linux-stable/block/blk-core.c

1739 lines
46 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
* - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
#include <linux/blk-mq.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#include <linux/list_sort.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
#include <linux/blk-cgroup.h>
#include <linux/debugfs.h>
#include <linux/bpf.h>
tracing/events: convert block trace points to TRACE_EVENT() TRACE_EVENT is a more generic way to define tracepoints. Doing so adds these new capabilities to this tracepoint: - zero-copy and per-cpu splice() tracing - binary tracing without printf overhead - structured logging records exposed under /debug/tracing/events - trace events embedded in function tracer output and other plugins - user-defined, per tracepoint filter expressions ... Cons: - no dev_t info for the output of plug, unplug_timer and unplug_io events. no dev_t info for getrq and sleeprq events if bio == NULL. no dev_t info for rq_abort,...,rq_requeue events if rq->rq_disk == NULL. This is mainly because we can't get the deivce from a request queue. But this may change in the future. - A packet command is converted to a string in TP_assign, not TP_print. While blktrace do the convertion just before output. Since pc requests should be rather rare, this is not a big issue. - In blktrace, an event can have 2 different print formats, but a TRACE_EVENT has a unique format, which means we have some unused data in a trace entry. The overhead is minimized by using __dynamic_array() instead of __array(). I've benchmarked the ioctl blktrace vs the splice based TRACE_EVENT tracing: dd dd + ioctl blktrace dd + TRACE_EVENT (splice) 1 7.36s, 42.7 MB/s 7.50s, 42.0 MB/s 7.41s, 42.5 MB/s 2 7.43s, 42.3 MB/s 7.48s, 42.1 MB/s 7.43s, 42.4 MB/s 3 7.38s, 42.6 MB/s 7.45s, 42.2 MB/s 7.41s, 42.5 MB/s So the overhead of tracing is very small, and no regression when using those trace events vs blktrace. And the binary output of TRACE_EVENT is much smaller than blktrace: # ls -l -h -rw-r--r-- 1 root root 8.8M 06-09 13:24 sda.blktrace.0 -rw-r--r-- 1 root root 195K 06-09 13:24 sda.blktrace.1 -rw-r--r-- 1 root root 2.7M 06-09 13:25 trace_splice.out Following are some comparisons between TRACE_EVENT and blktrace: plug: kjournald-480 [000] 303.084981: block_plug: [kjournald] kjournald-480 [000] 303.084981: 8,0 P N [kjournald] unplug_io: kblockd/0-118 [000] 300.052973: block_unplug_io: [kblockd/0] 1 kblockd/0-118 [000] 300.052974: 8,0 U N [kblockd/0] 1 remap: kjournald-480 [000] 303.085042: block_remap: 8,0 W 102736992 + 8 <- (8,8) 33384 kjournald-480 [000] 303.085043: 8,0 A W 102736992 + 8 <- (8,8) 33384 bio_backmerge: kjournald-480 [000] 303.085086: block_bio_backmerge: 8,0 W 102737032 + 8 [kjournald] kjournald-480 [000] 303.085086: 8,0 M W 102737032 + 8 [kjournald] getrq: kjournald-480 [000] 303.084974: block_getrq: 8,0 W 102736984 + 8 [kjournald] kjournald-480 [000] 303.084975: 8,0 G W 102736984 + 8 [kjournald] bash-2066 [001] 1072.953770: 8,0 G N [bash] bash-2066 [001] 1072.953773: block_getrq: 0,0 N 0 + 0 [bash] rq_complete: konsole-2065 [001] 300.053184: block_rq_complete: 8,0 W () 103669040 + 16 [0] konsole-2065 [001] 300.053191: 8,0 C W 103669040 + 16 [0] ksoftirqd/1-7 [001] 1072.953811: 8,0 C N (5a 00 08 00 00 00 00 00 24 00) [0] ksoftirqd/1-7 [001] 1072.953813: block_rq_complete: 0,0 N (5a 00 08 00 00 00 00 00 24 00) 0 + 0 [0] rq_insert: kjournald-480 [000] 303.084985: block_rq_insert: 8,0 W 0 () 102736984 + 8 [kjournald] kjournald-480 [000] 303.084986: 8,0 I W 102736984 + 8 [kjournald] Changelog from v2 -> v3: - use the newly introduced __dynamic_array(). Changelog from v1 -> v2: - use __string() instead of __array() to minimize the memory required to store hex dump of rq->cmd(). - support large pc requests. - add missing blk_fill_rwbs_rq() in block_rq_requeue TRACE_EVENT. - some cleanups. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <4A2DF669.5070905@cn.fujitsu.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-09 13:43:05 +08:00
#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-pm.h"
#include "blk-rq-qos.h"
#ifdef CONFIG_DEBUG_FS
struct dentry *blk_debugfs_root;
#endif
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
DEFINE_IDA(blk_queue_ida);
/*
* For queue allocation
*/
struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
/**
* blk_queue_flag_set - atomically set a queue flag
* @flag: flag to be set
* @q: request queue
*/
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_set);
/**
* blk_queue_flag_clear - atomically clear a queue flag
* @flag: flag to be cleared
* @q: request queue
*/
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
clear_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_clear);
/**
* blk_queue_flag_test_and_set - atomically test and set a queue flag
* @flag: flag to be set
* @q: request queue
*
* Returns the previous value of @flag - 0 if the flag was not set and 1 if
* the flag was already set.
*/
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
{
return test_and_set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
void blk_rq_init(struct request_queue *q, struct request *rq)
{
memset(rq, 0, sizeof(*rq));
INIT_LIST_HEAD(&rq->queuelist);
rq->q = q;
rq->__sector = (sector_t) -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->tag = -1;
rq->internal_tag = -1;
rq->start_time_ns = ktime_get_ns();
block: fix accounting bug on cross partition merges /proc/diskstats would display a strange output as follows. $ cat /proc/diskstats |grep sda 8 0 sda 90524 7579 102154 20464 0 0 0 0 0 14096 20089 8 1 sda1 19085 1352 21841 4209 0 0 0 0 4294967064 15689 4293424691 ~~~~~~~~~~ 8 2 sda2 71252 3624 74891 15950 0 0 0 0 232 23995 1562390 8 3 sda3 54 487 2188 92 0 0 0 0 0 88 92 8 4 sda4 4 0 8 0 0 0 0 0 0 0 0 8 5 sda5 81 2027 2130 138 0 0 0 0 0 87 137 Its reason is the wrong way of accounting hd_struct->in_flight. When a bio is merged into a request belongs to different partition by ELEVATOR_FRONT_MERGE. The detailed root cause is as follows. Assuming that there are two partition, sda1 and sda2. 1. A request for sda2 is in request_queue. Hence sda1's hd_struct->in_flight is 0 and sda2's one is 1. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 2. A bio belongs to sda1 is issued and is merged into the request mentioned on step1 by ELEVATOR_BACK_MERGE. The first sector of the request is changed from sda2 region to sda1 region. However the two partition's hd_struct->in_flight are not changed. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 3. The request is finished and blk_account_io_done() is called. In this case, sda2's hd_struct->in_flight, not a sda1's one, is decremented. | hd_struct->in_flight --------------------------- sda1 | -1 sda2 | 1 --------------------------- The patch fixes the problem by caching the partition lookup inside the request structure, hence making sure that the increment and decrement will always happen on the same partition struct. This also speeds up IO with accounting enabled, since it cuts down on the number of lookups we have to do. Also add a refcount to struct hd_struct to keep the partition in memory as long as users exist. We use kref_test_and_get() to ensure we don't add a reference to a partition which is going away. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: stable@kernel.org Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-05 16:57:38 +01:00
rq->part = NULL;
}
EXPORT_SYMBOL(blk_rq_init);
static const struct {
int errno;
const char *name;
} blk_errors[] = {
[BLK_STS_OK] = { 0, "" },
[BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
[BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
[BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
[BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
[BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
[BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
[BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
[BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
[BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
blk-mq: introduce BLK_STS_DEV_RESOURCE This status is returned from driver to block layer if device related resource is unavailable, but driver can guarantee that IO dispatch will be triggered in future when the resource is available. Convert some drivers to return BLK_STS_DEV_RESOURCE. Also, if driver returns BLK_STS_RESOURCE and SCHED_RESTART is set, rerun queue after a delay (BLK_MQ_DELAY_QUEUE) to avoid IO stalls. BLK_MQ_DELAY_QUEUE is 3 ms because both scsi-mq and nvmefc are using that magic value. If a driver can make sure there is in-flight IO, it is safe to return BLK_STS_DEV_RESOURCE because: 1) If all in-flight IOs complete before examining SCHED_RESTART in blk_mq_dispatch_rq_list(), SCHED_RESTART must be cleared, so queue is run immediately in this case by blk_mq_dispatch_rq_list(); 2) if there is any in-flight IO after/when examining SCHED_RESTART in blk_mq_dispatch_rq_list(): - if SCHED_RESTART isn't set, queue is run immediately as handled in 1) - otherwise, this request will be dispatched after any in-flight IO is completed via blk_mq_sched_restart() 3) if SCHED_RESTART is set concurently in context because of BLK_STS_RESOURCE, blk_mq_delay_run_hw_queue() will cover the above two cases and make sure IO hang can be avoided. One invariant is that queue will be rerun if SCHED_RESTART is set. Suggested-by: Jens Axboe <axboe@kernel.dk> Tested-by: Laurence Oberman <loberman@redhat.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-30 22:04:57 -05:00
[BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
[BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
/* device mapper special case, should not leak out: */
[BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
/* everything else not covered above: */
[BLK_STS_IOERR] = { -EIO, "I/O" },
};
blk_status_t errno_to_blk_status(int errno)
{
int i;
for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
if (blk_errors[i].errno == errno)
return (__force blk_status_t)i;
}
return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);
int blk_status_to_errno(blk_status_t status)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return -EIO;
return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);
static void print_req_error(struct request *req, blk_status_t status)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return;
printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
__func__, blk_errors[idx].name,
req->rq_disk ? req->rq_disk->disk_name : "?",
(unsigned long long)blk_rq_pos(req),
req->cmd_flags);
}
static void req_bio_endio(struct request *rq, struct bio *bio,
unsigned int nbytes, blk_status_t error)
{
if (error)
bio->bi_status = error;
if (unlikely(rq->rq_flags & RQF_QUIET))
bio_set_flag(bio, BIO_QUIET);
block: Supress Buffer I/O errors when SCSI REQ_QUIET flag set Allow the scsi request REQ_QUIET flag to be propagated to the buffer file system layer. The basic ideas is to pass the flag from the scsi request to the bio (block IO) and then to the buffer layer. The buffer layer can then suppress needless printks. This patch declutters the kernel log by removed the 40-50 (per lun) buffer io error messages seen during a boot in my multipath setup . It is a good chance any real errors will be missed in the "noise" it the logs without this patch. During boot I see blocks of messages like " __ratelimit: 211 callbacks suppressed Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242847 Buffer I/O error on device sdm, logical block 1 Buffer I/O error on device sdm, logical block 5242878 Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242879 Buffer I/O error on device sdm, logical block 5242872 " in my logs. My disk environment is multipath fiber channel using the SCSI_DH_RDAC code and multipathd. This topology includes an "active" and "ghost" path for each lun. IO's to the "ghost" path will never complete and the SCSI layer, via the scsi device handler rdac code, quick returns the IOs to theses paths and sets the REQ_QUIET scsi flag to suppress the scsi layer messages. I am wanting to extend the QUIET behavior to include the buffer file system layer to deal with these errors as well. I have been running this patch for a while now on several boxes without issue. A few runs of bonnie++ show no noticeable difference in performance in my setup. Thanks for John Stultz for the quiet_error finalization. Submitted-by: Keith Mannthey <kmannth@us.ibm.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-11-25 10:24:35 +01:00
bio_advance(bio, nbytes);
/* don't actually finish bio if it's part of flush sequence */
if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
bio_endio(bio);
}
void blk_dump_rq_flags(struct request *rq, char *msg)
{
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
rq->rq_disk ? rq->rq_disk->disk_name : "?",
(unsigned long long) rq->cmd_flags);
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 22:24:39 +09:00
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
(unsigned long long)blk_rq_pos(rq),
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
* that its ->make_request_fn will not re-add plugging prior to calling
* this function.
*
block: Move blk_throtl_exit() call to blk_cleanup_queue() Move blk_throtl_exit() in blk_cleanup_queue() as blk_throtl_exit() is written in such a way that it needs queue lock. In blk_release_queue() there is no gurantee that ->queue_lock is still around. Initially blk_throtl_exit() was in blk_cleanup_queue() but Ingo reported one problem. https://lkml.org/lkml/2010/10/23/86 And a quick fix moved blk_throtl_exit() to blk_release_queue(). commit 7ad58c028652753814054f4e3ac58f925e7343f4 Author: Jens Axboe <jaxboe@fusionio.com> Date: Sat Oct 23 20:40:26 2010 +0200 block: fix use-after-free bug in blk throttle code This patch reverts above change and does not try to shutdown the throtl work in blk_sync_queue(). By avoiding call to throtl_shutdown_timer_wq() from blk_sync_queue(), we should also avoid the problem reported by Ingo. blk_sync_queue() seems to be used only by md driver and it seems to be using it to make sure q->unplug_fn is not called as md registers its own unplug functions and it is about to free up the data structures used by unplug_fn(). Block throttle does not call back into unplug_fn() or into md. So there is no need to cancel blk throttle work. In fact I think cancelling block throttle work is bad because it might happen that some bios are throttled and scheduled to be dispatched later with the help of pending work and if work is cancelled, these bios might never be dispatched. Block layer also uses blk_sync_queue() during blk_cleanup_queue() and blk_release_queue() time. That should be safe as we are also calling blk_throtl_exit() which should make sure all the throttling related data structures are cleaned up. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-02 19:05:33 -05:00
* This function does not cancel any asynchronous activity arising
* out of elevator or throttling code. That would require elevator_exit()
* and blkcg_exit_queue() to be called with queue lock initialized.
block: Move blk_throtl_exit() call to blk_cleanup_queue() Move blk_throtl_exit() in blk_cleanup_queue() as blk_throtl_exit() is written in such a way that it needs queue lock. In blk_release_queue() there is no gurantee that ->queue_lock is still around. Initially blk_throtl_exit() was in blk_cleanup_queue() but Ingo reported one problem. https://lkml.org/lkml/2010/10/23/86 And a quick fix moved blk_throtl_exit() to blk_release_queue(). commit 7ad58c028652753814054f4e3ac58f925e7343f4 Author: Jens Axboe <jaxboe@fusionio.com> Date: Sat Oct 23 20:40:26 2010 +0200 block: fix use-after-free bug in blk throttle code This patch reverts above change and does not try to shutdown the throtl work in blk_sync_queue(). By avoiding call to throtl_shutdown_timer_wq() from blk_sync_queue(), we should also avoid the problem reported by Ingo. blk_sync_queue() seems to be used only by md driver and it seems to be using it to make sure q->unplug_fn is not called as md registers its own unplug functions and it is about to free up the data structures used by unplug_fn(). Block throttle does not call back into unplug_fn() or into md. So there is no need to cancel blk throttle work. In fact I think cancelling block throttle work is bad because it might happen that some bios are throttled and scheduled to be dispatched later with the help of pending work and if work is cancelled, these bios might never be dispatched. Block layer also uses blk_sync_queue() during blk_cleanup_queue() and blk_release_queue() time. That should be safe as we are also calling blk_throtl_exit() which should make sure all the throttling related data structures are cleaned up. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-02 19:05:33 -05:00
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->timeout);
cancel_work_sync(&q->timeout_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* blk_set_pm_only - increment pm_only counter
* @q: request queue pointer
*/
void blk_set_pm_only(struct request_queue *q)
{
atomic_inc(&q->pm_only);
}
EXPORT_SYMBOL_GPL(blk_set_pm_only);
void blk_clear_pm_only(struct request_queue *q)
{
int pm_only;
pm_only = atomic_dec_return(&q->pm_only);
WARN_ON_ONCE(pm_only < 0);
if (pm_only == 0)
wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
void blk_put_queue(struct request_queue *q)
{
kobject_put(&q->kobj);
}
EXPORT_SYMBOL(blk_put_queue);
void blk_set_queue_dying(struct request_queue *q)
{
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
/*
* When queue DYING flag is set, we need to block new req
* entering queue, so we call blk_freeze_queue_start() to
* prevent I/O from crossing blk_queue_enter().
