
if (err)
goto out;
}
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
priv->fp[tc] = fp[tc];
if (fp[tc] == TC_FP_PREEMPTIBLE)
have_preemption = true;
}
if (have_preemption && !ethtool_dev_mm_supported(dev)) {
NL_SET_ERR_MSG(extack, "Device does not support preemption");
return -EOPNOTSUPP;
}
out:
return err;
}
/* Parse the other netlink attributes that represent the payload of
* TCA_OPTIONS, which are appended right after struct tc_mqprio_qopt.
*/
static int mqprio_parse_nlattr(struct Qdisc *sch, struct tc_mqprio_qopt *qopt,
struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct nlattr *nlattr_opt = nla_data(opt) + NLA_ALIGN(sizeof(*qopt));
int nlattr_opt_len = nla_len(opt) - NLA_ALIGN(sizeof(*qopt));
struct mqprio_sched *priv = qdisc_priv(sch);
struct nlattr *tb[TCA_MQPRIO_MAX + 1] = {};
struct nlattr *attr;
int i, rem, err;
if (nlattr_opt_len >= nla_attr_size(0)) {
err = nla_parse_deprecated(tb, TCA_MQPRIO_MAX, nlattr_opt,
nlattr_opt_len, mqprio_policy,
NULL);
if (err < 0)
return err;
}
if (!qopt->hw) {
NL_SET_ERR_MSG(extack,
"mqprio TCA_OPTIONS can only contain netlink attributes in hardware mode");
return -EINVAL;
}
if (tb[TCA_MQPRIO_MODE]) {
priv->flags |= TC_MQPRIO_F_MODE;
priv->mode = nla_get_u16(tb[TCA_MQPRIO_MODE]);
}
if (tb[TCA_MQPRIO_SHAPER]) {
priv->flags |= TC_MQPRIO_F_SHAPER;
priv->shaper = nla_get_u16(tb[TCA_MQPRIO_SHAPER]);
}
if (tb[TCA_MQPRIO_MIN_RATE64]) {
if (priv->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
NL_SET_ERR_MSG_ATTR(extack, tb[TCA_MQPRIO_MIN_RATE64],
"min_rate accepted only when shaper is in bw_rlimit mode");
return -EINVAL;
}
i = 0;
nla_for_each_nested(attr, tb[TCA_MQPRIO_MIN_RATE64],
rem) {
if (nla_type(attr) != TCA_MQPRIO_MIN_RATE64) {
NL_SET_ERR_MSG_ATTR(extack, attr,
"Attribute type expected to be TCA_MQPRIO_MIN_RATE64");
return -EINVAL;
}
if (i >= qopt->num_tc)
break;
priv->min_rate[i] = nla_get_u64(attr);
i++;
}
priv->flags |= TC_MQPRIO_F_MIN_RATE;
}
if (tb[TCA_MQPRIO_MAX_RATE64]) {
if (priv->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
NL_SET_ERR_MSG_ATTR(extack, tb[TCA_MQPRIO_MAX_RATE64],
"max_rate accepted only when shaper is in bw_rlimit mode");
return -EINVAL;
}
i = 0;
nla_for_each_nested(attr, tb[TCA_MQPRIO_MAX_RATE64],
rem) {
if (nla_type(attr) != TCA_MQPRIO_MAX_RATE64) {
NL_SET_ERR_MSG_ATTR(extack, attr,
"Attribute type expected to be TCA_MQPRIO_MAX_RATE64");
return -EINVAL;
}
if (i >= qopt->num_tc)
break;
priv->max_rate[i] = nla_get_u64(attr);
i++;
}
priv->flags |= TC_MQPRIO_F_MAX_RATE;
}
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
if (tb[TCA_MQPRIO_TC_ENTRY]) {
err = mqprio_parse_tc_entries(sch, nlattr_opt, nlattr_opt_len,
extack);
if (err)
return err;
}
return 0;
}
static int mqprio_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
{
struct net_device *dev = qdisc_dev(sch);
struct mqprio_sched *priv = qdisc_priv(sch);
struct netdev_queue *dev_queue;
struct Qdisc *qdisc;
int i, err = -EOPNOTSUPP;
struct tc_mqprio_qopt *qopt = NULL;
struct tc_mqprio_caps caps;
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
int len, tc;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
BUILD_BUG_ON(TC_MAX_QUEUE != TC_QOPT_MAX_QUEUE);
BUILD_BUG_ON(TC_BITMASK != TC_QOPT_BITMASK);
if (sch->parent != TC_H_ROOT)
return -EOPNOTSUPP;
if (!netif_is_multiqueue(dev))
return -EOPNOTSUPP;
/* make certain can allocate enough classids to handle queues */
if (dev->num_tx_queues >= TC_H_MIN_PRIORITY)
return -ENOMEM;
if (!opt || nla_len(opt) < sizeof(*qopt))
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return -EINVAL;
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
priv->fp[tc] = TC_FP_EXPRESS;
qdisc_offload_query_caps(dev, TC_SETUP_QDISC_MQPRIO,
&caps, sizeof(caps));
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
qopt = nla_data(opt);
if (mqprio_parse_opt(dev, qopt, &caps, extack))
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return -EINVAL;
len = nla_len(opt) - NLA_ALIGN(sizeof(*qopt));
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
if (len > 0) {
err = mqprio_parse_nlattr(sch, qopt, opt, extack);
if (err)
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
return err;
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* pre-allocate qdisc, attachment can't fail */
priv->qdiscs = kcalloc(dev->num_tx_queues, sizeof(priv->qdiscs[0]),
GFP_KERNEL);