*/
blk_freeze_queue_start(q);
if (queue_is_mq(q))
blk_mq_wake_waiters(q);
/* Make blk_queue_enter() reexamine the DYING flag. */
wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_set_queue_dying);
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
/**
* blk_cleanup_queue - shutdown a request queue
* @q: request queue to shutdown
*
* Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
* put it. All future requests will be failed immediately with -ENODEV.
block: Initialize ->queue_lock to internal lock at queue allocation time There does not seem to be a clear convention whether q->queue_lock is initialized or not when blk_cleanup_queue() is called. In the past it was not necessary but now blk_throtl_exit() takes up queue lock by default and needs queue lock to be available. In fact elevator_exit() code also has similar requirement just that it is less stringent in the sense that elevator_exit() is called only if elevator is initialized. Two problems have been noticed because of ambiguity about spin lock status. - If a driver calls blk_alloc_queue() and then soon calls blk_cleanup_queue() almost immediately, (because some other driver structure allocation failed or some other error happened) then blk_throtl_exit() will run into issues as queue lock is not initialized. Loop driver ran into this issue recently and I noticed error paths in md driver too. Similar error paths should exist in other drivers too. - If some driver provided external spin lock and zapped the lock before blk_cleanup_queue(), then it can lead to issues. So this patch initializes the default queue lock at queue allocation time. block throttling code is one of the users of queue lock and it is initialized at the queue allocation time, so it makes sense to initialize ->queue_lock also to internal lock. A driver can overide that lock later. This will take care of the issue where a driver does not have to worry about initializing the queue lock to default before calling blk_cleanup_queue() Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-02 19:04:42 -05:00
*/
void blk_cleanup_queue(struct request_queue *q)
{
/* mark @q DYING, no new request or merges will be allowed afterwards */
mutex_lock(&q->sysfs_lock);
blk_set_queue_dying(q);
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
mutex_unlock(&q->sysfs_lock);
/*
* Drain all requests queued before DYING marking. Set DEAD flag to
* prevent that q->request_fn() gets invoked after draining finished.
*/
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
blk_freeze_queue(q);
rq_qos_exit(q);
blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
/* for synchronous bio-based driver finish in-flight integrity i/o */
blk_flush_integrity();
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
/* @q won't process any more request, flush async actions */
del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
blk_sync_queue(q);
if (queue_is_mq(q))
blk-mq: free hw queue's resource in hctx's release handler Once blk_cleanup_queue() returns, tags shouldn't be used any more, because blk_mq_free_tag_set() may be called. Commit 45a9c9d909b2 ("blk-mq: Fix a use-after-free") fixes this issue exactly. However, that commit introduces another issue. Before 45a9c9d909b2, we are allowed to run queue during cleaning up queue if the queue's kobj refcount is held. After that commit, queue can't be run during queue cleaning up, otherwise oops can be triggered easily because some fields of hctx are freed by blk_mq_free_queue() in blk_cleanup_queue(). We have invented ways for addressing this kind of issue before, such as: 8dc765d438f1 ("SCSI: fix queue cleanup race before queue initialization is done") c2856ae2f315 ("blk-mq: quiesce queue before freeing queue") But still can't cover all cases, recently James reports another such kind of issue: https://marc.info/?l=linux-scsi&m=155389088124782&w=2 This issue can be quite hard to address by previous way, given scsi_run_queue() may run requeues for other LUNs. Fixes the above issue by freeing hctx's resources in its release handler, and this way is safe becasue tags isn't needed for freeing such hctx resource. This approach follows typical design pattern wrt. kobject's release handler. Cc: Dongli Zhang <dongli.zhang@oracle.com> Cc: James Smart <james.smart@broadcom.com> Cc: Bart Van Assche <bart.vanassche@wdc.com> Cc: linux-scsi@vger.kernel.org, Cc: Martin K . Petersen <martin.petersen@oracle.com>, Cc: Christoph Hellwig <hch@lst.de>, Cc: James E . J . Bottomley <jejb@linux.vnet.ibm.com>, Reported-by: James Smart <james.smart@broadcom.com> Fixes: 45a9c9d909b2 ("blk-mq: Fix a use-after-free") Cc: stable@vger.kernel.org Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: James Smart <james.smart@broadcom.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 09:52:25 +08:00
blk_mq_exit_queue(q);
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
percpu_ref_exit(&q->q_usage_counter);
blk-mq: Fix a use-after-free blk-mq users are allowed to free the memory request_queue.tag_set points at after blk_cleanup_queue() has finished but before blk_release_queue() has started. This can happen e.g. in the SCSI core. The SCSI core namely embeds the tag_set structure in a SCSI host structure. The SCSI host structure is freed by scsi_host_dev_release(). This function is called after blk_cleanup_queue() finished but can be called before blk_release_queue(). This means that it is not safe to access request_queue.tag_set from inside blk_release_queue(). Hence remove the blk_sync_queue() call from blk_release_queue(). This call is not necessary - outstanding requests must have finished before blk_release_queue() is called. Additionally, move the blk_mq_free_queue() call from blk_release_queue() to blk_cleanup_queue() to avoid that struct request_queue.tag_set gets accessed after it has been freed. This patch avoids that the following kernel oops can be triggered when deleting a SCSI host for which scsi-mq was enabled: Call Trace: [<ffffffff8109a7c4>] lock_acquire+0xc4/0x270 [<ffffffff814ce111>] mutex_lock_nested+0x61/0x380 [<ffffffff812575f0>] blk_mq_free_queue+0x30/0x180 [<ffffffff8124d654>] blk_release_queue+0x84/0xd0 [<ffffffff8126c29b>] kobject_cleanup+0x7b/0x1a0 [<ffffffff8126c140>] kobject_put+0x30/0x70 [<ffffffff81245895>] blk_put_queue+0x15/0x20 [<ffffffff8125c409>] disk_release+0x99/0xd0 [<ffffffff8133d056>] device_release+0x36/0xb0 [<ffffffff8126c29b>] kobject_cleanup+0x7b/0x1a0 [<ffffffff8126c140>] kobject_put+0x30/0x70 [<ffffffff8125a78a>] put_disk+0x1a/0x20 [<ffffffff811d4cb5>] __blkdev_put+0x135/0x1b0 [<ffffffff811d56a0>] blkdev_put+0x50/0x160 [<ffffffff81199eb4>] kill_block_super+0x44/0x70 [<ffffffff8119a2a4>] deactivate_locked_super+0x44/0x60 [<ffffffff8119a87e>] deactivate_super+0x4e/0x70 [<ffffffff811b9833>] cleanup_mnt+0x43/0x90 [<ffffffff811b98d2>] __cleanup_mnt+0x12/0x20 [<ffffffff8107252c>] task_work_run+0xac/0xe0 [<ffffffff81002c01>] do_notify_resume+0x61/0xa0 [<ffffffff814d2c58>] int_signal+0x12/0x17 Signed-off-by: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Robert Elliott <elliott@hp.com> Cc: Ming Lei <ming.lei@canonical.com> Cc: Alexander Gordeev <agordeev@redhat.com> Cc: <stable@vger.kernel.org> # v3.13+ Signed-off-by: Jens Axboe <axboe@fb.com>
2014-12-09 16:57:48 +01:00
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown request_queue is refcounted but actually depdends on lifetime management from the queue owner - on blk_cleanup_queue(), block layer expects that there's no request passing through request_queue and no new one will. This is fundamentally broken. The queue owner (e.g. SCSI layer) doesn't have a way to know whether there are other active users before calling blk_cleanup_queue() and other users (e.g. bsg) don't have any guarantee that the queue is and would stay valid while it's holding a reference. With delay added in blk_queue_bio() before queue_lock is grabbed, the following oops can be easily triggered when a device is removed with in-flight IOs. sd 0:0:1:0: [sdb] Stopping disk ata1.01: disabled general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: Pid: 648, comm: test_rawio Not tainted 3.1.0-rc3-work+ #56 Bochs Bochs RIP: 0010:[<ffffffff8137d651>] [<ffffffff8137d651>] elv_rqhash_find+0x61/0x100 ... Process test_rawio (pid: 648, threadinfo ffff880019efa000, task ffff880019ef8a80) ... Call Trace: [<ffffffff8137d774>] elv_merge+0x84/0xe0 [<ffffffff81385b54>] blk_queue_bio+0xf4/0x400 [<ffffffff813838ea>] generic_make_request+0xca/0x100 [<ffffffff81383994>] submit_bio+0x74/0x100 [<ffffffff811c53ec>] dio_bio_submit+0xbc/0xc0 [<ffffffff811c610e>] __blockdev_direct_IO+0x92e/0xb40 [<ffffffff811c39f7>] blkdev_direct_IO+0x57/0x60 [<ffffffff8113b1c5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff8118c1ca>] do_sync_read+0xda/0x120 [<ffffffff8118ce55>] vfs_read+0xc5/0x180 [<ffffffff8118cfaa>] sys_pread64+0x9a/0xb0 [<ffffffff81afaf6b>] system_call_fastpath+0x16/0x1b This happens because blk_queue_cleanup() destroys the queue and elevator whether IOs are in progress or not and DEAD tests are sprinkled in the request processing path without proper synchronization. Similar problem exists for blk-throtl. On queue cleanup, blk-throtl is shutdown whether it has requests in it or not. Depending on timing, it either oopses or throttled bios are lost putting tasks which are waiting for bio completion into eternal D state. The way it should work is having the usual clear distinction between shutdown and release. Shutdown drains all currently pending requests, marks the queue dead, and performs partial teardown of the now unnecessary part of the queue. Even after shutdown is complete, reference holders are still allowed to issue requests to the queue although they will be immmediately failed. The rest of teardown happens on release. This patch makes the following changes to make blk_queue_cleanup() behave as proper shutdown. * QUEUE_FLAG_DEAD is now set while holding both q->exit_mutex and queue_lock. * Unsynchronized DEAD check in generic_make_request_checks() removed. This couldn't make any meaningful difference as the queue could die after the check. * blk_drain_queue() updated such that it can drain all requests and is now called during cleanup. * blk_throtl updated such that it checks DEAD on grabbing queue_lock, drains all throttled bios during cleanup and free td when queue is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19 14:42:16 +02:00
/* @q is and will stay empty, shutdown and put */
blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);
struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
{
return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
}
EXPORT_SYMBOL(blk_alloc_queue);
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
/**
* blk_queue_enter() - try to increase q->q_usage_counter
* @q: request queue pointer
* @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
*/
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
{
const bool pm = flags & BLK_MQ_REQ_PREEMPT;
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
while (true) {
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
bool success = false;
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
rcu_read_lock();
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
if (percpu_ref_tryget_live(&q->q_usage_counter)) {
/*
* The code that increments the pm_only counter is
* responsible for ensuring that that counter is
* globally visible before the queue is unfrozen.
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
*/
if (pm || !blk_queue_pm_only(q)) {
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
success = true;
} else {
percpu_ref_put(&q->q_usage_counter);
}
}
rcu_read_unlock();
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
if (success)
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
return 0;
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
if (flags & BLK_MQ_REQ_NOWAIT)
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
return -EBUSY;
/*
* read pair of barrier in blk_freeze_queue_start(),
* we need to order reading __PERCPU_REF_DEAD flag of
* .q_usage_counter and reading .mq_freeze_depth or
* queue dying flag, otherwise the following wait may
* never return if the two reads are reordered.
*/
smp_rmb();
wait_event(q->mq_freeze_wq,
blk-mq: fix hang caused by freeze/unfreeze sequence The following is a description of a hang in blk_mq_freeze_queue_wait(). The hang happens on attempt to freeze a queue while another task does queue unfreeze. The root cause is an incorrect sequence of percpu_ref_resurrect() and percpu_ref_kill() and as a result those two can be swapped: CPU#0 CPU#1 ---------------- ----------------- q1 = blk_mq_init_queue(shared_tags) q2 = blk_mq_init_queue(shared_tags): blk_mq_add_queue_tag_set(shared_tags): blk_mq_update_tag_set_depth(shared_tags): list_for_each_entry() blk_mq_freeze_queue(q1) > percpu_ref_kill() > blk_mq_freeze_queue_wait() blk_cleanup_queue(q1) blk_mq_freeze_queue(q1) > percpu_ref_kill() ^^^^^^ freeze_depth can't guarantee the order blk_mq_unfreeze_queue() > percpu_ref_resurrect() > blk_mq_freeze_queue_wait() ^^^^^^ Hang here!!!! This wrong sequence raises kernel warning: percpu_ref_kill_and_confirm called more than once on blk_queue_usage_counter_release! WARNING: CPU: 0 PID: 11854 at lib/percpu-refcount.c:336 percpu_ref_kill_and_confirm+0x99/0xb0 But the most unpleasant effect is a hang of a blk_mq_freeze_queue_wait(), which waits for a zero of a q_usage_counter, which never happens because percpu-ref was reinited (instead of being killed) and stays in PERCPU state forever. How to reproduce: - "insmod null_blk.ko shared_tags=1 nr_devices=0 queue_mode=2" - cpu0: python Script.py 0; taskset the corresponding process running on cpu0 - cpu1: python Script.py 1; taskset the corresponding process running on cpu1 Script.py: ------ #!/usr/bin/python3 import os import sys while True: on = "echo 1 > /sys/kernel/config/nullb/%s/power" % sys.argv[1] off = "echo 0 > /sys/kernel/config/nullb/%s/power" % sys.argv[1] os.system(on) os.system(off) ------ This bug was first reported and fixed by Roman, previous discussion: [1] Message id: 1443287365-4244-7-git-send-email-akinobu.mita@gmail.com [2] Message id: 1443563240-29306-6-git-send-email-tj@kernel.org [3] https://patchwork.kernel.org/patch/9268199/ Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com> Signed-off-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-05-21 11:25:55 +08:00
(!q->mq_freeze_depth &&
(pm || (blk_pm_request_resume(q),
!blk_queue_pm_only(q)))) ||
blk_queue_dying(q));
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
if (blk_queue_dying(q))
return -ENODEV;
}
}
void blk_queue_exit(struct request_queue *q)
{
percpu_ref_put(&q->q_usage_counter);
}
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
struct request_queue *q =
container_of(ref, struct request_queue, q_usage_counter);
wake_up_all(&q->mq_freeze_wq);
}
static void blk_rq_timed_out_timer(struct timer_list *t)
{
struct request_queue *q = from_timer(q, t, timeout);
kblockd_schedule_work(&q->timeout_work);
}
static void blk_timeout_work(struct work_struct *work)
{
}
block: Fix a race between the cgroup code and request queue initialization Initialize the request queue lock earlier such that the following race can no longer occur: blk_init_queue_node() blkcg_print_blkgs() blk_alloc_queue_node (1) q->queue_lock = &q->__queue_lock (2) blkcg_init_queue(q) (3) spin_lock_irq(blkg->q->queue_lock) (4) q->queue_lock = lock (5) spin_unlock_irq(blkg->q->queue_lock) (6) (1) allocate an uninitialized queue; (2) initialize queue_lock to its default internal lock; (3) initialize blkcg part of request queue, which will create blkg and then insert it to blkg_list; (4) traverse blkg_list and find the created blkg, and then take its queue lock, here it is the default *internal lock*; (5) *race window*, now queue_lock is overridden with *driver specified lock*; (6) now unlock *driver specified lock*, not the locked *internal lock*, unlock balance breaks. The changes in this patch are as follows: - Move the .queue_lock initialization from blk_init_queue_node() into blk_alloc_queue_node(). - Only override the .queue_lock pointer for legacy queues because it is not useful for blk-mq queues to override this pointer. - For all all block drivers that initialize .queue_lock explicitly, change the blk_alloc_queue() call in the driver into a blk_alloc_queue_node() call and remove the explicit .queue_lock initialization. Additionally, initialize the spin lock that will be used as queue lock earlier if necessary. Reported-by: Joseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-28 10:15:32 -08:00
/**
* blk_alloc_queue_node - allocate a request queue
* @gfp_mask: memory allocation flags
* @node_id: NUMA node to allocate memory from
*/
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
struct request_queue *q;
int ret;
q = kmem_cache_alloc_node(blk_requestq_cachep,
gfp_mask | __GFP_ZERO, node_id);
if (!q)
return NULL;
INIT_LIST_HEAD(&q->queue_head);
q->last_merge = NULL;
q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
if (q->id < 0)
goto fail_q;
ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (ret)
block: make generic_make_request handle arbitrarily sized bios The way the block layer is currently written, it goes to great lengths to avoid having to split bios; upper layer code (such as bio_add_page()) checks what the underlying device can handle and tries to always create bios that don't need to be split. But this approach becomes unwieldy and eventually breaks down with stacked devices and devices with dynamic limits, and it adds a lot of complexity. If the block layer could split bios as needed, we could eliminate a lot of complexity elsewhere - particularly in stacked drivers. Code that creates bios can then create whatever size bios are convenient, and more importantly stacked drivers don't have to deal with both their own bio size limitations and the limitations of the (potentially multiple) devices underneath them. In the future this will let us delete merge_bvec_fn and a bunch of other code. We do this by adding calls to blk_queue_split() to the various make_request functions that need it - a few can already handle arbitrary size bios. Note that we add the call _after_ any call to blk_queue_bounce(); this means that blk_queue_split() and blk_recalc_rq_segments() don't need to be concerned with bouncing affecting segment merging. Some make_request_fn() callbacks were simple enough to audit and verify they don't need blk_queue_split() calls. The skipped ones are: * nfhd_make_request (arch/m68k/emu/nfblock.c) * axon_ram_make_request (arch/powerpc/sysdev/axonram.c) * simdisk_make_request (arch/xtensa/platforms/iss/simdisk.c) * brd_make_request (ramdisk - drivers/block/brd.c) * mtip_submit_request (drivers/block/mtip32xx/mtip32xx.c) * loop_make_request * null_queue_bio * bcache's make_request fns Some others are almost certainly safe to remove now, but will be left for future patches. Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ming Lei <ming.lei@canonical.com> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: drbd-user@lists.linbit.com Cc: Jiri Kosina <jkosina@suse.cz> Cc: Geoff Levand <geoff@infradead.org> Cc: Jim Paris <jim@jtan.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Acked-by: NeilBrown <neilb@suse.de> (for the 'md/md.c' bits) Acked-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> [dpark: skip more mq-based drivers, resolve merge conflicts, etc.] Signed-off-by: Dongsu Park <dpark@posteo.net> Signed-off-by: Ming Lin <ming.l@ssi.samsung.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-04-23 22:37:18 -07:00