net_sched: fix error recovery at qdisc creation Dmitry reported uses after free in qdisc code [1] The problem here is that ops->init() can return an error. qdisc_create_dflt() then call ops->destroy(), while qdisc_create() does _not_ call it. Four qdisc chose to call their own ops->destroy(), assuming their caller would not. This patch makes sure qdisc_create() calls ops->destroy() and fixes the four qdisc to avoid double free. [1] BUG: KASAN: use-after-free in mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 at addr ffff8801d415d440 Read of size 8 by task syz-executor2/5030 CPU: 0 PID: 5030 Comm: syz-executor2 Not tainted 4.3.5-smp-DEV #119 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 0000000000000046 ffff8801b435b870 ffffffff81bbbed4 ffff8801db000400 ffff8801d415d440 ffff8801d415dc40 ffff8801c4988510 ffff8801b435b898 ffffffff816682b1 ffff8801b435b928 ffff8801d415d440 ffff8801c49880c0 Call Trace: [<ffffffff81bbbed4>] __dump_stack lib/dump_stack.c:15 [inline] [<ffffffff81bbbed4>] dump_stack+0x6c/0x98 lib/dump_stack.c:51 [<ffffffff816682b1>] kasan_object_err+0x21/0x70 mm/kasan/report.c:158 [<ffffffff81668524>] print_address_description mm/kasan/report.c:196 [inline] [<ffffffff81668524>] kasan_report_error+0x1b4/0x4b0 mm/kasan/report.c:285 [<ffffffff81668953>] kasan_report mm/kasan/report.c:305 [inline] [<ffffffff81668953>] __asan_report_load8_noabort+0x43/0x50 mm/kasan/report.c:326 [<ffffffff82527b02>] mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 [<ffffffff82524bdd>] qdisc_destroy+0x12d/0x290 net/sched/sch_generic.c:953 [<ffffffff82524e30>] qdisc_create_dflt+0xf0/0x120 net/sched/sch_generic.c:848 [<ffffffff8252550d>] attach_default_qdiscs net/sched/sch_generic.c:1029 [inline] [<ffffffff8252550d>] dev_activate+0x6ad/0x880 net/sched/sch_generic.c:1064 [<ffffffff824b1db1>] __dev_open+0x221/0x320 net/core/dev.c:1403 [<ffffffff824b24ce>] __dev_change_flags+0x15e/0x3e0 net/core/dev.c:6858 [<ffffffff824b27de>] dev_change_flags+0x8e/0x140 net/core/dev.c:6926 [<ffffffff824f5bf6>] dev_ifsioc+0x446/0x890 net/core/dev_ioctl.c:260 [<ffffffff824f61fa>] dev_ioctl+0x1ba/0xb80 net/core/dev_ioctl.c:546 [<ffffffff82430509>] sock_do_ioctl+0x99/0xb0 net/socket.c:879 [<ffffffff82430d30>] sock_ioctl+0x2a0/0x390 net/socket.c:958 [<ffffffff816f3b68>] vfs_ioctl fs/ioctl.c:44 [inline] [<ffffffff816f3b68>] do_vfs_ioctl+0x8a8/0xe50 fs/ioctl.c:611 [<ffffffff816f41a4>] SYSC_ioctl fs/ioctl.c:626 [inline] [<ffffffff816f41a4>] SyS_ioctl+0x94/0xc0 fs/ioctl.c:617 [<ffffffff8123e357>] entry_SYSCALL_64_fastpath+0x12/0x17 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 10:31:49 -08:00
if (!priv->qdiscs)
return -ENOMEM;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
for (i = 0; i < dev->num_tx_queues; i++) {
dev_queue = netdev_get_tx_queue(dev, i);
qdisc = qdisc_create_dflt(dev_queue,
get_default_qdisc_ops(dev, i),
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
TC_H_MAKE(TC_H_MAJ(sch->handle),
TC_H_MIN(i + 1)), extack);
net_sched: fix error recovery at qdisc creation Dmitry reported uses after free in qdisc code [1] The problem here is that ops->init() can return an error. qdisc_create_dflt() then call ops->destroy(), while qdisc_create() does _not_ call it. Four qdisc chose to call their own ops->destroy(), assuming their caller would not. This patch makes sure qdisc_create() calls ops->destroy() and fixes the four qdisc to avoid double free. [1] BUG: KASAN: use-after-free in mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 at addr ffff8801d415d440 Read of size 8 by task syz-executor2/5030 CPU: 0 PID: 5030 Comm: syz-executor2 Not tainted 4.3.5-smp-DEV #119 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 0000000000000046 ffff8801b435b870 ffffffff81bbbed4 ffff8801db000400 ffff8801d415d440 ffff8801d415dc40 ffff8801c4988510 ffff8801b435b898 ffffffff816682b1 ffff8801b435b928 ffff8801d415d440 ffff8801c49880c0 Call Trace: [<ffffffff81bbbed4>] __dump_stack lib/dump_stack.c:15 [inline] [<ffffffff81bbbed4>] dump_stack+0x6c/0x98 lib/dump_stack.c:51 [<ffffffff816682b1>] kasan_object_err+0x21/0x70 mm/kasan/report.c:158 [<ffffffff81668524>] print_address_description mm/kasan/report.c:196 [inline] [<ffffffff81668524>] kasan_report_error+0x1b4/0x4b0 mm/kasan/report.c:285 [<ffffffff81668953>] kasan_report mm/kasan/report.c:305 [inline] [<ffffffff81668953>] __asan_report_load8_noabort+0x43/0x50 mm/kasan/report.c:326 [<ffffffff82527b02>] mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 [<ffffffff82524bdd>] qdisc_destroy+0x12d/0x290 net/sched/sch_generic.c:953 [<ffffffff82524e30>] qdisc_create_dflt+0xf0/0x120 net/sched/sch_generic.c:848 [<ffffffff8252550d>] attach_default_qdiscs net/sched/sch_generic.c:1029 [inline] [<ffffffff8252550d>] dev_activate+0x6ad/0x880 net/sched/sch_generic.c:1064 [<ffffffff824b1db1>] __dev_open+0x221/0x320 net/core/dev.c:1403 [<ffffffff824b24ce>] __dev_change_flags+0x15e/0x3e0 net/core/dev.c:6858 [<ffffffff824b27de>] dev_change_flags+0x8e/0x140 net/core/dev.c:6926 [<ffffffff824f5bf6>] dev_ifsioc+0x446/0x890 net/core/dev_ioctl.c:260 [<ffffffff824f61fa>] dev_ioctl+0x1ba/0xb80 net/core/dev_ioctl.c:546 [<ffffffff82430509>] sock_do_ioctl+0x99/0xb0 net/socket.c:879 [<ffffffff82430d30>] sock_ioctl+0x2a0/0x390 net/socket.c:958 [<ffffffff816f3b68>] vfs_ioctl fs/ioctl.c:44 [inline] [<ffffffff816f3b68>] do_vfs_ioctl+0x8a8/0xe50 fs/ioctl.c:611 [<ffffffff816f41a4>] SYSC_ioctl fs/ioctl.c:626 [inline] [<ffffffff816f41a4>] SyS_ioctl+0x94/0xc0 fs/ioctl.c:617 [<ffffffff8123e357>] entry_SYSCALL_64_fastpath+0x12/0x17 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 10:31:49 -08:00
if (!qdisc)
return -ENOMEM;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
priv->qdiscs[i] = qdisc;
net_sched: fix qdisc_tree_decrease_qlen() races qdisc_tree_decrease_qlen() suffers from two problems on multiqueue devices. One problem is that it updates sch->q.qlen and sch->qstats.drops on the mq/mqprio root qdisc, while it should not : Daniele reported underflows errors : [ 681.774821] PAX: sch->q.qlen: 0 n: 1 [ 681.774825] PAX: size overflow detected in function qdisc_tree_decrease_qlen net/sched/sch_api.c:769 cicus.693_49 min, count: 72, decl: qlen; num: 0; context: sk_buff_head; [ 681.774954] CPU: 2 PID: 19 Comm: ksoftirqd/2 Tainted: G O 4.2.6.201511282239-1-grsec #1 [ 681.774955] Hardware name: ASUSTeK COMPUTER INC. X302LJ/X302LJ, BIOS X302LJ.202 03/05/2015 [ 681.774956] ffffffffa9a04863 0000000000000000 0000000000000000 ffffffffa990ff7c [ 681.774959] ffffc90000d3bc38 ffffffffa95d2810 0000000000000007 ffffffffa991002b [ 681.774960] ffffc90000d3bc68 ffffffffa91a44f4 0000000000000001 0000000000000001 [ 681.774962] Call Trace: [ 681.774967] [<ffffffffa95d2810>] dump_stack+0x4c/0x7f [ 681.774970] [<ffffffffa91a44f4>] report_size_overflow+0x34/0x50 [ 681.774972] [<ffffffffa94d17e2>] qdisc_tree_decrease_qlen+0x152/0x160 [ 681.774976] [<ffffffffc02694b1>] fq_codel_dequeue+0x7b1/0x820 [sch_fq_codel] [ 681.774978] [<ffffffffc02680a0>] ? qdisc_peek_dequeued+0xa0/0xa0 [sch_fq_codel] [ 681.774980] [<ffffffffa94cd92d>] __qdisc_run+0x4d/0x1d0 [ 681.774983] [<ffffffffa949b2b2>] net_tx_action+0xc2/0x160 [ 681.774985] [<ffffffffa90664c1>] __do_softirq+0xf1/0x200 [ 681.774987] [<ffffffffa90665ee>] run_ksoftirqd+0x1e/0x30 [ 681.774989] [<ffffffffa90896b0>] smpboot_thread_fn+0x150/0x260 [ 681.774991] [<ffffffffa9089560>] ? sort_range+0x40/0x40 [ 681.774992] [<ffffffffa9085fe4>] kthread+0xe4/0x100 [ 681.774994] [<ffffffffa9085f00>] ? kthread_worker_fn+0x170/0x170 [ 681.774995] [<ffffffffa95d8d1e>] ret_from_fork+0x3e/0x70 mq/mqprio have their own ways to report qlen/drops by folding stats on all their queues, with appropriate locking. A second problem is that qdisc_tree_decrease_qlen() calls qdisc_lookup() without proper locking : concurrent qdisc updates could corrupt the list that qdisc_match_from_root() parses to find a qdisc given its handle. Fix first problem adding a TCQ_F_NOPARENT qdisc flag that qdisc_tree_decrease_qlen() can use to abort its tree traversal, as soon as it meets a mq/mqprio qdisc children. Second problem can be fixed by RCU protection. Qdisc are already freed after RCU grace period, so qdisc_list_add() and qdisc_list_del() simply have to use appropriate rcu list variants. A future patch will add a per struct netdev_queue list anchor, so that qdisc_tree_decrease_qlen() can have more efficient lookups. Reported-by: Daniele Fucini <dfucini@gmail.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Cong Wang <cwang@twopensource.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-01 20:08:51 -08:00
qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
}
/* If the mqprio options indicate that hardware should own
* the queue mapping then run ndo_setup_tc otherwise use the
* supplied and verified mapping
*/
if (qopt->hw) {
err = mqprio_enable_offload(sch, qopt, extack);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (err)