goto fail_id;
q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
if (!q->backing_dev_info)
goto fail_split;
q->stats = blk_alloc_queue_stats();
if (!q->stats)
goto fail_stats;
q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
q->backing_dev_info->name = "block";
q->node = node_id;
timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
laptop_mode_timer_fn, 0);
timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
INIT_WORK(&q->timeout_work, blk_timeout_work);
INIT_LIST_HEAD(&q->icq_list);
#ifdef CONFIG_BLK_CGROUP
blkcg: unify blkg's for blkcg policies Currently, blkg is per cgroup-queue-policy combination. This is unnatural and leads to various convolutions in partially used duplicate fields in blkg, config / stat access, and general management of blkgs. This patch make blkg's per cgroup-queue and let them serve all policies. blkgs are now created and destroyed by blkcg core proper. This will allow further consolidation of common management logic into blkcg core and API with better defined semantics and layering. As a transitional step to untangle blkg management, elvswitch and policy [de]registration, all blkgs except the root blkg are being shot down during elvswitch and bypass. This patch adds blkg_root_update() to update root blkg in place on policy change. This is hacky and racy but should be good enough as interim step until we get locking simplified and switch over to proper in-place update for all blkgs. -v2: Root blkgs need to be updated on elvswitch too and blkg_alloc() comment wasn't updated according to the function change. Fixed. Both pointed out by Vivek. -v3: v2 updated blkg_destroy_all() to invoke update_root_blkg_pd() for all policies. This freed root pd during elvswitch before the last queue finished exiting and led to oops. Directly invoke update_root_blkg_pd() only on BLKIO_POLICY_PROP from cfq_exit_queue(). This also is closer to what will be done with proper in-place blkg update. Reported by Vivek. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-03-05 13:15:20 -08:00
INIT_LIST_HEAD(&q->blkg_list);
#endif
kobject_init(&q->kobj, &blk_queue_ktype);
#ifdef CONFIG_BLK_DEV_IO_TRACE
mutex_init(&q->blk_trace_mutex);
#endif
mutex_init(&q->sysfs_lock);
spin_lock_init(&q->queue_lock);
block: Initialize ->queue_lock to internal lock at queue allocation time There does not seem to be a clear convention whether q->queue_lock is initialized or not when blk_cleanup_queue() is called. In the past it was not necessary but now blk_throtl_exit() takes up queue lock by default and needs queue lock to be available. In fact elevator_exit() code also has similar requirement just that it is less stringent in the sense that elevator_exit() is called only if elevator is initialized. Two problems have been noticed because of ambiguity about spin lock status. - If a driver calls blk_alloc_queue() and then soon calls blk_cleanup_queue() almost immediately, (because some other driver structure allocation failed or some other error happened) then blk_throtl_exit() will run into issues as queue lock is not initialized. Loop driver ran into this issue recently and I noticed error paths in md driver too. Similar error paths should exist in other drivers too. - If some driver provided external spin lock and zapped the lock before blk_cleanup_queue(), then it can lead to issues. So this patch initializes the default queue lock at queue allocation time. block throttling code is one of the users of queue lock and it is initialized at the queue allocation time, so it makes sense to initialize ->queue_lock also to internal lock. A driver can overide that lock later. This will take care of the issue where a driver does not have to worry about initializing the queue lock to default before calling blk_cleanup_queue() Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-02 19:04:42 -05:00
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
init_waitqueue_head(&q->mq_freeze_wq);
blk-mq: fix hang caused by freeze/unfreeze sequence The following is a description of a hang in blk_mq_freeze_queue_wait(). The hang happens on attempt to freeze a queue while another task does queue unfreeze. The root cause is an incorrect sequence of percpu_ref_resurrect() and percpu_ref_kill() and as a result those two can be swapped: CPU#0 CPU#1 ---------------- ----------------- q1 = blk_mq_init_queue(shared_tags) q2 = blk_mq_init_queue(shared_tags): blk_mq_add_queue_tag_set(shared_tags): blk_mq_update_tag_set_depth(shared_tags): list_for_each_entry() blk_mq_freeze_queue(q1) > percpu_ref_kill() > blk_mq_freeze_queue_wait() blk_cleanup_queue(q1) blk_mq_freeze_queue(q1) > percpu_ref_kill() ^^^^^^ freeze_depth can't guarantee the order blk_mq_unfreeze_queue() > percpu_ref_resurrect() > blk_mq_freeze_queue_wait() ^^^^^^ Hang here!!!! This wrong sequence raises kernel warning: percpu_ref_kill_and_confirm called more than once on blk_queue_usage_counter_release! WARNING: CPU: 0 PID: 11854 at lib/percpu-refcount.c:336 percpu_ref_kill_and_confirm+0x99/0xb0 But the most unpleasant effect is a hang of a blk_mq_freeze_queue_wait(), which waits for a zero of a q_usage_counter, which never happens because percpu-ref was reinited (instead of being killed) and stays in PERCPU state forever. How to reproduce: - "insmod null_blk.ko shared_tags=1 nr_devices=0 queue_mode=2" - cpu0: python Script.py 0; taskset the corresponding process running on cpu0 - cpu1: python Script.py 1; taskset the corresponding process running on cpu1 Script.py: ------ #!/usr/bin/python3 import os import sys while True: on = "echo 1 > /sys/kernel/config/nullb/%s/power" % sys.argv[1] off = "echo 0 > /sys/kernel/config/nullb/%s/power" % sys.argv[1] os.system(on) os.system(off) ------ This bug was first reported and fixed by Roman, previous discussion: [1] Message id: 1443287365-4244-7-git-send-email-akinobu.mita@gmail.com [2] Message id: 1443563240-29306-6-git-send-email-tj@kernel.org [3] https://patchwork.kernel.org/patch/9268199/ Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com> Signed-off-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-05-21 11:25:55 +08:00
mutex_init(&q->mq_freeze_lock);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
/*
* Init percpu_ref in atomic mode so that it's faster to shutdown.
* See blk_register_queue() for details.
*/
if (percpu_ref_init(&q->q_usage_counter,
blk_queue_usage_counter_release,
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
blk-core: Fix memory corruption if blkcg_init_queue fails If blkcg_init_queue fails, blk_alloc_queue_node doesn't call bdi_destroy to clean up structures allocated by the backing dev. ------------[ cut here ]------------ WARNING: at lib/debugobjects.c:260 debug_print_object+0x85/0xa0() ODEBUG: free active (active state 0) object type: percpu_counter hint: (null) Modules linked in: dm_loop dm_mod ip6table_filter ip6_tables uvesafb cfbcopyarea cfbimgblt cfbfillrect fbcon font bitblit fbcon_rotate fbcon_cw fbcon_ud fbcon_ccw softcursor fb fbdev ipt_MASQUERADE iptable_nat nf_nat_ipv4 msr nf_conntrack_ipv4 nf_defrag_ipv4 xt_state ipt_REJECT xt_tcpudp iptable_filter ip_tables x_tables bridge stp llc tun ipv6 cpufreq_userspace cpufreq_stats cpufreq_powersave cpufreq_ondemand cpufreq_conservative spadfs fuse hid_generic usbhid hid raid0 md_mod dmi_sysfs nf_nat_ftp nf_nat nf_conntrack_ftp nf_conntrack lm85 hwmon_vid snd_usb_audio snd_pcm_oss snd_mixer_oss snd_pcm snd_timer snd_page_alloc snd_hwdep snd_usbmidi_lib snd_rawmidi snd soundcore acpi_cpufreq freq_table mperf sata_svw serverworks kvm_amd ide_core ehci_pci ohci_hcd libata ehci_hcd kvm usbcore tg3 usb_common libphy k10temp pcspkr ptp i2c_piix4 i2c_core evdev microcode hwmon rtc_cmos pps_core e100 skge floppy mii processor button unix CPU: 0 PID: 2739 Comm: lvchange Tainted: G W 3.10.15-devel #14 Hardware name: empty empty/S3992-E, BIOS 'V1.06 ' 06/09/2009 0000000000000009 ffff88023c3c1ae8 ffffffff813c8fd4 ffff88023c3c1b20 ffffffff810399eb ffff88043d35cd58 ffffffff81651940 ffff88023c3c1bf8 ffffffff82479d90 0000000000000005 ffff88023c3c1b80 ffffffff81039a67 Call Trace: [<ffffffff813c8fd4>] dump_stack+0x19/0x1b [<ffffffff810399eb>] warn_slowpath_common+0x6b/0xa0 [<ffffffff81039a67>] warn_slowpath_fmt+0x47/0x50 [<ffffffff8122aaaf>] ? debug_check_no_obj_freed+0xcf/0x250 [<ffffffff81229a15>] debug_print_object+0x85/0xa0 [<ffffffff8122abe3>] debug_check_no_obj_freed+0x203/0x250 [<ffffffff8113c4ac>] kmem_cache_free+0x20c/0x3a0 [<ffffffff811f6709>] blk_alloc_queue_node+0x2a9/0x2c0 [<ffffffff811f672e>] blk_alloc_queue+0xe/0x10 [<ffffffffa04c0093>] dm_create+0x1a3/0x530 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6c07>] dev_create+0x57/0x2b0 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6528>] ctl_ioctl+0x268/0x500 [dm_mod] [<ffffffff81097662>] ? get_lock_stats+0x22/0x70 [<ffffffffa04c67ce>] dm_ctl_ioctl+0xe/0x20 [dm_mod] [<ffffffff81161aad>] do_vfs_ioctl+0x2ed/0x520 [<ffffffff8116cfc7>] ? fget_light+0x377/0x4e0 [<ffffffff81161d2b>] SyS_ioctl+0x4b/0x90 [<ffffffff813cff16>] system_call_fastpath+0x1a/0x1f ---[ end trace 4b5ff0d55673d986 ]--- ------------[ cut here ]------------ This fix should be backported to stable kernels starting with 2.6.37. Note that in the kernels prior to 3.5 the affected code is different, but the bug is still there - bdi_init is called and bdi_destroy isn't. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: stable@kernel.org # 2.6.37+ Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-14 12:11:36 -04:00
goto fail_bdi;
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
if (blkcg_init_queue(q))
goto fail_ref;
return q;
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
fail_ref:
percpu_ref_exit(&q->q_usage_counter);
blk-core: Fix memory corruption if blkcg_init_queue fails If blkcg_init_queue fails, blk_alloc_queue_node doesn't call bdi_destroy to clean up structures allocated by the backing dev. ------------[ cut here ]------------ WARNING: at lib/debugobjects.c:260 debug_print_object+0x85/0xa0() ODEBUG: free active (active state 0) object type: percpu_counter hint: (null) Modules linked in: dm_loop dm_mod ip6table_filter ip6_tables uvesafb cfbcopyarea cfbimgblt cfbfillrect fbcon font bitblit fbcon_rotate fbcon_cw fbcon_ud fbcon_ccw softcursor fb fbdev ipt_MASQUERADE iptable_nat nf_nat_ipv4 msr nf_conntrack_ipv4 nf_defrag_ipv4 xt_state ipt_REJECT xt_tcpudp iptable_filter ip_tables x_tables bridge stp llc tun ipv6 cpufreq_userspace cpufreq_stats cpufreq_powersave cpufreq_ondemand cpufreq_conservative spadfs fuse hid_generic usbhid hid raid0 md_mod dmi_sysfs nf_nat_ftp nf_nat nf_conntrack_ftp nf_conntrack lm85 hwmon_vid snd_usb_audio snd_pcm_oss snd_mixer_oss snd_pcm snd_timer snd_page_alloc snd_hwdep snd_usbmidi_lib snd_rawmidi snd soundcore acpi_cpufreq freq_table mperf sata_svw serverworks kvm_amd ide_core ehci_pci ohci_hcd libata ehci_hcd kvm usbcore tg3 usb_common libphy k10temp pcspkr ptp i2c_piix4 i2c_core evdev microcode hwmon rtc_cmos pps_core e100 skge floppy mii processor button unix CPU: 0 PID: 2739 Comm: lvchange Tainted: G W 3.10.15-devel #14 Hardware name: empty empty/S3992-E, BIOS 'V1.06 ' 06/09/2009 0000000000000009 ffff88023c3c1ae8 ffffffff813c8fd4 ffff88023c3c1b20 ffffffff810399eb ffff88043d35cd58 ffffffff81651940 ffff88023c3c1bf8 ffffffff82479d90 0000000000000005 ffff88023c3c1b80 ffffffff81039a67 Call Trace: [<ffffffff813c8fd4>] dump_stack+0x19/0x1b [<ffffffff810399eb>] warn_slowpath_common+0x6b/0xa0 [<ffffffff81039a67>] warn_slowpath_fmt+0x47/0x50 [<ffffffff8122aaaf>] ? debug_check_no_obj_freed+0xcf/0x250 [<ffffffff81229a15>] debug_print_object+0x85/0xa0 [<ffffffff8122abe3>] debug_check_no_obj_freed+0x203/0x250 [<ffffffff8113c4ac>] kmem_cache_free+0x20c/0x3a0 [<ffffffff811f6709>] blk_alloc_queue_node+0x2a9/0x2c0 [<ffffffff811f672e>] blk_alloc_queue+0xe/0x10 [<ffffffffa04c0093>] dm_create+0x1a3/0x530 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6c07>] dev_create+0x57/0x2b0 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6bb0>] ? list_version_get_info+0xe0/0xe0 [dm_mod] [<ffffffffa04c6528>] ctl_ioctl+0x268/0x500 [dm_mod] [<ffffffff81097662>] ? get_lock_stats+0x22/0x70 [<ffffffffa04c67ce>] dm_ctl_ioctl+0xe/0x20 [dm_mod] [<ffffffff81161aad>] do_vfs_ioctl+0x2ed/0x520 [<ffffffff8116cfc7>] ? fget_light+0x377/0x4e0 [<ffffffff81161d2b>] SyS_ioctl+0x4b/0x90 [<ffffffff813cff16>] system_call_fastpath+0x1a/0x1f ---[ end trace 4b5ff0d55673d986 ]--- ------------[ cut here ]------------ This fix should be backported to stable kernels starting with 2.6.37. Note that in the kernels prior to 3.5 the affected code is different, but the bug is still there - bdi_init is called and bdi_destroy isn't. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: stable@kernel.org # 2.6.37+ Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-14 12:11:36 -04:00
fail_bdi:
blk_free_queue_stats(q->stats);
fail_stats:
bdi_put(q->backing_dev_info);
block: make generic_make_request handle arbitrarily sized bios The way the block layer is currently written, it goes to great lengths to avoid having to split bios; upper layer code (such as bio_add_page()) checks what the underlying device can handle and tries to always create bios that don't need to be split. But this approach becomes unwieldy and eventually breaks down with stacked devices and devices with dynamic limits, and it adds a lot of complexity. If the block layer could split bios as needed, we could eliminate a lot of complexity elsewhere - particularly in stacked drivers. Code that creates bios can then create whatever size bios are convenient, and more importantly stacked drivers don't have to deal with both their own bio size limitations and the limitations of the (potentially multiple) devices underneath them. In the future this will let us delete merge_bvec_fn and a bunch of other code. We do this by adding calls to blk_queue_split() to the various make_request functions that need it - a few can already handle arbitrary size bios. Note that we add the call _after_ any call to blk_queue_bounce(); this means that blk_queue_split() and blk_recalc_rq_segments() don't need to be concerned with bouncing affecting segment merging. Some make_request_fn() callbacks were simple enough to audit and verify they don't need blk_queue_split() calls. The skipped ones are: * nfhd_make_request (arch/m68k/emu/nfblock.c) * axon_ram_make_request (arch/powerpc/sysdev/axonram.c) * simdisk_make_request (arch/xtensa/platforms/iss/simdisk.c) * brd_make_request (ramdisk - drivers/block/brd.c) * mtip_submit_request (drivers/block/mtip32xx/mtip32xx.c) * loop_make_request * null_queue_bio * bcache's make_request fns Some others are almost certainly safe to remove now, but will be left for future patches. Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ming Lei <ming.lei@canonical.com> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: drbd-user@lists.linbit.com Cc: Jiri Kosina <jkosina@suse.cz> Cc: Geoff Levand <geoff@infradead.org> Cc: Jim Paris <jim@jtan.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Acked-by: NeilBrown <neilb@suse.de> (for the 'md/md.c' bits) Acked-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> [dpark: skip more mq-based drivers, resolve merge conflicts, etc.] Signed-off-by: Dongsu Park <dpark@posteo.net> Signed-off-by: Ming Lin <ming.l@ssi.samsung.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-04-23 22:37:18 -07:00
fail_split:
bioset_exit(&q->bio_split);
fail_id:
ida_simple_remove(&blk_queue_ida, q->id);
fail_q:
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
EXPORT_SYMBOL(blk_alloc_queue_node);
bool blk_get_queue(struct request_queue *q)
{
if (likely(!blk_queue_dying(q))) {
__blk_get_queue(q);
return true;
}
return false;
}
EXPORT_SYMBOL(blk_get_queue);
/**
* blk_get_request - allocate a request
* @q: request queue to allocate a request for
* @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
* @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
*/
struct request *blk_get_request(struct request_queue *q, unsigned int op,
blk_mq_req_flags_t flags)
{
struct request *req;
WARN_ON_ONCE(op & REQ_NOWAIT);
WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
req = blk_mq_alloc_request(q, op, flags);
if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
q->mq_ops->initialize_rq_fn(req);
return req;
}
EXPORT_SYMBOL(blk_get_request);
void blk_put_request(struct request *req)
{
blk_mq_free_request(req);
}
EXPORT_SYMBOL(blk_put_request);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
struct bio *bio)
{
const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
if (!ll_back_merge_fn(q, req, bio))
return false;
trace_block_bio_backmerge(q, req, bio);
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
blk_rq_set_mixed_merge(req);
req->biotail->bi_next = bio;
req->biotail = bio;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
req->__data_len += bio->bi_iter.bi_size;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
blk_account_io_start(req, false);
return true;
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
struct bio *bio)
{
const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
if (!ll_front_merge_fn(q, req, bio))
return false;
trace_block_bio_frontmerge(q, req, bio);
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
blk_rq_set_mixed_merge(req);
bio->bi_next = req->bio;
req->bio = bio;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
req->__sector = bio->bi_iter.bi_sector;
req->__data_len += bio->bi_iter.bi_size;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
blk_account_io_start(req, false);
return true;
}
bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
struct bio *bio)
{
unsigned short segments = blk_rq_nr_discard_segments(req);
if (segments >= queue_max_discard_segments(q))
goto no_merge;
if (blk_rq_sectors(req) + bio_sectors(bio) >
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
goto no_merge;
req->biotail->bi_next = bio;
req->biotail = bio;
req->__data_len += bio->bi_iter.bi_size;
req->nr_phys_segments = segments + 1;
blk_account_io_start(req, false);
return true;
no_merge:
req_set_nomerge(q, req);
return false;
}
/**
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
* blk_attempt_plug_merge - try to merge with %current's plugged list
* @q: request_queue new bio is being queued at
* @bio: new bio being queued
* @same_queue_rq: pointer to &struct request that gets filled in when
* another request associated with @q is found on the plug list
* (optional, may be %NULL)
*
* Determine whether @bio being queued on @q can be merged with a request
* on %current's plugged list. Returns %true if merge was successful,
* otherwise %false.