net_sched: fix error recovery at qdisc creation Dmitry reported uses after free in qdisc code [1] The problem here is that ops->init() can return an error. qdisc_create_dflt() then call ops->destroy(), while qdisc_create() does _not_ call it. Four qdisc chose to call their own ops->destroy(), assuming their caller would not. This patch makes sure qdisc_create() calls ops->destroy() and fixes the four qdisc to avoid double free. [1] BUG: KASAN: use-after-free in mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 at addr ffff8801d415d440 Read of size 8 by task syz-executor2/5030 CPU: 0 PID: 5030 Comm: syz-executor2 Not tainted 4.3.5-smp-DEV #119 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 0000000000000046 ffff8801b435b870 ffffffff81bbbed4 ffff8801db000400 ffff8801d415d440 ffff8801d415dc40 ffff8801c4988510 ffff8801b435b898 ffffffff816682b1 ffff8801b435b928 ffff8801d415d440 ffff8801c49880c0 Call Trace: [<ffffffff81bbbed4>] __dump_stack lib/dump_stack.c:15 [inline] [<ffffffff81bbbed4>] dump_stack+0x6c/0x98 lib/dump_stack.c:51 [<ffffffff816682b1>] kasan_object_err+0x21/0x70 mm/kasan/report.c:158 [<ffffffff81668524>] print_address_description mm/kasan/report.c:196 [inline] [<ffffffff81668524>] kasan_report_error+0x1b4/0x4b0 mm/kasan/report.c:285 [<ffffffff81668953>] kasan_report mm/kasan/report.c:305 [inline] [<ffffffff81668953>] __asan_report_load8_noabort+0x43/0x50 mm/kasan/report.c:326 [<ffffffff82527b02>] mq_destroy+0x242/0x290 net/sched/sch_mq.c:33 [<ffffffff82524bdd>] qdisc_destroy+0x12d/0x290 net/sched/sch_generic.c:953 [<ffffffff82524e30>] qdisc_create_dflt+0xf0/0x120 net/sched/sch_generic.c:848 [<ffffffff8252550d>] attach_default_qdiscs net/sched/sch_generic.c:1029 [inline] [<ffffffff8252550d>] dev_activate+0x6ad/0x880 net/sched/sch_generic.c:1064 [<ffffffff824b1db1>] __dev_open+0x221/0x320 net/core/dev.c:1403 [<ffffffff824b24ce>] __dev_change_flags+0x15e/0x3e0 net/core/dev.c:6858 [<ffffffff824b27de>] dev_change_flags+0x8e/0x140 net/core/dev.c:6926 [<ffffffff824f5bf6>] dev_ifsioc+0x446/0x890 net/core/dev_ioctl.c:260 [<ffffffff824f61fa>] dev_ioctl+0x1ba/0xb80 net/core/dev_ioctl.c:546 [<ffffffff82430509>] sock_do_ioctl+0x99/0xb0 net/socket.c:879 [<ffffffff82430d30>] sock_ioctl+0x2a0/0x390 net/socket.c:958 [<ffffffff816f3b68>] vfs_ioctl fs/ioctl.c:44 [inline] [<ffffffff816f3b68>] do_vfs_ioctl+0x8a8/0xe50 fs/ioctl.c:611 [<ffffffff816f41a4>] SYSC_ioctl fs/ioctl.c:626 [inline] [<ffffffff816f41a4>] SyS_ioctl+0x94/0xc0 fs/ioctl.c:617 [<ffffffff8123e357>] entry_SYSCALL_64_fastpath+0x12/0x17 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 10:31:49 -08:00
return err;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
} else {
netdev_set_num_tc(dev, qopt->num_tc);
for (i = 0; i < qopt->num_tc; i++)
netdev_set_tc_queue(dev, i,
qopt->count[i], qopt->offset[i]);
}
/* Always use supplied priority mappings */
for (i = 0; i < TC_BITMASK + 1; i++)
netdev_set_prio_tc_map(dev, i, qopt->prio_tc_map[i]);
sch->flags |= TCQ_F_MQROOT;
return 0;
}
static void mqprio_attach(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct mqprio_sched *priv = qdisc_priv(sch);
struct Qdisc *qdisc, *old;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
unsigned int ntx;
/* Attach underlying qdisc */
for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
qdisc = priv->qdiscs[ntx];
old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
if (old)
qdisc_put(old);
if (ntx < dev->real_num_tx_queues)
qdisc_hash_add(qdisc, false);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
}
kfree(priv->qdiscs);
priv->qdiscs = NULL;
}
static struct netdev_queue *mqprio_queue_get(struct Qdisc *sch,
unsigned long cl)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx = cl - 1;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (ntx >= dev->num_tx_queues)
return NULL;
return netdev_get_tx_queue(dev, ntx);
}
static int mqprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
{
struct net_device *dev = qdisc_dev(sch);
struct netdev_queue *dev_queue = mqprio_queue_get(sch, cl);
if (!dev_queue)
return -EINVAL;
if (dev->flags & IFF_UP)
dev_deactivate(dev);
*old = dev_graft_qdisc(dev_queue, new);
if (new)
net_sched: fix qdisc_tree_decrease_qlen() races qdisc_tree_decrease_qlen() suffers from two problems on multiqueue devices. One problem is that it updates sch->q.qlen and sch->qstats.drops on the mq/mqprio root qdisc, while it should not : Daniele reported underflows errors : [ 681.774821] PAX: sch->q.qlen: 0 n: 1 [ 681.774825] PAX: size overflow detected in function qdisc_tree_decrease_qlen net/sched/sch_api.c:769 cicus.693_49 min, count: 72, decl: qlen; num: 0; context: sk_buff_head; [ 681.774954] CPU: 2 PID: 19 Comm: ksoftirqd/2 Tainted: G O 4.2.6.201511282239-1-grsec #1 [ 681.774955] Hardware name: ASUSTeK COMPUTER INC. X302LJ/X302LJ, BIOS X302LJ.202 03/05/2015 [ 681.774956] ffffffffa9a04863 0000000000000000 0000000000000000 ffffffffa990ff7c [ 681.774959] ffffc90000d3bc38 ffffffffa95d2810 0000000000000007 ffffffffa991002b [ 681.774960] ffffc90000d3bc68 ffffffffa91a44f4 0000000000000001 0000000000000001 [ 681.774962] Call Trace: [ 681.774967] [<ffffffffa95d2810>] dump_stack+0x4c/0x7f [ 681.774970] [<ffffffffa91a44f4>] report_size_overflow+0x34/0x50 [ 681.774972] [<ffffffffa94d17e2>] qdisc_tree_decrease_qlen+0x152/0x160 [ 681.774976] [<ffffffffc02694b1>] fq_codel_dequeue+0x7b1/0x820 [sch_fq_codel] [ 681.774978] [<ffffffffc02680a0>] ? qdisc_peek_dequeued+0xa0/0xa0 [sch_fq_codel] [ 681.774980] [<ffffffffa94cd92d>] __qdisc_run+0x4d/0x1d0 [ 681.774983] [<ffffffffa949b2b2>] net_tx_action+0xc2/0x160 [ 681.774985] [<ffffffffa90664c1>] __do_softirq+0xf1/0x200 [ 681.774987] [<ffffffffa90665ee>] run_ksoftirqd+0x1e/0x30 [ 681.774989] [<ffffffffa90896b0>] smpboot_thread_fn+0x150/0x260 [ 681.774991] [<ffffffffa9089560>] ? sort_range+0x40/0x40 [ 681.774992] [<ffffffffa9085fe4>] kthread+0xe4/0x100 [ 681.774994] [<ffffffffa9085f00>] ? kthread_worker_fn+0x170/0x170 [ 681.774995] [<ffffffffa95d8d1e>] ret_from_fork+0x3e/0x70 mq/mqprio have their own ways to report qlen/drops by folding stats on all their queues, with appropriate locking. A second problem is that qdisc_tree_decrease_qlen() calls qdisc_lookup() without proper locking : concurrent qdisc updates could corrupt the list that qdisc_match_from_root() parses to find a qdisc given its handle. Fix first problem adding a TCQ_F_NOPARENT qdisc flag that qdisc_tree_decrease_qlen() can use to abort its tree traversal, as soon as it meets a mq/mqprio qdisc children. Second problem can be fixed by RCU protection. Qdisc are already freed after RCU grace period, so qdisc_list_add() and qdisc_list_del() simply have to use appropriate rcu list variants. A future patch will add a per struct netdev_queue list anchor, so that qdisc_tree_decrease_qlen() can have more efficient lookups. Reported-by: Daniele Fucini <dfucini@gmail.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Cong Wang <cwang@twopensource.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-01 20:08:51 -08:00
new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (dev->flags & IFF_UP)
dev_activate(dev);
return 0;
}
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
static int dump_rates(struct mqprio_sched *priv,
struct tc_mqprio_qopt *opt, struct sk_buff *skb)
{
struct nlattr *nest;
int i;
if (priv->flags & TC_MQPRIO_F_MIN_RATE) {
nest = nla_nest_start_noflag(skb, TCA_MQPRIO_MIN_RATE64);
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
if (!nest)
goto nla_put_failure;
for (i = 0; i < opt->num_tc; i++) {
if (nla_put(skb, TCA_MQPRIO_MIN_RATE64,
sizeof(priv->min_rate[i]),
&priv->min_rate[i]))
goto nla_put_failure;
}
nla_nest_end(skb, nest);
}
if (priv->flags & TC_MQPRIO_F_MAX_RATE) {
nest = nla_nest_start_noflag(skb, TCA_MQPRIO_MAX_RATE64);
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
if (!nest)
goto nla_put_failure;
for (i = 0; i < opt->num_tc; i++) {
if (nla_put(skb, TCA_MQPRIO_MAX_RATE64,
sizeof(priv->max_rate[i]),
&priv->max_rate[i]))
goto nla_put_failure;
}
nla_nest_end(skb, nest);
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
static int mqprio_dump_tc_entries(struct mqprio_sched *priv,
struct sk_buff *skb)
{
struct nlattr *n;
int tc;
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
n = nla_nest_start(skb, TCA_MQPRIO_TC_ENTRY);
if (!n)
return -EMSGSIZE;
if (nla_put_u32(skb, TCA_MQPRIO_TC_ENTRY_INDEX, tc))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_MQPRIO_TC_ENTRY_FP, priv->fp[tc]))
goto nla_put_failure;
nla_nest_end(skb, n);
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, n);
return -EMSGSIZE;
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
static int mqprio_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct net_device *dev = qdisc_dev(sch);
struct mqprio_sched *priv = qdisc_priv(sch);
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
struct nlattr *nla = (struct nlattr *)skb_tail_pointer(skb);
struct tc_mqprio_qopt opt = { 0 };
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
struct Qdisc *qdisc;
unsigned int ntx;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
sch->q.qlen = 0;
gnet_stats_basic_sync_init(&sch->bstats);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
memset(&sch->qstats, 0, sizeof(sch->qstats));
/* MQ supports lockless qdiscs. However, statistics accounting needs
* to account for all, none, or a mix of locked and unlocked child
* qdiscs. Percpu stats are added to counters in-band and locking
* qdisc totals are added at end.