*
block: don't call elevator callbacks for plug merges Plug merge calls two elevator callbacks outside queue lock - elevator_allow_merge_fn() and elevator_bio_merged_fn(). Although attempt_plug_merge() suggests that elevator is guaranteed to be there through the existing request on the plug list, nothing prevents plug merge from calling into dying or initializing elevator. For regular merges, bypass ensures elvpriv count to reach zero, which in turn prevents merges as all !ELVPRIV requests get REQ_SOFTBARRIER from forced back insertion. Plug merge doesn't check ELVPRIV, and, as the requests haven't gone through elevator insertion yet, it doesn't have SOFTBARRIER set allowing merges on a bypassed queue. This, for example, leads to the following crash during elevator switch. BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: [<ffffffff813b34e9>] cfq_allow_merge+0x49/0xa0 PGD 112cbc067 PUD 115d5c067 PMD 0 Oops: 0000 [#1] PREEMPT SMP CPU 1 Modules linked in: deadline_iosched Pid: 819, comm: dd Not tainted 3.3.0-rc2-work+ #76 Bochs Bochs RIP: 0010:[<ffffffff813b34e9>] [<ffffffff813b34e9>] cfq_allow_merge+0x49/0xa0 RSP: 0018:ffff8801143a38f8 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff88011817ce28 RCX: ffff880116eb6cc0 RDX: 0000000000000000 RSI: ffff880118056e20 RDI: ffff8801199512f8 RBP: ffff8801143a3908 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: ffff880118195708 R13: ffff880118052aa0 R14: ffff8801143a3d50 R15: ffff880118195708 FS: 00007f19f82cb700(0000) GS:ffff88011fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000112c6a000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process dd (pid: 819, threadinfo ffff8801143a2000, task ffff880116eb6cc0) Stack: ffff88011817ce28 ffff880118195708 ffff8801143a3928 ffffffff81391bba ffff88011817ce28 ffff880118195708 ffff8801143a3948 ffffffff81391bf1 ffff88011817ce28 0000000000000000 ffff8801143a39a8 ffffffff81398e3e Call Trace: [<ffffffff81391bba>] elv_rq_merge_ok+0x4a/0x60 [<ffffffff81391bf1>] elv_try_merge+0x21/0x40 [<ffffffff81398e3e>] blk_queue_bio+0x8e/0x390 [<ffffffff81396a5a>] generic_make_request+0xca/0x100 [<ffffffff81396b04>] submit_bio+0x74/0x100 [<ffffffff811d45c2>] __blockdev_direct_IO+0x1ce2/0x3450 [<ffffffff811d0dc7>] blkdev_direct_IO+0x57/0x60 [<ffffffff811460b5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff811986b2>] do_sync_read+0xe2/0x120 [<ffffffff81199345>] vfs_read+0xc5/0x180 [<ffffffff81199501>] sys_read+0x51/0x90 [<ffffffff81aeac12>] system_call_fastpath+0x16/0x1b There are multiple ways to fix this including making plug merge check ELVPRIV; however, * Calling into elevator outside queue lock is confusing and error-prone. * Requests on plug list aren't known to the elevator. They aren't on the elevator yet, so there's no elevator specific state to update. * Given the nature of plug merges - collecting bio's for the same purpose from the same issuer - elevator specific restrictions aren't applicable. So, simply don't call into elevator methods from plug merge by moving elv_bio_merged() from bio_attempt_*_merge() to blk_queue_bio(), and using blk_try_merge() in attempt_plug_merge(). This is based on Jens' patch to skip elevator_allow_merge_fn() from plug merge. Note that this makes per-cgroup merged stats skip plug merging. Signed-off-by: Tejun Heo <tj@kernel.org> LKML-Reference: <4F16F3CA.90904@kernel.dk> Original-patch-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-02-08 09:19:42 +01:00
* Plugging coalesces IOs from the same issuer for the same purpose without
* going through @q->queue_lock. As such it's more of an issuing mechanism
* than scheduling, and the request, while may have elvpriv data, is not
* added on the elevator at this point. In addition, we don't have
* reliable access to the elevator outside queue lock. Only check basic
* merging parameters without querying the elevator.
*
* Caller must ensure !blk_queue_nomerges(q) beforehand.
*/
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
struct request **same_queue_rq)
{
struct blk_plug *plug;
struct request *rq;
struct list_head *plug_list;
plug = current->plug;
if (!plug)
return false;
plug_list = &plug->mq_list;
list_for_each_entry_reverse(rq, plug_list, queuelist) {
bool merged = false;
if (rq->q == q && same_queue_rq) {
/*
* Only blk-mq multiple hardware queues case checks the
* rq in the same queue, there should be only one such
* rq in a queue
**/
*same_queue_rq = rq;
}
block: don't call elevator callbacks for plug merges Plug merge calls two elevator callbacks outside queue lock - elevator_allow_merge_fn() and elevator_bio_merged_fn(). Although attempt_plug_merge() suggests that elevator is guaranteed to be there through the existing request on the plug list, nothing prevents plug merge from calling into dying or initializing elevator. For regular merges, bypass ensures elvpriv count to reach zero, which in turn prevents merges as all !ELVPRIV requests get REQ_SOFTBARRIER from forced back insertion. Plug merge doesn't check ELVPRIV, and, as the requests haven't gone through elevator insertion yet, it doesn't have SOFTBARRIER set allowing merges on a bypassed queue. This, for example, leads to the following crash during elevator switch. BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: [<ffffffff813b34e9>] cfq_allow_merge+0x49/0xa0 PGD 112cbc067 PUD 115d5c067 PMD 0 Oops: 0000 [#1] PREEMPT SMP CPU 1 Modules linked in: deadline_iosched Pid: 819, comm: dd Not tainted 3.3.0-rc2-work+ #76 Bochs Bochs RIP: 0010:[<ffffffff813b34e9>] [<ffffffff813b34e9>] cfq_allow_merge+0x49/0xa0 RSP: 0018:ffff8801143a38f8 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff88011817ce28 RCX: ffff880116eb6cc0 RDX: 0000000000000000 RSI: ffff880118056e20 RDI: ffff8801199512f8 RBP: ffff8801143a3908 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: ffff880118195708 R13: ffff880118052aa0 R14: ffff8801143a3d50 R15: ffff880118195708 FS: 00007f19f82cb700(0000) GS:ffff88011fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000112c6a000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process dd (pid: 819, threadinfo ffff8801143a2000, task ffff880116eb6cc0) Stack: ffff88011817ce28 ffff880118195708 ffff8801143a3928 ffffffff81391bba ffff88011817ce28 ffff880118195708 ffff8801143a3948 ffffffff81391bf1 ffff88011817ce28 0000000000000000 ffff8801143a39a8 ffffffff81398e3e Call Trace: [<ffffffff81391bba>] elv_rq_merge_ok+0x4a/0x60 [<ffffffff81391bf1>] elv_try_merge+0x21/0x40 [<ffffffff81398e3e>] blk_queue_bio+0x8e/0x390 [<ffffffff81396a5a>] generic_make_request+0xca/0x100 [<ffffffff81396b04>] submit_bio+0x74/0x100 [<ffffffff811d45c2>] __blockdev_direct_IO+0x1ce2/0x3450 [<ffffffff811d0dc7>] blkdev_direct_IO+0x57/0x60 [<ffffffff811460b5>] generic_file_aio_read+0x6d5/0x760 [<ffffffff811986b2>] do_sync_read+0xe2/0x120 [<ffffffff81199345>] vfs_read+0xc5/0x180 [<ffffffff81199501>] sys_read+0x51/0x90 [<ffffffff81aeac12>] system_call_fastpath+0x16/0x1b There are multiple ways to fix this including making plug merge check ELVPRIV; however, * Calling into elevator outside queue lock is confusing and error-prone. * Requests on plug list aren't known to the elevator. They aren't on the elevator yet, so there's no elevator specific state to update. * Given the nature of plug merges - collecting bio's for the same purpose from the same issuer - elevator specific restrictions aren't applicable. So, simply don't call into elevator methods from plug merge by moving elv_bio_merged() from bio_attempt_*_merge() to blk_queue_bio(), and using blk_try_merge() in attempt_plug_merge(). This is based on Jens' patch to skip elevator_allow_merge_fn() from plug merge. Note that this makes per-cgroup merged stats skip plug merging. Signed-off-by: Tejun Heo <tj@kernel.org> LKML-Reference: <4F16F3CA.90904@kernel.dk> Original-patch-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-02-08 09:19:42 +01:00
if (rq->q != q || !blk_rq_merge_ok(rq, bio))
continue;
switch (blk_try_merge(rq, bio)) {
case ELEVATOR_BACK_MERGE:
merged = bio_attempt_back_merge(q, rq, bio);
break;
case ELEVATOR_FRONT_MERGE:
merged = bio_attempt_front_merge(q, rq, bio);
break;
case ELEVATOR_DISCARD_MERGE:
merged = bio_attempt_discard_merge(q, rq, bio);
break;
default:
break;
}
if (merged)
return true;
}
return false;
}
void blk_init_request_from_bio(struct request *req, struct bio *bio)
{
if (bio->bi_opf & REQ_RAHEAD)
req->cmd_flags |= REQ_FAILFAST_MASK;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
req->__sector = bio->bi_iter.bi_sector;
req->ioprio = bio_prio(bio);
req->write_hint = bio->bi_write_hint;
blk_rq_bio_prep(req->q, req, bio);
}
EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
static void handle_bad_sector(struct bio *bio, sector_t maxsector)
{
char b[BDEVNAME_SIZE];
printk(KERN_INFO "attempt to access beyond end of device\n");
printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
bio_devname(bio, b), bio->bi_opf,
(unsigned long long)bio_end_sector(bio),
(long long)maxsector);
}
#ifdef CONFIG_FAIL_MAKE_REQUEST
static DECLARE_FAULT_ATTR(fail_make_request);
static int __init setup_fail_make_request(char *str)
{
return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);
static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
{
return part->make_it_fail && should_fail(&fail_make_request, bytes);
}
static int __init fail_make_request_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
NULL, &fail_make_request);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_make_request_debugfs);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool should_fail_request(struct hd_struct *part,
unsigned int bytes)
{
return false;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
{
const int op = bio_op(bio);
if (part->policy && op_is_write(op)) {
char b[BDEVNAME_SIZE];
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
return false;
Partially revert "block: fail op_is_write() requests to read-only partitions" It turns out that commit 721c7fc701c7 ("block: fail op_is_write() requests to read-only partitions"), while obviously correct, causes problems for some older lvm2 installations. The reason is that the lvm snapshotting will continue to write to the snapshow COW volume, even after the volume has been marked read-only. End result: snapshot failure. This has actually been fixed in newer version of the lvm2 tool, but the old tools still exist, and the breakage was reported both in the kernel bugzilla and in the Debian bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200439 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900442 The lvm2 fix is here https://sourceware.org/git/?p=lvm2.git;a=commit;h=a6fdb9d9d70f51c49ad11a87ab4243344e6701a3 but until everybody has updated to recent versions, we'll have to weaken the "never write to read-only partitions" check. It now allows the write to happen, but causes a warning, something like this: generic_make_request: Trying to write to read-only block-device dm-3 (partno X) Modules linked in: nf_tables xt_cgroup xt_owner kvm_intel iwlmvm kvm irqbypass iwlwifi CPU: 1 PID: 77 Comm: kworker/1:1 Not tainted 4.17.9-gentoo #3 Hardware name: LENOVO 20B6A019RT/20B6A019RT, BIOS GJET91WW (2.41 ) 09/21/2016 Workqueue: ksnaphd do_metadata RIP: 0010:generic_make_request_checks+0x4ac/0x600 ... Call Trace: generic_make_request+0x64/0x400 submit_bio+0x6c/0x140 dispatch_io+0x287/0x430 sync_io+0xc3/0x120 dm_io+0x1f8/0x220 do_metadata+0x1d/0x30 process_one_work+0x1b9/0x3e0 worker_thread+0x2b/0x3c0 kthread+0x113/0x130 ret_from_fork+0x35/0x40 Note that this is a "revert" in behavior only. I'm leaving alone the actual code cleanups in commit 721c7fc701c7, but letting the previously uncaught request go through with a warning instead of stopping it. Fixes: 721c7fc701c7 ("block: fail op_is_write() requests to read-only partitions") Reported-and-tested-by: WGH <wgh@torlan.ru> Acked-by: Mike Snitzer <snitzer@redhat.com> Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Zdenek Kabelac <zkabelac@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-03 12:22:09 -07:00
WARN_ONCE(1,
"generic_make_request: Trying to write "
"to read-only block-device %s (partno %d)\n",
bio_devname(bio, b), part->partno);
Partially revert "block: fail op_is_write() requests to read-only partitions" It turns out that commit 721c7fc701c7 ("block: fail op_is_write() requests to read-only partitions"), while obviously correct, causes problems for some older lvm2 installations. The reason is that the lvm snapshotting will continue to write to the snapshow COW volume, even after the volume has been marked read-only. End result: snapshot failure. This has actually been fixed in newer version of the lvm2 tool, but the old tools still exist, and the breakage was reported both in the kernel bugzilla and in the Debian bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200439 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900442 The lvm2 fix is here https://sourceware.org/git/?p=lvm2.git;a=commit;h=a6fdb9d9d70f51c49ad11a87ab4243344e6701a3 but until everybody has updated to recent versions, we'll have to weaken the "never write to read-only partitions" check. It now allows the write to happen, but causes a warning, something like this: generic_make_request: Trying to write to read-only block-device dm-3 (partno X) Modules linked in: nf_tables xt_cgroup xt_owner kvm_intel iwlmvm kvm irqbypass iwlwifi CPU: 1 PID: 77 Comm: kworker/1:1 Not tainted 4.17.9-gentoo #3 Hardware name: LENOVO 20B6A019RT/20B6A019RT, BIOS GJET91WW (2.41 ) 09/21/2016 Workqueue: ksnaphd do_metadata RIP: 0010:generic_make_request_checks+0x4ac/0x600 ... Call Trace: generic_make_request+0x64/0x400 submit_bio+0x6c/0x140 dispatch_io+0x287/0x430 sync_io+0xc3/0x120 dm_io+0x1f8/0x220 do_metadata+0x1d/0x30 process_one_work+0x1b9/0x3e0 worker_thread+0x2b/0x3c0 kthread+0x113/0x130 ret_from_fork+0x35/0x40 Note that this is a "revert" in behavior only. I'm leaving alone the actual code cleanups in commit 721c7fc701c7, but letting the previously uncaught request go through with a warning instead of stopping it. Fixes: 721c7fc701c7 ("block: fail op_is_write() requests to read-only partitions") Reported-and-tested-by: WGH <wgh@torlan.ru> Acked-by: Mike Snitzer <snitzer@redhat.com> Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Zdenek Kabelac <zkabelac@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-03 12:22:09 -07:00
/* Older lvm-tools actually trigger this */
return false;
}
return false;
}
static noinline int should_fail_bio(struct bio *bio)
{
if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
return -EIO;
return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
/*
* Check whether this bio extends beyond the end of the device or partition.