*/
for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
net: sched: add rcu annotations around qdisc->qdisc_sleeping syzbot reported a race around qdisc->qdisc_sleeping [1] It is time we add proper annotations to reads and writes to/from qdisc->qdisc_sleeping. [1] BUG: KCSAN: data-race in dev_graft_qdisc / qdisc_lookup_rcu read to 0xffff8881286fc618 of 8 bytes by task 6928 on cpu 1: qdisc_lookup_rcu+0x192/0x2c0 net/sched/sch_api.c:331 __tcf_qdisc_find+0x74/0x3c0 net/sched/cls_api.c:1174 tc_get_tfilter+0x18f/0x990 net/sched/cls_api.c:2547 rtnetlink_rcv_msg+0x7af/0x8c0 net/core/rtnetlink.c:6386 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff8881286fc618 of 8 bytes by task 6912 on cpu 0: dev_graft_qdisc+0x4f/0x80 net/sched/sch_generic.c:1115 qdisc_graft+0x7d0/0xb60 net/sched/sch_api.c:1103 tc_modify_qdisc+0x712/0xf10 net/sched/sch_api.c:1693 rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 6912 Comm: syz-executor.5 Not tainted 6.4.0-rc3-syzkaller-00190-g0d85b27b0cc6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/16/2023 Fixes: 3a7d0d07a386 ("net: sched: extend Qdisc with rcu") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vlad Buslov <vladbu@nvidia.com> Acked-by: Jamal Hadi Salim<jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-06 11:19:29 +00:00
qdisc = rtnl_dereference(netdev_get_tx_queue(dev, ntx)->qdisc_sleeping);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
spin_lock_bh(qdisc_lock(qdisc));
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 10:49:10 +02:00
gnet_stats_add_basic(&sch->bstats, qdisc->cpu_bstats,
&qdisc->bstats, false);
gnet_stats_add_queue(&sch->qstats, qdisc->cpu_qstats,
&qdisc->qstats);
sch->q.qlen += qdisc_qlen(qdisc);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
spin_unlock_bh(qdisc_lock(qdisc));
}
mqprio_qopt_reconstruct(dev, &opt);
opt.hw = priv->hw_offload;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
goto nla_put_failure;
if ((priv->flags & TC_MQPRIO_F_MODE) &&
nla_put_u16(skb, TCA_MQPRIO_MODE, priv->mode))
goto nla_put_failure;
if ((priv->flags & TC_MQPRIO_F_SHAPER) &&
nla_put_u16(skb, TCA_MQPRIO_SHAPER, priv->shaper))
goto nla_put_failure;
if ((priv->flags & TC_MQPRIO_F_MIN_RATE ||
priv->flags & TC_MQPRIO_F_MAX_RATE) &&
(dump_rates(priv, &opt, skb) != 0))
goto nla_put_failure;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
net/sched: mqprio: allow per-TC user input of FP adminStatus IEEE 802.1Q-2018 clause 6.7.2 Frame preemption specifies that each packet priority can be assigned to a "frame preemption status" value of either "express" or "preemptible". Express priorities are transmitted by the local device through the eMAC, and preemptible priorities through the pMAC (the concepts of eMAC and pMAC come from the 802.3 MAC Merge layer). The FP adminStatus is defined per packet priority, but 802.1Q clause 12.30.1.1.1 framePreemptionAdminStatus also says that: | Priorities that all map to the same traffic class should be | constrained to use the same value of preemption status. It is impossible to ignore the cognitive dissonance in the standard here, because it practically means that the FP adminStatus only takes distinct values per traffic class, even though it is defined per priority. I can see no valid use case which is prevented by having the kernel take the FP adminStatus as input per traffic class (what we do here). In addition, this also enforces the above constraint by construction. User space network managers which wish to expose FP adminStatus per priority are free to do so; they must only observe the prio_tc_map of the netdev (which presumably is also under their control, when constructing the mqprio netlink attributes). The reason for configuring frame preemption as a property of the Qdisc layer is that the information about "preemptible TCs" is closest to the place which handles the num_tc and prio_tc_map of the netdev. If the UAPI would have been any other layer, it would be unclear what to do with the FP information when num_tc collapses to 0. A key assumption is that only mqprio/taprio change the num_tc and prio_tc_map of the netdev. Not sure if that's a great assumption to make. Having FP in tc-mqprio can be seen as an implementation of the use case defined in 802.1Q Annex S.2 "Preemption used in isolation". There will be a separate implementation of FP in tc-taprio, for the other use cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ferenc Fejes <fejes@inf.elte.hu> Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-04-11 21:01:54 +03:00
if (mqprio_dump_tc_entries(priv, skb))
goto nla_put_failure;
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
return nla_nest_end(skb, nla);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
nla_put_failure:
mqprio: Introduce new hardware offload mode and shaper in mqprio The offload types currently supported in mqprio are 0 (no offload) and 1 (offload only TCs) by setting these values for the 'hw' option. If offloads are supported by setting the 'hw' option to 1, the default offload mode is 'dcb' where only the TC values are offloaded to the device. This patch introduces a new hardware offload mode called 'channel' with 'hw' set to 1 in mqprio which makes full use of the mqprio options, the TCs, the queue configurations and the QoS parameters for the TCs. This is achieved through a new netlink attribute for the 'mode' option which takes values such as 'dcb' (default) and 'channel'. The 'channel' mode also supports QoS attributes for traffic class such as minimum and maximum values for bandwidth rate limits. This patch enables configuring additional HW shaper attributes associated with a traffic class. Currently the shaper for bandwidth rate limiting is supported which takes options such as minimum and maximum bandwidth rates and are offloaded to the hardware in the 'channel' mode. The min and max limits for bandwidth rates are provided by the user along with the TCs and the queue configurations when creating the mqprio qdisc. The interface can be extended to support new HW shapers in future through the 'shaper' attribute. Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading mqprio queue options and use this to be shared between the kernel and device driver. This contains a copy of the existing data structure for mqprio queue options. This new data structure can be extended when adding new attributes for traffic class such as mode, shaper, shaper parameters (bandwidth rate limits). The existing data structure for mqprio queue options will be shared between the kernel and userspace. Example: queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\ min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit To dump the bandwidth rates: qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 queues:(0:3) (4:7) mode:channel shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 04:00:06 -07:00
nlmsg_trim(skb, nla);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return -1;
}
static struct Qdisc *mqprio_leaf(struct Qdisc *sch, unsigned long cl)
{
struct netdev_queue *dev_queue = mqprio_queue_get(sch, cl);
if (!dev_queue)
return NULL;
net: sched: add rcu annotations around qdisc->qdisc_sleeping syzbot reported a race around qdisc->qdisc_sleeping [1] It is time we add proper annotations to reads and writes to/from qdisc->qdisc_sleeping. [1] BUG: KCSAN: data-race in dev_graft_qdisc / qdisc_lookup_rcu read to 0xffff8881286fc618 of 8 bytes by task 6928 on cpu 1: qdisc_lookup_rcu+0x192/0x2c0 net/sched/sch_api.c:331 __tcf_qdisc_find+0x74/0x3c0 net/sched/cls_api.c:1174 tc_get_tfilter+0x18f/0x990 net/sched/cls_api.c:2547 rtnetlink_rcv_msg+0x7af/0x8c0 net/core/rtnetlink.c:6386 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff8881286fc618 of 8 bytes by task 6912 on cpu 0: dev_graft_qdisc+0x4f/0x80 net/sched/sch_generic.c:1115 qdisc_graft+0x7d0/0xb60 net/sched/sch_api.c:1103 tc_modify_qdisc+0x712/0xf10 net/sched/sch_api.c:1693 rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 6912 Comm: syz-executor.5 Not tainted 6.4.0-rc3-syzkaller-00190-g0d85b27b0cc6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/16/2023 Fixes: 3a7d0d07a386 ("net: sched: extend Qdisc with rcu") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vlad Buslov <vladbu@nvidia.com> Acked-by: Jamal Hadi Salim<jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-06 11:19:29 +00:00
return rtnl_dereference(dev_queue->qdisc_sleeping);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
}
static unsigned long mqprio_find(struct Qdisc *sch, u32 classid)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
{
struct net_device *dev = qdisc_dev(sch);
unsigned int ntx = TC_H_MIN(classid);
/* There are essentially two regions here that have valid classid
* values. The first region will have a classid value of 1 through
* num_tx_queues. All of these are backed by actual Qdiscs.