* This may well happen - the kernel calls bread() without checking the size of
* the device, e.g., when mounting a file system.
*/
static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
{
unsigned int nr_sectors = bio_sectors(bio);
if (nr_sectors && maxsector &&
(nr_sectors > maxsector ||
bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
handle_bad_sector(bio, maxsector);
return -EIO;
}
return 0;
}
/*
* Remap block n of partition p to block n+start(p) of the disk.
*/
static inline int blk_partition_remap(struct bio *bio)
{
struct hd_struct *p;
int ret = -EIO;
rcu_read_lock();
p = __disk_get_part(bio->bi_disk, bio->bi_partno);
if (unlikely(!p))
goto out;
if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
goto out;
if (unlikely(bio_check_ro(bio, p)))
goto out;
/*
* Zone reset does not include bi_size so bio_sectors() is always 0.
* Include a test for the reset op code and perform the remap if needed.
*/
if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
if (bio_check_eod(bio, part_nr_sects_read(p)))
goto out;
bio->bi_iter.bi_sector += p->start_sect;
trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
bio->bi_iter.bi_sector - p->start_sect);
}
bio->bi_partno = 0;
ret = 0;
out:
rcu_read_unlock();
return ret;
}
static noinline_for_stack bool
generic_make_request_checks(struct bio *bio)
{
struct request_queue *q;
int nr_sectors = bio_sectors(bio);
blk_status_t status = BLK_STS_IOERR;
char b[BDEVNAME_SIZE];
might_sleep();
q = bio->bi_disk->queue;
if (unlikely(!q)) {
printk(KERN_ERR
"generic_make_request: Trying to access "
"nonexistent block-device %s (%Lu)\n",
bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
goto end_io;
}
/*
* For a REQ_NOWAIT based request, return -EOPNOTSUPP
* if queue is not a request based queue.
*/
if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
goto not_supported;
if (should_fail_bio(bio))
goto end_io;
if (bio->bi_partno) {
if (unlikely(blk_partition_remap(bio)))
goto end_io;
} else {
if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
goto end_io;
if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
goto end_io;
}
/*
* Filter flush bio's early so that make_request based
* drivers without flush support don't have to worry
* about them.
*/
if (op_is_flush(bio->bi_opf) &&
!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
if (!nr_sectors) {
status = BLK_STS_OK;
goto end_io;
}
}
if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bio->bi_opf &= ~REQ_HIPRI;
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
if (!blk_queue_discard(q))
goto not_supported;
break;
case REQ_OP_SECURE_ERASE:
if (!blk_queue_secure_erase(q))
goto not_supported;
break;
case REQ_OP_WRITE_SAME:
if (!q->limits.max_write_same_sectors)
goto not_supported;
break;
case REQ_OP_ZONE_RESET:
if (!blk_queue_is_zoned(q))
goto not_supported;
break;
case REQ_OP_WRITE_ZEROES:
if (!q->limits.max_write_zeroes_sectors)
goto not_supported;
break;
default:
break;
}
/*
* Various block parts want %current->io_context and lazy ioc
* allocation ends up trading a lot of pain for a small amount of
* memory. Just allocate it upfront. This may fail and block
* layer knows how to live with it.
*/
create_io_context(GFP_ATOMIC, q->node);
blkcg: consolidate blkg creation in blkcg_bio_issue_check() blkg (blkcg_gq) currently is created by blkcg policies invoking blkg_lookup_create() which ends up repeating about the same code in different policies. Theoretically, this can avoid the overhead of looking and/or creating blkg's if blkcg is enabled but no policy is in use; however, the cost of blkg lookup / creation is very low especially if only the root blkcg is in use which is highly likely if no blkcg policy is in active use - it boils down to a single very predictable conditional and surrounding RCU protection. This patch consolidates blkg creation to a new function blkcg_bio_issue_check() which is called during bio issue from generic_make_request_checks(). blkcg_bio_issue_check() is now the only function which tries to create missing blkg's. The subsequent policy and request_list operations just perform blkg_lookup() and if missing falls back to the root. * blk_get_rl() no longer tries to create blkg. It uses blkg_lookup() instead of blkg_lookup_create(). * blk_throtl_bio() is now called from blkcg_bio_issue_check() with rcu read locked and blkg already looked up. Both throtl_lookup_tg() and throtl_lookup_create_tg() are dropped. * cfq is similarly updated. cfq_lookup_create_cfqg() is replaced with cfq_lookup_cfqg()which uses blkg_lookup(). This consolidates blkg handling and avoids unnecessary blkg creation retries under memory pressure. In addition, this provides a common bio entry point into blkcg where things like common accounting can be performed. v2: Build fixes for !CONFIG_CFQ_GROUP_IOSCHED and !CONFIG_BLK_DEV_THROTTLING. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-18 14:55:20 -07:00
if (!blkcg_bio_issue_check(q, bio))
return false;
block: trace completion of all bios. Currently only dm and md/raid5 bios trigger trace_block_bio_complete(). Now that we have bio_chain() and bio_inc_remaining(), it is not possible, in general, for a driver to know when the bio is really complete. Only bio_endio() knows that. So move the trace_block_bio_complete() call to bio_endio(). Now trace_block_bio_complete() pairs with trace_block_bio_queue(). Any bio for which a 'queue' event is traced, will subsequently generate a 'complete' event. There are a few cases where completion tracing is not wanted. 1/ If blk_update_request() has already generated a completion trace event at the 'request' level, there is no point generating one at the bio level too. In this case the bi_sector and bi_size will have changed, so the bio level event would be wrong 2/ If the bio hasn't actually been queued yet, but is being aborted early, then a trace event could be confusing. Some filesystems call bio_endio() but do not want tracing. 3/ The bio_integrity code interposes itself by replacing bi_end_io, then restoring it and calling bio_endio() again. This would produce two identical trace events if left like that. To handle these, we introduce a flag BIO_TRACE_COMPLETION and only produce the trace event when this is set. We address point 1 above by clearing the flag in blk_update_request(). We address point 2 above by only setting the flag when generic_make_request() is called. We address point 3 above by clearing the flag after generating a completion event. When bio_split() is used on a bio, particularly in blk_queue_split(), there is an extra complication. A new bio is split off the front, and may be handle directly without going through generic_make_request(). The old bio, which has been advanced, is passed to generic_make_request(), so it will trigger a trace event a second time. Probably the best result when a split happens is to see a single 'queue' event for the whole bio, then multiple 'complete' events - one for each component. To achieve this was can: - copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split() - avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set. This way, the split-off bio won't create a queue event, the original won't either even if it re-submitted to generic_make_request(), but both will produce completion events, each for their own range. So if generic_make_request() is called (which generates a QUEUED event), then bi_endio() will create a single COMPLETE event for each range that the bio is split into, unless the driver has explicitly requested it not to. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
trace_block_bio_queue(q, bio);
/* Now that enqueuing has been traced, we need to trace
* completion as well.
*/
bio_set_flag(bio, BIO_TRACE_COMPLETION);
}
return true;
not_supported:
status = BLK_STS_NOTSUPP;
end_io:
bio->bi_status = status;
bio_endio(bio);
return false;
}
/**
* generic_make_request - hand a buffer to its device driver for I/O
* @bio: The bio describing the location in memory and on the device.
*
* generic_make_request() is used to make I/O requests of block
* devices. It is passed a &struct bio, which describes the I/O that needs
* to be done.
*
* generic_make_request() does not return any status. The
* success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the bio->bi_end_io
* function described (one day) else where.
*
* The caller of generic_make_request must make sure that bi_io_vec
* are set to describe the memory buffer, and that bi_dev and bi_sector are
* set to describe the device address, and the
* bi_end_io and optionally bi_private are set to describe how
* completion notification should be signaled.
*
* generic_make_request and the drivers it calls may use bi_next if this
* bio happens to be merged with someone else, and may resubmit the bio to
* a lower device by calling into generic_make_request recursively, which
* means the bio should NOT be touched after the call to ->make_request_fn.
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
*/
blk_qc_t generic_make_request(struct bio *bio)
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
{
/*
* bio_list_on_stack[0] contains bios submitted by the current
* make_request_fn.
* bio_list_on_stack[1] contains bios that were submitted before
* the current make_request_fn, but that haven't been processed
* yet.
*/
struct bio_list bio_list_on_stack[2];
blk_qc_t ret = BLK_QC_T_NONE;
if (!generic_make_request_checks(bio))
goto out;
/*
* We only want one ->make_request_fn to be active at a time, else
* stack usage with stacked devices could be a problem. So use
* current->bio_list to keep a list of requests submited by a
* make_request_fn function. current->bio_list is also used as a
* flag to say if generic_make_request is currently active in this
* task or not. If it is NULL, then no make_request is active. If
* it is non-NULL, then a make_request is active, and new requests
* should be added at the tail
*/
if (current->bio_list) {
bio_list_add(&current->bio_list[0], bio);
goto out;
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
}
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
/* following loop may be a bit non-obvious, and so deserves some
* explanation.
* Before entering the loop, bio->bi_next is NULL (as all callers
* ensure that) so we have a list with a single bio.
* We pretend that we have just taken it off a longer list, so
* we assign bio_list to a pointer to the bio_list_on_stack,
* thus initialising the bio_list of new bios to be
* added. ->make_request() may indeed add some more bios
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
* through a recursive call to generic_make_request. If it
* did, we find a non-NULL value in bio_list and re-enter the loop
* from the top. In this case we really did just take the bio
* of the top of the list (no pretending) and so remove it from
* bio_list, and call into ->make_request() again.
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
*/
BUG_ON(bio->bi_next);
bio_list_init(&bio_list_on_stack[0]);
current->bio_list = bio_list_on_stack;
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
do {
struct request_queue *q = bio->bi_disk->queue;
blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
BLK_MQ_REQ_NOWAIT : 0;
if (likely(blk_queue_enter(q, flags) == 0)) {
blk: improve order of bio handling in generic_make_request() To avoid recursion on the kernel stack when stacked block devices are in use, generic_make_request() will, when called recursively, queue new requests for later handling. They will be handled when the make_request_fn for the current bio completes. If any bios are submitted by a make_request_fn, these will ultimately be handled seqeuntially. If the handling of one of those generates further requests, they will be added to the end of the queue. This strict first-in-first-out behaviour can lead to deadlocks in various ways, normally because a request might need to wait for a previous request to the same device to complete. This can happen when they share a mempool, and can happen due to interdependencies particular to the device. Both md and dm have examples where this happens. These deadlocks can be erradicated by more selective ordering of bios. Specifically by handling them in depth-first order. That is: when the handling of one bio generates one or more further bios, they are handled immediately after the parent, before any siblings of the parent. That way, when generic_make_request() calls make_request_fn for some particular device, we can be certain that all previously submited requests for that device have been completely handled and are not waiting for anything in the queue of requests maintained in generic_make_request(). An easy way to achieve this would be to use a last-in-first-out stack instead of a queue. However this will change the order of consecutive bios submitted by a make_request_fn, which could have unexpected consequences. Instead we take a slightly more complex approach. A fresh queue is created for each call to a make_request_fn. After it completes, any bios for a different device are placed on the front of the main queue, followed by any bios for the same device, followed by all bios that were already on the queue before the make_request_fn was called. This provides the depth-first approach without reordering bios on the same level. This, by itself, it not enough to remove all deadlocks. It just makes it possible for drivers to take the extra step required themselves. To avoid deadlocks, drivers must never risk waiting for a request after submitting one to generic_make_request. This includes never allocing from a mempool twice in the one call to a make_request_fn. A common pattern in drivers is to call bio_split() in a loop, handling the first part and then looping around to possibly split the next part. Instead, a driver that finds it needs to split a bio should queue (with generic_make_request) the second part, handle the first part, and then return. The new code in generic_make_request will ensure the requests to underlying bios are processed first, then the second bio that was split off. If it splits again, the same process happens. In each case one bio will be completely handled before the next one is attempted. With this is place, it should be possible to disable the punt_bios_to_recover() recovery thread for many block devices, and eventually it may be possible to remove it completely. Ref: http://www.spinics.net/lists/raid/msg54680.html Tested-by: Jinpu Wang <jinpu.wang@profitbricks.com> Inspired-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-08 07:38:05 +11:00
struct bio_list lower, same;
/* Create a fresh bio_list for all subordinate requests */
bio_list_on_stack[1] = bio_list_on_stack[0];
bio_list_init(&bio_list_on_stack[0]);
ret = q->make_request_fn(q, bio);
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
blk_queue_exit(q);
blk: improve order of bio handling in generic_make_request() To avoid recursion on the kernel stack when stacked block devices are in use, generic_make_request() will, when called recursively, queue new requests for later handling. They will be handled when the make_request_fn for the current bio completes. If any bios are submitted by a make_request_fn, these will ultimately be handled seqeuntially. If the handling of one of those generates further requests, they will be added to the end of the queue. This strict first-in-first-out behaviour can lead to deadlocks in various ways, normally because a request might need to wait for a previous request to the same device to complete. This can happen when they share a mempool, and can happen due to interdependencies particular to the device. Both md and dm have examples where this happens. These deadlocks can be erradicated by more selective ordering of bios. Specifically by handling them in depth-first order. That is: when the handling of one bio generates one or more further bios, they are handled immediately after the parent, before any siblings of the parent. That way, when generic_make_request() calls make_request_fn for some particular device, we can be certain that all previously submited requests for that device have been completely handled and are not waiting for anything in the queue of requests maintained in generic_make_request(). An easy way to achieve this would be to use a last-in-first-out stack instead of a queue. However this will change the order of consecutive bios submitted by a make_request_fn, which could have unexpected consequences. Instead we take a slightly more complex approach. A fresh queue is created for each call to a make_request_fn. After it completes, any bios for a different device are placed on the front of the main queue, followed by any bios for the same device, followed by all bios that were already on the queue before the make_request_fn was called. This provides the depth-first approach without reordering bios on the same level. This, by itself, it not enough to remove all deadlocks. It just makes it possible for drivers to take the extra step required themselves. To avoid deadlocks, drivers must never risk waiting for a request after submitting one to generic_make_request. This includes never allocing from a mempool twice in the one call to a make_request_fn. A common pattern in drivers is to call bio_split() in a loop, handling the first part and then looping around to possibly split the next part. Instead, a driver that finds it needs to split a bio should queue (with generic_make_request) the second part, handle the first part, and then return. The new code in generic_make_request will ensure the requests to underlying bios are processed first, then the second bio that was split off. If it splits again, the same process happens. In each case one bio will be completely handled before the next one is attempted. With this is place, it should be possible to disable the punt_bios_to_recover() recovery thread for many block devices, and eventually it may be possible to remove it completely. Ref: http://www.spinics.net/lists/raid/msg54680.html Tested-by: Jinpu Wang <jinpu.wang@profitbricks.com> Inspired-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-08 07:38:05 +11:00
/* sort new bios into those for a lower level
* and those for the same level
*/
bio_list_init(&lower);
bio_list_init(&same);
while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
if (q == bio->bi_disk->queue)
blk: improve order of bio handling in generic_make_request() To avoid recursion on the kernel stack when stacked block devices are in use, generic_make_request() will, when called recursively, queue new requests for later handling. They will be handled when the make_request_fn for the current bio completes. If any bios are submitted by a make_request_fn, these will ultimately be handled seqeuntially. If the handling of one of those generates further requests, they will be added to the end of the queue. This strict first-in-first-out behaviour can lead to deadlocks in various ways, normally because a request might need to wait for a previous request to the same device to complete. This can happen when they share a mempool, and can happen due to interdependencies particular to the device. Both md and dm have examples where this happens. These deadlocks can be erradicated by more selective ordering of bios. Specifically by handling them in depth-first order. That is: when the handling of one bio generates one or more further bios, they are handled immediately after the parent, before any siblings of the parent. That way, when generic_make_request() calls make_request_fn for some particular device, we can be certain that all previously submited requests for that device have been completely handled and are not waiting for anything in the queue of requests maintained in generic_make_request(). An easy way to achieve this would be to use a last-in-first-out stack instead of a queue. However this will change the order of consecutive bios submitted by a make_request_fn, which could have unexpected consequences. Instead we take a slightly more complex approach. A fresh queue is created for each call to a make_request_fn. After it completes, any bios for a different device are placed on the front of the main queue, followed by any bios for the same device, followed by all bios that were already on the queue before the make_request_fn was called. This provides the depth-first approach without reordering bios on the same level. This, by itself, it not enough to remove all deadlocks. It just makes it possible for drivers to take the extra step required themselves. To avoid deadlocks, drivers must never risk waiting for a request after submitting one to generic_make_request. This includes never allocing from a mempool twice in the one call to a make_request_fn. A common pattern in drivers is to call bio_split() in a loop, handling the first part and then looping around to possibly split the next part. Instead, a driver that finds it needs to split a bio should queue (with generic_make_request) the second part, handle the first part, and then return. The new code in generic_make_request will ensure the requests to underlying bios are processed first, then the second bio that was split off. If it splits again, the same process happens. In each case one bio will be completely handled before the next one is attempted. With this is place, it should be possible to disable the punt_bios_to_recover() recovery thread for many block devices, and eventually it may be possible to remove it completely. Ref: http://www.spinics.net/lists/raid/msg54680.html Tested-by: Jinpu Wang <jinpu.wang@profitbricks.com> Inspired-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-08 07:38:05 +11:00
bio_list_add(&same, bio);
else
bio_list_add(&lower, bio);
/* now assemble so we handle the lowest level first */
bio_list_merge(&bio_list_on_stack[0], &lower);
bio_list_merge(&bio_list_on_stack[0], &same);
bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
} else {
if (unlikely(!blk_queue_dying(q) &&
(bio->bi_opf & REQ_NOWAIT)))
bio_wouldblock_error(bio);
else
bio_io_error(bio);
block: generic request_queue reference counting Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-21 13:20:12 -04:00
}
bio = bio_list_pop(&bio_list_on_stack[0]);
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
} while (bio);
current->bio_list = NULL; /* deactivate */
out:
return ret;
When stacked block devices are in-use (e.g. md or dm), the recursive calls to generic_make_request can use up a lot of space, and we would rather they didn't. As generic_make_request is a void function, and as it is generally not expected that it will have any effect immediately, it is safe to delay any call to generic_make_request until there is sufficient stack space available. As ->bi_next is reserved for the driver to use, it can have no valid value when generic_make_request is called, and as __make_request implicitly assumes it will be NULL (ELEVATOR_BACK_MERGE fork of switch) we can be certain that all callers set it to NULL. We can therefore safely use bi_next to link pending requests together, providing we clear it before making the real call. So, we choose to allow each thread to only be active in one generic_make_request at a time. If a subsequent (recursive) call is made, the bio is linked into a per-thread list, and is handled when the active call completes. As the list of pending bios is per-thread, there are no locking issues to worry about. I say above that it is "safe to delay any call...". There are, however, some behaviours of a make_request_fn which would make it unsafe. These include any behaviour that assumes anything will have changed after a recursive call to generic_make_request. These could include: - waiting for that call to finish and call it's bi_end_io function. md use to sometimes do this (marking the superblock dirty before completing a write) but doesn't any more - inspecting the bio for fields that generic_make_request might change, such as bi_sector or bi_bdev. It is hard to see a good reason for this, and I don't think anyone actually does it. - inspecing the queue to see if, e.g. it is 'full' yet. Again, I think this is very unlikely to be useful, or to be done. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: <dm-devel@redhat.com> Alasdair G Kergon <agk@redhat.com> said: I can see nothing wrong with this in principle. For device-mapper at the moment though it's essential that, while the bio mappings may now get delayed, they still get processed in exactly the same order as they were passed to generic_make_request(). My main concern is whether the timing changes implicit in this patch will make the rare data-corrupting races in the existing snapshot code more likely. (I'm working on a fix for these races, but the unfinished patch is already several hundred lines long.) It would be helpful if some people on this mailing list would test this patch in various scenarios and report back. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-01 09:53:42 +02:00
}
EXPORT_SYMBOL(generic_make_request);
/**
* direct_make_request - hand a buffer directly to its device driver for I/O
* @bio: The bio describing the location in memory and on the device.
*
* This function behaves like generic_make_request(), but does not protect
* against recursion. Must only be used if the called driver is known
* to not call generic_make_request (or direct_make_request) again from
* its make_request function. (Calling direct_make_request again from
* a workqueue is perfectly fine as that doesn't recurse).
*/
blk_qc_t direct_make_request(struct bio *bio)
{
struct request_queue *q = bio->bi_disk->queue;
bool nowait = bio->bi_opf & REQ_NOWAIT;
blk_qc_t ret;
if (!generic_make_request_checks(bio))
return BLK_QC_T_NONE;
block, scsi: Make SCSI quiesce and resume work reliably The contexts from which a SCSI device can be quiesced or resumed are: * Writing into /sys/class/scsi_device/*/device/state. * SCSI parallel (SPI) domain validation. * The SCSI device power management methods. See also scsi_bus_pm_ops. It is essential during suspend and resume that neither the filesystem state nor the filesystem metadata in RAM changes. This is why while the hibernation image is being written or restored that SCSI devices are quiesced. The SCSI core quiesces devices through scsi_device_quiesce() and scsi_device_resume(). In the SDEV_QUIESCE state execution of non-preempt requests is deferred. This is realized by returning BLKPREP_DEFER from inside scsi_prep_state_check() for quiesced SCSI devices. Avoid that a full queue prevents power management requests to be submitted by deferring allocation of non-preempt requests for devices in the quiesced state. This patch has been tested by running the following commands and by verifying that after each resume the fio job was still running: for ((i=0; i<10; i++)); do ( cd /sys/block/md0/md && while true; do [ "$(<sync_action)" = "idle" ] && echo check > sync_action sleep 1 done ) & pids=($!) for d in /sys/class/block/sd*[a-z]; do bdev=${d#/sys/class/block/} hcil=$(readlink "$d/device") hcil=${hcil#../../../} echo 4 > "$d/queue/nr_requests" echo 1 > "/sys/class/scsi_device/$hcil/device/queue_depth" fio --name="$bdev" --filename="/dev/$bdev" --buffered=0 --bs=512 \ --rw=randread --ioengine=libaio --numjobs=4 --iodepth=16 \ --iodepth_batch=1 --thread --loops=$((2**31)) & pids+=($!) done sleep 1 echo "$(date) Hibernating ..." >>hibernate-test-log.txt systemctl hibernate sleep 10 kill "${pids[@]}" echo idle > /sys/block/md0/md/sync_action wait echo "$(date) Done." >>hibernate-test-log.txt done Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> References: "I/O hangs after resuming from suspend-to-ram" (https://marc.info/?l=linux-block&m=150340235201348). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Tested-by: Martin Steigerwald <martin@lichtvoll.de> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-09 10:49:58 -08:00
if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
if (nowait && !blk_queue_dying(q))
bio->bi_status = BLK_STS_AGAIN;
else
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
return BLK_QC_T_NONE;
}
ret = q->make_request_fn(q, bio);
blk_queue_exit(q);
return ret;
}
EXPORT_SYMBOL_GPL(direct_make_request);
/**
* submit_bio - submit a bio to the block device layer for I/O
* @bio: The &struct bio which describes the I/O
*
* submit_bio() is very similar in purpose to generic_make_request(), and
* uses that function to do most of the work. Both are fairly rough
* interfaces; @bio must be presetup and ready for I/O.
*
*/
blk_qc_t submit_bio(struct bio *bio)
{
/*
* If it's a regular read/write or a barrier with data attached,
* go through the normal accounting stuff before submission.
*/
if (bio_has_data(bio)) {
unsigned int count;
if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
else
count = bio_sectors(bio);
if (op_is_write(bio_op(bio))) {
count_vm_events(PGPGOUT, count);
} else {
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
task_io_account_read(bio->bi_iter.bi_size);
count_vm_events(PGPGIN, count);
}
if (unlikely(block_dump)) {
char b[BDEVNAME_SIZE];
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
current->comm, task_pid_nr(current),
op_is_write(bio_op(bio)) ? "WRITE" : "READ",
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
(unsigned long long)bio->bi_iter.bi_sector,
bio_devname(bio, b), count);
}
}
return generic_make_request(bio);
}
EXPORT_SYMBOL(submit_bio);
/**
* blk_cloned_rq_check_limits - Helper function to check a cloned request
* for new the queue limits
* @q: the queue
* @rq: the request being checked
*
* Description:
* @rq may have been made based on weaker limitations of upper-level queues
* in request stacking drivers, and it may violate the limitation of @q.
* Since the block layer and the underlying device driver trust @rq
* after it is inserted to @q, it should be checked against @q before
* the insertion using this generic function.
*
* Request stacking drivers like request-based dm may change the queue
* limits when retrying requests on other queues. Those requests need
* to be checked against the new queue limits again during dispatch.
*/
static int blk_cloned_rq_check_limits(struct request_queue *q,
struct request *rq)
{
if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
printk(KERN_ERR "%s: over max size limit.\n", __func__);
return -EIO;
}
/*
* queue's settings related to segment counting like q->bounce_pfn
* may differ from that of other stacking queues.
* Recalculate it to check the request correctly on this queue's
* limitation.
*/
blk_recalc_rq_segments(rq);
if (rq->nr_phys_segments > queue_max_segments(q)) {
printk(KERN_ERR "%s: over max segments limit.\n", __func__);
return -EIO;
}
return 0;
}
/**
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
* @q: the queue to submit the request
* @rq: the request being queued
*/
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
if (blk_cloned_rq_check_limits(q, rq))
return BLK_STS_IOERR;
if (rq->rq_disk &&
should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
return BLK_STS_IOERR;
if (blk_queue_io_stat(q))
blk_account_io_start(rq, true);
/*
* Since we have a scheduler attached on the top device,
* bypass a potential scheduler on the bottom device for
* insert.
*/
return blk_mq_request_issue_directly(rq, true);
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
/**
* blk_rq_err_bytes - determine number of bytes till the next failure boundary
* @rq: request to examine
*
* Description:
* A request could be merge of IOs which require different failure
* handling. This function determines the number of bytes which
* can be failed from the beginning of the request without
* crossing into area which need to be retried further.
*
* Return:
* The number of bytes to fail.
*/
unsigned int blk_rq_err_bytes(const struct request *rq)
{
unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
unsigned int bytes = 0;
struct bio *bio;
if (!(rq->rq_flags & RQF_MIXED_MERGE))
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
return blk_rq_bytes(rq);
/*
* Currently the only 'mixing' which can happen is between
* different fastfail types. We can safely fail portions
* which have all the failfast bits that the first one has -
* the ones which are at least as eager to fail as the first
* one.
*/
for (bio = rq->bio; bio; bio = bio->bi_next) {
if ((bio->bi_opf & ff) != ff)
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
break;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
bytes += bio->bi_iter.bi_size;
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
}
/* this could lead to infinite loop */
BUG_ON(blk_rq_bytes(rq) && !bytes);
return bytes;
}
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
void blk_account_io_completion(struct request *req, unsigned int bytes)
{
if (blk_do_io_stat(req)) {
const int sgrp = op_stat_group(req_op(req));
struct hd_struct *part;
part_stat_lock();
block: fix accounting bug on cross partition merges /proc/diskstats would display a strange output as follows. $ cat /proc/diskstats |grep sda 8 0 sda 90524 7579 102154 20464 0 0 0 0 0 14096 20089 8 1 sda1 19085 1352 21841 4209 0 0 0 0 4294967064 15689 4293424691 ~~~~~~~~~~ 8 2 sda2 71252 3624 74891 15950 0 0 0 0 232 23995 1562390 8 3 sda3 54 487 2188 92 0 0 0 0 0 88 92 8 4 sda4 4 0 8 0 0 0 0 0 0 0 0 8 5 sda5 81 2027 2130 138 0 0 0 0 0 87 137 Its reason is the wrong way of accounting hd_struct->in_flight. When a bio is merged into a request belongs to different partition by ELEVATOR_FRONT_MERGE. The detailed root cause is as follows. Assuming that there are two partition, sda1 and sda2. 1. A request for sda2 is in request_queue. Hence sda1's hd_struct->in_flight is 0 and sda2's one is 1. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 2. A bio belongs to sda1 is issued and is merged into the request mentioned on step1 by ELEVATOR_BACK_MERGE. The first sector of the request is changed from sda2 region to sda1 region. However the two partition's hd_struct->in_flight are not changed. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 3. The request is finished and blk_account_io_done() is called. In this case, sda2's hd_struct->in_flight, not a sda1's one, is decremented. | hd_struct->in_flight --------------------------- sda1 | -1 sda2 | 1 --------------------------- The patch fixes the problem by caching the partition lookup inside the request structure, hence making sure that the increment and decrement will always happen on the same partition struct. This also speeds up IO with accounting enabled, since it cuts down on the number of lookups we have to do. Also add a refcount to struct hd_struct to keep the partition in memory as long as users exist. We use kref_test_and_get() to ensure we don't add a reference to a partition which is going away. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: stable@kernel.org Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-05 16:57:38 +01:00
part = req->part;
part_stat_add(part, sectors[sgrp], bytes >> 9);
part_stat_unlock();
}
}
void blk_account_io_done(struct request *req, u64 now)
{
/*
* Account IO completion. flush_rq isn't accounted as a
* normal IO on queueing nor completion. Accounting the
* containing request is enough.
*/
if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
const int sgrp = op_stat_group(req_op(req));
struct hd_struct *part;
part_stat_lock();
block: fix accounting bug on cross partition merges /proc/diskstats would display a strange output as follows. $ cat /proc/diskstats |grep sda 8 0 sda 90524 7579 102154 20464 0 0 0 0 0 14096 20089 8 1 sda1 19085 1352 21841 4209 0 0 0 0 4294967064 15689 4293424691 ~~~~~~~~~~ 8 2 sda2 71252 3624 74891 15950 0 0 0 0 232 23995 1562390 8 3 sda3 54 487 2188 92 0 0 0 0 0 88 92 8 4 sda4 4 0 8 0 0 0 0 0 0 0 0 8 5 sda5 81 2027 2130 138 0 0 0 0 0 87 137 Its reason is the wrong way of accounting hd_struct->in_flight. When a bio is merged into a request belongs to different partition by ELEVATOR_FRONT_MERGE. The detailed root cause is as follows. Assuming that there are two partition, sda1 and sda2. 1. A request for sda2 is in request_queue. Hence sda1's hd_struct->in_flight is 0 and sda2's one is 1. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 2. A bio belongs to sda1 is issued and is merged into the request mentioned on step1 by ELEVATOR_BACK_MERGE. The first sector of the request is changed from sda2 region to sda1 region. However the two partition's hd_struct->in_flight are not changed. | hd_struct->in_flight --------------------------- sda1 | 0 sda2 | 1 --------------------------- 3. The request is finished and blk_account_io_done() is called. In this case, sda2's hd_struct->in_flight, not a sda1's one, is decremented. | hd_struct->in_flight --------------------------- sda1 | -1 sda2 | 1 --------------------------- The patch fixes the problem by caching the partition lookup inside the request structure, hence making sure that the increment and decrement will always happen on the same partition struct. This also speeds up IO with accounting enabled, since it cuts down on the number of lookups we have to do. Also add a refcount to struct hd_struct to keep the partition in memory as long as users exist. We use kref_test_and_get() to ensure we don't add a reference to a partition which is going away. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: stable@kernel.org Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-05 16:57:38 +01:00
part = req->part;
update_io_ticks(part, jiffies);
part_stat_inc(part, ios[sgrp]);
part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
part_dec_in_flight(req->q, part, rq_data_dir(req));
hd_struct_put(part);
part_stat_unlock();
}
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
void blk_account_io_start(struct request *rq, bool new_io)
{
struct hd_struct *part;
int rw = rq_data_dir(rq);
if (!blk_do_io_stat(rq))
return;
part_stat_lock();
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
if (!new_io) {
part = rq->part;
part_stat_inc(part, merges[rw]);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
} else {
part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
if (!hd_struct_try_get(part)) {
/*
* The partition is already being removed,
* the request will be accounted on the disk only
*
* We take a reference on disk->part0 although that
* partition will never be deleted, so we can treat
* it as any other partition.
*/
part = &rq->rq_disk->part0;
hd_struct_get(part);
}
part_inc_in_flight(rq->q, part, rw);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
rq->part = part;
}
update_io_ticks(part, jiffies);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
part_stat_unlock();
}
/*
* Steal bios from a request and add them to a bio list.
* The request must not have been partially completed before.