*/
if (ntx < TC_H_MIN_PRIORITY)
return (ntx <= dev->num_tx_queues) ? ntx : 0;
/* The second region represents the hardware traffic classes. These
* are represented by classid values of TC_H_MIN_PRIORITY through
* TC_H_MIN_PRIORITY + netdev_get_num_tc - 1
*/
return ((ntx - TC_H_MIN_PRIORITY) < netdev_get_num_tc(dev)) ? ntx : 0;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
}
static int mqprio_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
if (cl < TC_H_MIN_PRIORITY) {
struct netdev_queue *dev_queue = mqprio_queue_get(sch, cl);
struct net_device *dev = qdisc_dev(sch);
int tc = netdev_txq_to_tc(dev, cl - 1);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
tcm->tcm_parent = (tc < 0) ? 0 :
TC_H_MAKE(TC_H_MAJ(sch->handle),
TC_H_MIN(tc + TC_H_MIN_PRIORITY));
net: sched: add rcu annotations around qdisc->qdisc_sleeping syzbot reported a race around qdisc->qdisc_sleeping [1] It is time we add proper annotations to reads and writes to/from qdisc->qdisc_sleeping. [1] BUG: KCSAN: data-race in dev_graft_qdisc / qdisc_lookup_rcu read to 0xffff8881286fc618 of 8 bytes by task 6928 on cpu 1: qdisc_lookup_rcu+0x192/0x2c0 net/sched/sch_api.c:331 __tcf_qdisc_find+0x74/0x3c0 net/sched/cls_api.c:1174 tc_get_tfilter+0x18f/0x990 net/sched/cls_api.c:2547 rtnetlink_rcv_msg+0x7af/0x8c0 net/core/rtnetlink.c:6386 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff8881286fc618 of 8 bytes by task 6912 on cpu 0: dev_graft_qdisc+0x4f/0x80 net/sched/sch_generic.c:1115 qdisc_graft+0x7d0/0xb60 net/sched/sch_api.c:1103 tc_modify_qdisc+0x712/0xf10 net/sched/sch_api.c:1693 rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 6912 Comm: syz-executor.5 Not tainted 6.4.0-rc3-syzkaller-00190-g0d85b27b0cc6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/16/2023 Fixes: 3a7d0d07a386 ("net: sched: extend Qdisc with rcu") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vlad Buslov <vladbu@nvidia.com> Acked-by: Jamal Hadi Salim<jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-06 11:19:29 +00:00
tcm->tcm_info = rtnl_dereference(dev_queue->qdisc_sleeping)->handle;
} else {
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_info = 0;
}
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int mqprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
__releases(d->lock)
__acquires(d->lock)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
{
if (cl >= TC_H_MIN_PRIORITY) {
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
int i;
__u32 qlen;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
struct gnet_stats_queue qstats = {0};
struct gnet_stats_basic_sync bstats;
struct net_device *dev = qdisc_dev(sch);
struct netdev_tc_txq tc = dev->tc_to_txq[cl & TC_BITMASK];
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
gnet_stats_basic_sync_init(&bstats);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* Drop lock here it will be reclaimed before touching
* statistics this is required because the d->lock we
* hold here is the look on dev_queue->qdisc_sleeping
* also acquired below.
*/
if (d->lock)
spin_unlock_bh(d->lock);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
for (i = tc.offset; i < tc.offset + tc.count; i++) {
struct netdev_queue *q = netdev_get_tx_queue(dev, i);
struct Qdisc *qdisc = rtnl_dereference(q->qdisc);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
spin_lock_bh(qdisc_lock(qdisc));
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 10:49:10 +02:00
gnet_stats_add_basic(&bstats, qdisc->cpu_bstats,
&qdisc->bstats, false);
gnet_stats_add_queue(&qstats, qdisc->cpu_qstats,
&qdisc->qstats);
sch->q.qlen += qdisc_qlen(qdisc);
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
spin_unlock_bh(qdisc_lock(qdisc));
}
qlen = qdisc_qlen(sch) + qstats.qlen;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
/* Reclaim root sleeping lock before completing stats */
if (d->lock)
spin_lock_bh(d->lock);
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 10:49:10 +02:00
if (gnet_stats_copy_basic(d, NULL, &bstats, false) < 0 ||
gnet_stats_copy_queue(d, NULL, &qstats, qlen) < 0)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return -1;
} else {
struct netdev_queue *dev_queue = mqprio_queue_get(sch, cl);
net: sched: add rcu annotations around qdisc->qdisc_sleeping syzbot reported a race around qdisc->qdisc_sleeping [1] It is time we add proper annotations to reads and writes to/from qdisc->qdisc_sleeping. [1] BUG: KCSAN: data-race in dev_graft_qdisc / qdisc_lookup_rcu read to 0xffff8881286fc618 of 8 bytes by task 6928 on cpu 1: qdisc_lookup_rcu+0x192/0x2c0 net/sched/sch_api.c:331 __tcf_qdisc_find+0x74/0x3c0 net/sched/cls_api.c:1174 tc_get_tfilter+0x18f/0x990 net/sched/cls_api.c:2547 rtnetlink_rcv_msg+0x7af/0x8c0 net/core/rtnetlink.c:6386 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff8881286fc618 of 8 bytes by task 6912 on cpu 0: dev_graft_qdisc+0x4f/0x80 net/sched/sch_generic.c:1115 qdisc_graft+0x7d0/0xb60 net/sched/sch_api.c:1103 tc_modify_qdisc+0x712/0xf10 net/sched/sch_api.c:1693 rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2503 ___sys_sendmsg net/socket.c:2557 [inline] __sys_sendmsg+0x1e3/0x270 net/socket.c:2586 __do_sys_sendmsg net/socket.c:2595 [inline] __se_sys_sendmsg net/socket.c:2593 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2593 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 6912 Comm: syz-executor.5 Not tainted 6.4.0-rc3-syzkaller-00190-g0d85b27b0cc6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/16/2023 Fixes: 3a7d0d07a386 ("net: sched: extend Qdisc with rcu") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Vlad Buslov <vladbu@nvidia.com> Acked-by: Jamal Hadi Salim<jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-06 11:19:29 +00:00
sch = rtnl_dereference(dev_queue->qdisc_sleeping);
net: sched: Remove Qdisc::running sequence counter The Qdisc::running sequence counter has two uses: 1. Reliably reading qdisc's tc statistics while the qdisc is running (a seqcount read/retry loop at gnet_stats_add_basic()). 2. As a flag, indicating whether the qdisc in question is running (without any retry loops). For the first usage, the Qdisc::running sequence counter write section, qdisc_run_begin() => qdisc_run_end(), covers a much wider area than what is actually needed: the raw qdisc's bstats update. A u64_stats sync point was thus introduced (in previous commits) inside the bstats structure itself. A local u64_stats write section is then started and stopped for the bstats updates. Use that u64_stats sync point mechanism for the bstats read/retry loop at gnet_stats_add_basic(). For the second qdisc->running usage, a __QDISC_STATE_RUNNING bit flag, accessed with atomic bitops, is sufficient. Using a bit flag instead of a sequence counter at qdisc_run_begin/end() and qdisc_is_running() leads to the SMP barriers implicitly added through raw_read_seqcount() and write_seqcount_begin/end() getting removed. All call sites have been surveyed though, and no required ordering was identified. Now that the qdisc->running sequence counter is no longer used, remove it. Note, using u64_stats implies no sequence counter protection for 64-bit architectures. This can lead to the qdisc tc statistics "packets" vs. "bytes" values getting out of sync on rare occasions. The individual values will still be valid. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-16 10:49:10 +02:00
if (gnet_stats_copy_basic(d, sch->cpu_bstats,
&sch->bstats, true) < 0 ||
qdisc_qstats_copy(d, sch) < 0)
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
return -1;
}
return 0;
}
static void mqprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct net_device *dev = qdisc_dev(sch);
unsigned long ntx;
if (arg->stop)
return;
/* Walk hierarchy with a virtual class per tc */
arg->count = arg->skip;
for (ntx = arg->skip; ntx < netdev_get_num_tc(dev); ntx++) {
if (!tc_qdisc_stats_dump(sch, ntx + TC_H_MIN_PRIORITY, arg))
return;
}
/* Pad the values and skip over unused traffic classes */
if (ntx < TC_MAX_QUEUE) {
arg->count = TC_MAX_QUEUE;
ntx = TC_MAX_QUEUE;
}
/* Reset offset, sort out remaining per-queue qdiscs */
for (ntx -= TC_MAX_QUEUE; ntx < dev->num_tx_queues; ntx++) {
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
if (arg->fn(sch, ntx + 1, arg) < 0) {
arg->stop = 1;
return;
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
}
arg->count++;
}
}
static struct netdev_queue *mqprio_select_queue(struct Qdisc *sch,
struct tcmsg *tcm)
{
return mqprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
}
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
static const struct Qdisc_class_ops mqprio_class_ops = {
.graft = mqprio_graft,
.leaf = mqprio_leaf,
.find = mqprio_find,
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
.walk = mqprio_walk,
.dump = mqprio_dump_class,
.dump_stats = mqprio_dump_class_stats,
.select_queue = mqprio_select_queue,
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
};
static struct Qdisc_ops mqprio_qdisc_ops __read_mostly = {
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
.cl_ops = &mqprio_class_ops,
.id = "mqprio",
.priv_size = sizeof(struct mqprio_sched),
.init = mqprio_init,
.destroy = mqprio_destroy,
.attach = mqprio_attach,
.change_real_num_tx = mq_change_real_num_tx,
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 08:06:09 +00:00
.dump = mqprio_dump,
.owner = THIS_MODULE,
};
static int __init mqprio_module_init(void)
{
return register_qdisc(&mqprio_qdisc_ops);
}
static void __exit mqprio_module_exit(void)
{
unregister_qdisc(&mqprio_qdisc_ops);
}
module_init(mqprio_module_init);
module_exit(mqprio_module_exit);
MODULE_LICENSE("GPL");