*/
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
if (rq->bio) {
if (list->tail)
list->tail->bi_next = rq->bio;
else
list->head = rq->bio;
list->tail = rq->biotail;
rq->bio = NULL;
rq->biotail = NULL;
}
rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);
/**
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
* blk_update_request - Special helper function for request stacking drivers
* @req: the request being processed
* @error: block status code
* @nr_bytes: number of bytes to complete @req
*
* Description:
* Ends I/O on a number of bytes attached to @req, but doesn't complete
* the request structure even if @req doesn't have leftover.
* If @req has leftover, sets it up for the next range of segments.
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
*
* This special helper function is only for request stacking drivers
* (e.g. request-based dm) so that they can handle partial completion.
* Actual device drivers should use blk_end_request instead.
*
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
* %false return from this function.
*
* Note:
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
* blk_rq_bytes() and in blk_update_request().
*
* Return:
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
* %false - this request doesn't have any more data
* %true - this request has more data
**/
bool blk_update_request(struct request *req, blk_status_t error,
unsigned int nr_bytes)
{
int total_bytes;
trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
if (!req->bio)
return false;
if (unlikely(error && !blk_rq_is_passthrough(req) &&
!(req->rq_flags & RQF_QUIET)))
print_req_error(req, error);
blk_account_io_completion(req, nr_bytes);
total_bytes = 0;
while (req->bio) {
struct bio *bio = req->bio;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
Revert "block: Add warning for bi_next not NULL in bio_endio()" Commit 0ba99ca4838b ("block: Add warning for bi_next not NULL in bio_endio()") breaks the dm driver. end_clone_bio() detects whether or not a bio is the last bio associated with a request by checking the .bi_next field. Commit 0ba99ca4838b clears that field before end_clone_bio() has had a chance to inspect that field. Hence revert commit 0ba99ca4838b. This patch avoids that KASAN reports the following complaint when running the srp-test software (srp-test/run_tests -c -d -r 10 -t 02-mq): ================================================================== BUG: KASAN: use-after-free in bio_advance+0x11b/0x1d0 Read of size 4 at addr ffff8801300e06d0 by task ksoftirqd/0/9 CPU: 0 PID: 9 Comm: ksoftirqd/0 Not tainted 4.18.0-rc1-dbg+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 Call Trace: dump_stack+0xa4/0xf5 print_address_description+0x6f/0x270 kasan_report+0x241/0x360 __asan_load4+0x78/0x80 bio_advance+0x11b/0x1d0 blk_update_request+0xa7/0x5b0 scsi_end_request+0x56/0x320 [scsi_mod] scsi_io_completion+0x7d6/0xb20 [scsi_mod] scsi_finish_command+0x1c0/0x280 [scsi_mod] scsi_softirq_done+0x19a/0x230 [scsi_mod] blk_mq_complete_request+0x160/0x240 scsi_mq_done+0x50/0x1a0 [scsi_mod] srp_recv_done+0x515/0x1330 [ib_srp] __ib_process_cq+0xa0/0xf0 [ib_core] ib_poll_handler+0x38/0xa0 [ib_core] irq_poll_softirq+0xe8/0x1f0 __do_softirq+0x128/0x60d run_ksoftirqd+0x3f/0x60 smpboot_thread_fn+0x352/0x460 kthread+0x1c1/0x1e0 ret_from_fork+0x24/0x30 Allocated by task 1918: save_stack+0x43/0xd0 kasan_kmalloc+0xad/0xe0 kasan_slab_alloc+0x11/0x20 kmem_cache_alloc+0xfe/0x350 mempool_alloc_slab+0x15/0x20 mempool_alloc+0xfb/0x270 bio_alloc_bioset+0x244/0x350 submit_bh_wbc+0x9c/0x2f0 __block_write_full_page+0x299/0x5a0 block_write_full_page+0x16b/0x180 blkdev_writepage+0x18/0x20 __writepage+0x42/0x80 write_cache_pages+0x376/0x8a0 generic_writepages+0xbe/0x110 blkdev_writepages+0xe/0x10 do_writepages+0x9b/0x180 __filemap_fdatawrite_range+0x178/0x1c0 file_write_and_wait_range+0x59/0xc0 blkdev_fsync+0x46/0x80 vfs_fsync_range+0x66/0x100 do_fsync+0x3d/0x70 __x64_sys_fsync+0x21/0x30 do_syscall_64+0x77/0x230 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 9: save_stack+0x43/0xd0 __kasan_slab_free+0x137/0x190 kasan_slab_free+0xe/0x10 kmem_cache_free+0xd3/0x380 mempool_free_slab+0x17/0x20 mempool_free+0x63/0x160 bio_free+0x81/0xa0 bio_put+0x59/0x60 end_bio_bh_io_sync+0x5d/0x70 bio_endio+0x1a7/0x360 blk_update_request+0xd0/0x5b0 end_clone_bio+0xa3/0xd0 [dm_mod] bio_endio+0x1a7/0x360 blk_update_request+0xd0/0x5b0 scsi_end_request+0x56/0x320 [scsi_mod] scsi_io_completion+0x7d6/0xb20 [scsi_mod] scsi_finish_command+0x1c0/0x280 [scsi_mod] scsi_softirq_done+0x19a/0x230 [scsi_mod] blk_mq_complete_request+0x160/0x240 scsi_mq_done+0x50/0x1a0 [scsi_mod] srp_recv_done+0x515/0x1330 [ib_srp] __ib_process_cq+0xa0/0xf0 [ib_core] ib_poll_handler+0x38/0xa0 [ib_core] irq_poll_softirq+0xe8/0x1f0 __do_softirq+0x128/0x60d The buggy address belongs to the object at ffff8801300e0640 which belongs to the cache bio-0 of size 200 The buggy address is located 144 bytes inside of 200-byte region [ffff8801300e0640, ffff8801300e0708) The buggy address belongs to the page: page:ffffea0004c03800 count:1 mapcount:0 mapping:ffff88015a563a00 index:0x0 compound_mapcount: 0 flags: 0x8000000000008100(slab|head) raw: 8000000000008100 dead000000000100 dead000000000200 ffff88015a563a00 raw: 0000000000000000 0000000000330033 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8801300e0580: fb fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc ffff8801300e0600: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb >ffff8801300e0680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8801300e0700: fb fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8801300e0780: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Cc: Kent Overstreet <kent.overstreet@gmail.com> Fixes: 0ba99ca4838b ("block: Add warning for bi_next not NULL in bio_endio()") Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-19 10:26:40 -07:00
if (bio_bytes == bio->bi_iter.bi_size)
req->bio = bio->bi_next;
block: trace completion of all bios. Currently only dm and md/raid5 bios trigger trace_block_bio_complete(). Now that we have bio_chain() and bio_inc_remaining(), it is not possible, in general, for a driver to know when the bio is really complete. Only bio_endio() knows that. So move the trace_block_bio_complete() call to bio_endio(). Now trace_block_bio_complete() pairs with trace_block_bio_queue(). Any bio for which a 'queue' event is traced, will subsequently generate a 'complete' event. There are a few cases where completion tracing is not wanted. 1/ If blk_update_request() has already generated a completion trace event at the 'request' level, there is no point generating one at the bio level too. In this case the bi_sector and bi_size will have changed, so the bio level event would be wrong 2/ If the bio hasn't actually been queued yet, but is being aborted early, then a trace event could be confusing. Some filesystems call bio_endio() but do not want tracing. 3/ The bio_integrity code interposes itself by replacing bi_end_io, then restoring it and calling bio_endio() again. This would produce two identical trace events if left like that. To handle these, we introduce a flag BIO_TRACE_COMPLETION and only produce the trace event when this is set. We address point 1 above by clearing the flag in blk_update_request(). We address point 2 above by only setting the flag when generic_make_request() is called. We address point 3 above by clearing the flag after generating a completion event. When bio_split() is used on a bio, particularly in blk_queue_split(), there is an extra complication. A new bio is split off the front, and may be handle directly without going through generic_make_request(). The old bio, which has been advanced, is passed to generic_make_request(), so it will trigger a trace event a second time. Probably the best result when a split happens is to see a single 'queue' event for the whole bio, then multiple 'complete' events - one for each component. To achieve this was can: - copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split() - avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set. This way, the split-off bio won't create a queue event, the original won't either even if it re-submitted to generic_make_request(), but both will produce completion events, each for their own range. So if generic_make_request() is called (which generates a QUEUED event), then bi_endio() will create a single COMPLETE event for each range that the bio is split into, unless the driver has explicitly requested it not to. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
/* Completion has already been traced */
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
req_bio_endio(req, bio, bio_bytes, error);
total_bytes += bio_bytes;
nr_bytes -= bio_bytes;
if (!nr_bytes)
break;
}
/*
* completely done
*/
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
if (!req->bio) {
/*
* Reset counters so that the request stacking driver
* can find how many bytes remain in the request
* later.
*/
req->__data_len = 0;
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
return false;
}
req->__data_len -= total_bytes;
block: drop request->hard_* and *nr_sectors struct request has had a few different ways to represent some properties of a request. ->hard_* represent block layer's view of the request progress (completion cursor) and the ones without the prefix are supposed to represent the issue cursor and allowed to be updated as necessary by the low level drivers. The thing is that as block layer supports partial completion, the two cursors really aren't necessary and only cause confusion. In addition, manual management of request detail from low level drivers is cumbersome and error-prone at the very least. Another interesting duplicate fields are rq->[hard_]nr_sectors and rq->{hard_cur|current}_nr_sectors against rq->data_len and rq->bio->bi_size. This is more convoluted than the hard_ case. rq->[hard_]nr_sectors are initialized for requests with bio but blk_rq_bytes() uses it only for !pc requests. rq->data_len is initialized for all request but blk_rq_bytes() uses it only for pc requests. This causes good amount of confusion throughout block layer and its drivers and determining the request length has been a bit of black magic which may or may not work depending on circumstances and what the specific LLD is actually doing. rq->{hard_cur|current}_nr_sectors represent the number of sectors in the contiguous data area at the front. This is mainly used by drivers which transfers data by walking request segment-by-segment. This value always equals rq->bio->bi_size >> 9. However, data length for pc requests may not be multiple of 512 bytes and using this field becomes a bit confusing. In general, having multiple fields to represent the same property leads only to confusion and subtle bugs. With recent block low level driver cleanups, no driver is accessing or manipulating these duplicate fields directly. Drop all the duplicates. Now rq->sector means the current sector, rq->data_len the current total length and rq->bio->bi_size the current segment length. Everything else is defined in terms of these three and available only through accessors. * blk_recalc_rq_sectors() is collapsed into blk_update_request() and now handles pc and fs requests equally other than rq->sector update. This means that now pc requests can use partial completion too (no in-kernel user yet tho). * bio_cur_sectors() is replaced with bio_cur_bytes() as block layer now uses byte count as the primary data length. * blk_rq_pos() is now guranteed to be always correct. In-block users converted. * blk_rq_bytes() is now guaranteed to be always valid as is blk_rq_sectors(). In-block users converted. * blk_rq_sectors() is now guaranteed to equal blk_rq_bytes() >> 9. More convenient one is used. * blk_rq_bytes() and blk_rq_cur_bytes() are now inlined and take const pointer to request. [ Impact: API cleanup, single way to represent one property of a request ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 22:24:41 +09:00
/* update sector only for requests with clear definition of sector */
if (!blk_rq_is_passthrough(req))
req->__sector += total_bytes >> 9;
block: drop request->hard_* and *nr_sectors struct request has had a few different ways to represent some properties of a request. ->hard_* represent block layer's view of the request progress (completion cursor) and the ones without the prefix are supposed to represent the issue cursor and allowed to be updated as necessary by the low level drivers. The thing is that as block layer supports partial completion, the two cursors really aren't necessary and only cause confusion. In addition, manual management of request detail from low level drivers is cumbersome and error-prone at the very least. Another interesting duplicate fields are rq->[hard_]nr_sectors and rq->{hard_cur|current}_nr_sectors against rq->data_len and rq->bio->bi_size. This is more convoluted than the hard_ case. rq->[hard_]nr_sectors are initialized for requests with bio but blk_rq_bytes() uses it only for !pc requests. rq->data_len is initialized for all request but blk_rq_bytes() uses it only for pc requests. This causes good amount of confusion throughout block layer and its drivers and determining the request length has been a bit of black magic which may or may not work depending on circumstances and what the specific LLD is actually doing. rq->{hard_cur|current}_nr_sectors represent the number of sectors in the contiguous data area at the front. This is mainly used by drivers which transfers data by walking request segment-by-segment. This value always equals rq->bio->bi_size >> 9. However, data length for pc requests may not be multiple of 512 bytes and using this field becomes a bit confusing. In general, having multiple fields to represent the same property leads only to confusion and subtle bugs. With recent block low level driver cleanups, no driver is accessing or manipulating these duplicate fields directly. Drop all the duplicates. Now rq->sector means the current sector, rq->data_len the current total length and rq->bio->bi_size the current segment length. Everything else is defined in terms of these three and available only through accessors. * blk_recalc_rq_sectors() is collapsed into blk_update_request() and now handles pc and fs requests equally other than rq->sector update. This means that now pc requests can use partial completion too (no in-kernel user yet tho). * bio_cur_sectors() is replaced with bio_cur_bytes() as block layer now uses byte count as the primary data length. * blk_rq_pos() is now guranteed to be always correct. In-block users converted. * blk_rq_bytes() is now guaranteed to be always valid as is blk_rq_sectors(). In-block users converted. * blk_rq_sectors() is now guaranteed to equal blk_rq_bytes() >> 9. More convenient one is used. * blk_rq_bytes() and blk_rq_cur_bytes() are now inlined and take const pointer to request. [ Impact: API cleanup, single way to represent one property of a request ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 22:24:41 +09:00
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
/* mixed attributes always follow the first bio */
if (req->rq_flags & RQF_MIXED_MERGE) {
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
req->cmd_flags &= ~REQ_FAILFAST_MASK;
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
block: implement mixed merge of different failfast requests Failfast has characteristics from other attributes. When issuing, executing and successuflly completing requests, failfast doesn't make any difference. It only affects how a request is handled on failure. Allowing requests with different failfast settings to be merged cause normal IOs to fail prematurely while not allowing has performance penalties as failfast is used for read aheads which are likely to be located near in-flight or to-be-issued normal IOs. This patch introduces the concept of 'mixed merge'. A request is a mixed merge if it is merge of segments which require different handling on failure. Currently the only mixable attributes are failfast ones (or lack thereof). When a bio with different failfast settings is added to an existing request or requests of different failfast settings are merged, the merged request is marked mixed. Each bio carries failfast settings and the request always tracks failfast state of the first bio. When the request fails, blk_rq_err_bytes() can be used to determine how many bytes can be safely failed without crossing into an area which requires further retrials. This allows request merging regardless of failfast settings while keeping the failure handling correct. This patch only implements mixed merge but doesn't enable it. The next one will update SCSI to make use of mixed merge. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Niel Lambrechts <niel.lambrechts@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-03 17:48:17 +09:00
}
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
/*
* If total number of sectors is less than the first segment
* size, something has gone terribly wrong.
*/
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
blk_dump_rq_flags(req, "request botched");
req->__data_len = blk_rq_cur_bytes(req);
}
block: drop request->hard_* and *nr_sectors struct request has had a few different ways to represent some properties of a request. ->hard_* represent block layer's view of the request progress (completion cursor) and the ones without the prefix are supposed to represent the issue cursor and allowed to be updated as necessary by the low level drivers. The thing is that as block layer supports partial completion, the two cursors really aren't necessary and only cause confusion. In addition, manual management of request detail from low level drivers is cumbersome and error-prone at the very least. Another interesting duplicate fields are rq->[hard_]nr_sectors and rq->{hard_cur|current}_nr_sectors against rq->data_len and rq->bio->bi_size. This is more convoluted than the hard_ case. rq->[hard_]nr_sectors are initialized for requests with bio but blk_rq_bytes() uses it only for !pc requests. rq->data_len is initialized for all request but blk_rq_bytes() uses it only for pc requests. This causes good amount of confusion throughout block layer and its drivers and determining the request length has been a bit of black magic which may or may not work depending on circumstances and what the specific LLD is actually doing. rq->{hard_cur|current}_nr_sectors represent the number of sectors in the contiguous data area at the front. This is mainly used by drivers which transfers data by walking request segment-by-segment. This value always equals rq->bio->bi_size >> 9. However, data length for pc requests may not be multiple of 512 bytes and using this field becomes a bit confusing. In general, having multiple fields to represent the same property leads only to confusion and subtle bugs. With recent block low level driver cleanups, no driver is accessing or manipulating these duplicate fields directly. Drop all the duplicates. Now rq->sector means the current sector, rq->data_len the current total length and rq->bio->bi_size the current segment length. Everything else is defined in terms of these three and available only through accessors. * blk_recalc_rq_sectors() is collapsed into blk_update_request() and now handles pc and fs requests equally other than rq->sector update. This means that now pc requests can use partial completion too (no in-kernel user yet tho). * bio_cur_sectors() is replaced with bio_cur_bytes() as block layer now uses byte count as the primary data length. * blk_rq_pos() is now guranteed to be always correct. In-block users converted. * blk_rq_bytes() is now guaranteed to be always valid as is blk_rq_sectors(). In-block users converted. * blk_rq_sectors() is now guaranteed to equal blk_rq_bytes() >> 9. More convenient one is used. * blk_rq_bytes() and blk_rq_cur_bytes() are now inlined and take const pointer to request. [ Impact: API cleanup, single way to represent one property of a request ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 22:24:41 +09:00
/* recalculate the number of segments */
blk_recalc_rq_segments(req);
}
block: drop request->hard_* and *nr_sectors struct request has had a few different ways to represent some properties of a request. ->hard_* represent block layer's view of the request progress (completion cursor) and the ones without the prefix are supposed to represent the issue cursor and allowed to be updated as necessary by the low level drivers. The thing is that as block layer supports partial completion, the two cursors really aren't necessary and only cause confusion. In addition, manual management of request detail from low level drivers is cumbersome and error-prone at the very least. Another interesting duplicate fields are rq->[hard_]nr_sectors and rq->{hard_cur|current}_nr_sectors against rq->data_len and rq->bio->bi_size. This is more convoluted than the hard_ case. rq->[hard_]nr_sectors are initialized for requests with bio but blk_rq_bytes() uses it only for !pc requests. rq->data_len is initialized for all request but blk_rq_bytes() uses it only for pc requests. This causes good amount of confusion throughout block layer and its drivers and determining the request length has been a bit of black magic which may or may not work depending on circumstances and what the specific LLD is actually doing. rq->{hard_cur|current}_nr_sectors represent the number of sectors in the contiguous data area at the front. This is mainly used by drivers which transfers data by walking request segment-by-segment. This value always equals rq->bio->bi_size >> 9. However, data length for pc requests may not be multiple of 512 bytes and using this field becomes a bit confusing. In general, having multiple fields to represent the same property leads only to confusion and subtle bugs. With recent block low level driver cleanups, no driver is accessing or manipulating these duplicate fields directly. Drop all the duplicates. Now rq->sector means the current sector, rq->data_len the current total length and rq->bio->bi_size the current segment length. Everything else is defined in terms of these three and available only through accessors. * blk_recalc_rq_sectors() is collapsed into blk_update_request() and now handles pc and fs requests equally other than rq->sector update. This means that now pc requests can use partial completion too (no in-kernel user yet tho). * bio_cur_sectors() is replaced with bio_cur_bytes() as block layer now uses byte count as the primary data length. * blk_rq_pos() is now guranteed to be always correct. In-block users converted. * blk_rq_bytes() is now guaranteed to be always valid as is blk_rq_sectors(). In-block users converted. * blk_rq_sectors() is now guaranteed to equal blk_rq_bytes() >> 9. More convenient one is used. * blk_rq_bytes() and blk_rq_cur_bytes() are now inlined and take const pointer to request. [ Impact: API cleanup, single way to represent one property of a request ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 22:24:41 +09:00
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
return true;
}
block: clean up request completion API Request completion has gone through several changes and became a bit messy over the time. Clean it up. 1. end_that_request_data() is a thin wrapper around end_that_request_data_first() which checks whether bio is NULL before doing anything and handles bidi completion. blk_update_request() is a thin wrapper around end_that_request_data() which clears nr_sectors on the last iteration but doesn't use the bidi completion. Clean it up by moving the initial bio NULL check and nr_sectors clearing on the last iteration into end_that_request_data() and renaming it to blk_update_request(), which makes blk_end_io() the only user of end_that_request_data(). Collapse end_that_request_data() into blk_end_io(). 2. There are four visible completion variants - blk_end_request(), __blk_end_request(), blk_end_bidi_request() and end_request(). blk_end_request() and blk_end_bidi_request() uses blk_end_request() as the backend but __blk_end_request() and end_request() use separate implementation in __blk_end_request() due to different locking rules. blk_end_bidi_request() is identical to blk_end_io(). Collapse blk_end_io() into blk_end_bidi_request(), separate out request update into internal helper blk_update_bidi_request() and add __blk_end_bidi_request(). Redefine [__]blk_end_request() as thin inline wrappers around [__]blk_end_bidi_request(). 3. As the whole request issue/completion usages are about to be modified and audited, it's a good chance to convert completion functions return bool which better indicates the intended meaning of return values. 4. The function name end_that_request_last() is from the days when it was a public interface and slighly confusing. Give it a proper internal name - blk_finish_request(). 5. Add description explaning that blk_end_bidi_request() can be safely used for uni requests as suggested by Boaz Harrosh. The only visible behavior change is from #1. nr_sectors counts are cleared after the final iteration no matter which function is used to complete the request. I couldn't find any place where the code assumes those nr_sectors counters contain the values for the last segment and this change is good as it makes the API much more consistent as the end result is now same whether a request is completed using [__]blk_end_request() alone or in combination with blk_update_request(). API further cleaned up per Christoph's suggestion. [ Impact: cleanup, rq->*nr_sectors always updated after req completion ] Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org>
2009-04-23 11:05:18 +09:00
EXPORT_SYMBOL_GPL(blk_update_request);
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
struct bio *bio)
{
if (bio_has_data(bio))
rq->nr_phys_segments = bio_phys_segments(q, bio);
blk-mq: fix discard merge with scheduler attached I ran into an issue on my laptop that triggered a bug on the discard path: WARNING: CPU: 2 PID: 207 at drivers/nvme/host/core.c:527 nvme_setup_cmd+0x3d3/0x430 Modules linked in: rfcomm fuse ctr ccm bnep arc4 binfmt_misc snd_hda_codec_hdmi nls_iso8859_1 nls_cp437 vfat snd_hda_codec_conexant fat snd_hda_codec_generic iwlmvm snd_hda_intel snd_hda_codec snd_hwdep mac80211 snd_hda_core snd_pcm snd_seq_midi snd_seq_midi_event snd_rawmidi snd_seq x86_pkg_temp_thermal intel_powerclamp kvm_intel uvcvideo iwlwifi btusb snd_seq_device videobuf2_vmalloc btintel videobuf2_memops kvm snd_timer videobuf2_v4l2 bluetooth irqbypass videobuf2_core aesni_intel aes_x86_64 crypto_simd cryptd snd glue_helper videodev cfg80211 ecdh_generic soundcore hid_generic usbhid hid i915 psmouse e1000e ptp pps_core xhci_pci xhci_hcd intel_gtt CPU: 2 PID: 207 Comm: jbd2/nvme0n1p7- Tainted: G U 4.15.0+ #176 Hardware name: LENOVO 20FBCTO1WW/20FBCTO1WW, BIOS N1FET59W (1.33 ) 12/19/2017 RIP: 0010:nvme_setup_cmd+0x3d3/0x430 RSP: 0018:ffff880423e9f838 EFLAGS: 00010217 RAX: 0000000000000000 RBX: ffff880423e9f8c8 RCX: 0000000000010000 RDX: ffff88022b200010 RSI: 0000000000000002 RDI: 00000000327f0000 RBP: ffff880421251400 R08: ffff88022b200000 R09: 0000000000000009 R10: 0000000000000000 R11: 0000000000000000 R12: 000000000000ffff R13: ffff88042341e280 R14: 000000000000ffff R15: ffff880421251440 FS: 0000000000000000(0000) GS:ffff880441500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055b684795030 CR3: 0000000002e09006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: nvme_queue_rq+0x40/0xa00 ? __sbitmap_queue_get+0x24/0x90 ? blk_mq_get_tag+0xa3/0x250 ? wait_woken+0x80/0x80 ? blk_mq_get_driver_tag+0x97/0xf0 blk_mq_dispatch_rq_list+0x7b/0x4a0 ? deadline_remove_request+0x49/0xb0 blk_mq_do_dispatch_sched+0x4f/0xc0 blk_mq_sched_dispatch_requests+0x106/0x170 __blk_mq_run_hw_queue+0x53/0xa0 __blk_mq_delay_run_hw_queue+0x83/0xa0 blk_mq_run_hw_queue+0x6c/0xd0 blk_mq_sched_insert_request+0x96/0x140 __blk_mq_try_issue_directly+0x3d/0x190 blk_mq_try_issue_directly+0x30/0x70 blk_mq_make_request+0x1a4/0x6a0 generic_make_request+0xfd/0x2f0 ? submit_bio+0x5c/0x110 submit_bio+0x5c/0x110 ? __blkdev_issue_discard+0x152/0x200 submit_bio_wait+0x43/0x60 ext4_process_freed_data+0x1cd/0x440 ? account_page_dirtied+0xe2/0x1a0 ext4_journal_commit_callback+0x4a/0xc0 jbd2_journal_commit_transaction+0x17e2/0x19e0 ? kjournald2+0xb0/0x250 kjournald2+0xb0/0x250 ? wait_woken+0x80/0x80 ? commit_timeout+0x10/0x10 kthread+0x111/0x130 ? kthread_create_worker_on_cpu+0x50/0x50 ? do_group_exit+0x3a/0xa0 ret_from_fork+0x1f/0x30 Code: 73 89 c1 83 ce 10 c1 e1 10 09 ca 83 f8 04 0f 87 0f ff ff ff 8b 4d 20 48 8b 7d 00 c1 e9 09 48 01 8c c7 00 08 00 00 e9 f8 fe ff ff <0f> ff 4c 89 c7 41 bc 0a 00 00 00 e8 0d 78 d6 ff e9 a1 fc ff ff ---[ end trace 50d361cc444506c8 ]--- print_req_error: I/O error, dev nvme0n1, sector 847167488 Decoding the assembly, the request claims to have 0xffff segments, while nvme counts two. This turns out to be because we don't check for a data carrying request on the mq scheduler path, and since blk_phys_contig_segment() returns true for a non-data request, we decrement the initial segment count of 0 and end up with 0xffff in the unsigned short. There are a few issues here: 1) We should initialize the segment count for a discard to 1. 2) The discard merging is currently using the data limits for segments and sectors. Fix this up by having attempt_merge() correctly identify the request, and by initializing the segment count correctly for discards. This can only be triggered with mq-deadline on discard capable devices right now, which isn't a common configuration. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-01 14:01:02 -07:00
else if (bio_op(bio) == REQ_OP_DISCARD)
rq->nr_phys_segments = 1;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 15:44:27 -07:00
rq->__data_len = bio->bi_iter.bi_size;
rq->bio = rq->biotail = bio;
if (bio->bi_disk)
rq->rq_disk = bio->bi_disk;
}
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
/**
* rq_flush_dcache_pages - Helper function to flush all pages in a request
* @rq: the request to be flushed
*
* Description:
* Flush all pages in @rq.
*/
void rq_flush_dcache_pages(struct request *rq)
{
struct req_iterator iter;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-23 17:19:00 -08:00
struct bio_vec bvec;
rq_for_each_segment(bvec, rq, iter)
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-23 17:19:00 -08:00
flush_dcache_page(bvec.bv_page);
}
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
#endif
block: add lld busy state exporting interface This patch adds an new interface, blk_lld_busy(), to check lld's busy state from the block layer. blk_lld_busy() calls down into low-level drivers for the checking if the drivers set q->lld_busy_fn() using blk_queue_lld_busy(). This resolves a performance problem on request stacking devices below. Some drivers like scsi mid layer stop dispatching request when they detect busy state on its low-level device like host/target/device. It allows other requests to stay in the I/O scheduler's queue for a chance of merging. Request stacking drivers like request-based dm should follow the same logic. However, there is no generic interface for the stacked device to check if the underlying device(s) are busy. If the request stacking driver dispatches and submits requests to the busy underlying device, the requests will stay in the underlying device's queue without a chance of merging. This causes performance problem on burst I/O load. With this patch, busy state of the underlying device is exported via q->lld_busy_fn(). So the request stacking driver can check it and stop dispatching requests if busy. The underlying device driver must return the busy state appropriately: 1: when the device driver can't process requests immediately. 0: when the device driver can process requests immediately, including abnormal situations where the device driver needs to kill all requests. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-10-01 16:12:15 +02:00
/**
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
* @q : the queue of the device being checked
*
* Description:
* Check if underlying low-level drivers of a device are busy.
* If the drivers want to export their busy state, they must set own
* exporting function using blk_queue_lld_busy() first.
*
* Basically, this function is used only by request stacking drivers
* to stop dispatching requests to underlying devices when underlying
* devices are busy. This behavior helps more I/O merging on the queue
* of the request stacking driver and prevents I/O throughput regression
* on burst I/O load.
*
* Return:
* 0 - Not busy (The request stacking driver should dispatch request)
* 1 - Busy (The request stacking driver should stop dispatching request)
*/
int blk_lld_busy(struct request_queue *q)
{
if (queue_is_mq(q) && q->mq_ops->busy)
return q->mq_ops->busy(q);
block: add lld busy state exporting interface This patch adds an new interface, blk_lld_busy(), to check lld's busy state from the block layer. blk_lld_busy() calls down into low-level drivers for the checking if the drivers set q->lld_busy_fn() using blk_queue_lld_busy(). This resolves a performance problem on request stacking devices below. Some drivers like scsi mid layer stop dispatching request when they detect busy state on its low-level device like host/target/device. It allows other requests to stay in the I/O scheduler's queue for a chance of merging. Request stacking drivers like request-based dm should follow the same logic. However, there is no generic interface for the stacked device to check if the underlying device(s) are busy. If the request stacking driver dispatches and submits requests to the busy underlying device, the requests will stay in the underlying device's queue without a chance of merging. This causes performance problem on burst I/O load. With this patch, busy state of the underlying device is exported via q->lld_busy_fn(). So the request stacking driver can check it and stop dispatching requests if busy. The underlying device driver must return the busy state appropriately: 1: when the device driver can't process requests immediately. 0: when the device driver can process requests immediately, including abnormal situations where the device driver needs to kill all requests. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-10-01 16:12:15 +02:00
return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);
/**
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
* @rq: the clone request to be cleaned up
*
* Description:
* Free all bios in @rq for a cloned request.
*/
void blk_rq_unprep_clone(struct request *rq)
{
struct bio *bio;
while ((bio = rq->bio) != NULL) {
rq->bio = bio->bi_next;
bio_put(bio);
}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
/*
* Copy attributes of the original request to the clone request.
* The actual data parts (e.g. ->cmd, ->sense) are not copied.
*/
static void __blk_rq_prep_clone(struct request *dst, struct request *src)
block: add request clone interface (v2) This patch adds the following 2 interfaces for request-stacking drivers: - blk_rq_prep_clone(struct request *clone, struct request *orig, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio*, void *), void *data) * Clones bios in the original request to the clone request (bio_ctr is called for each cloned bios.) * Copies attributes of the original request to the clone request. The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. - blk_rq_unprep_clone(struct request *clone) * Frees cloned bios from the clone request. Request stacking drivers (e.g. request-based dm) need to make a clone request for a submitted request and dispatch it to other devices. To allocate request for the clone, request stacking drivers may not be able to use blk_get_request() because the allocation may be done in an irq-disabled context. So blk_rq_prep_clone() takes a request allocated by the caller as an argument. For each clone bio in the clone request, request stacking drivers should be able to set up their own completion handler. So blk_rq_prep_clone() takes a callback function which is called for each clone bio, and a pointer for private data which is passed to the callback. NOTE: blk_rq_prep_clone() doesn't copy any actual data of the original request. Pages are shared between original bios and cloned bios. So caller must not complete the original request before the clone request. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-06-11 13:10:16 +02:00
{
dst->__sector = blk_rq_pos(src);
dst->__data_len = blk_rq_bytes(src);
if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
dst->special_vec = src->special_vec;
}
block: add request clone interface (v2) This patch adds the following 2 interfaces for request-stacking drivers: - blk_rq_prep_clone(struct request *clone, struct request *orig, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio*, void *), void *data) * Clones bios in the original request to the clone request (bio_ctr is called for each cloned bios.) * Copies attributes of the original request to the clone request. The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. - blk_rq_unprep_clone(struct request *clone) * Frees cloned bios from the clone request. Request stacking drivers (e.g. request-based dm) need to make a clone request for a submitted request and dispatch it to other devices. To allocate request for the clone, request stacking drivers may not be able to use blk_get_request() because the allocation may be done in an irq-disabled context. So blk_rq_prep_clone() takes a request allocated by the caller as an argument. For each clone bio in the clone request, request stacking drivers should be able to set up their own completion handler. So blk_rq_prep_clone() takes a callback function which is called for each clone bio, and a pointer for private data which is passed to the callback. NOTE: blk_rq_prep_clone() doesn't copy any actual data of the original request. Pages are shared between original bios and cloned bios. So caller must not complete the original request before the clone request. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-06-11 13:10:16 +02:00
dst->nr_phys_segments = src->nr_phys_segments;
dst->ioprio = src->ioprio;
dst->extra_len = src->extra_len;
}
/**
* blk_rq_prep_clone - Helper function to setup clone request
* @rq: the request to be setup
* @rq_src: original request to be cloned
* @bs: bio_set that bios for clone are allocated from
* @gfp_mask: memory allocation mask for bio
* @bio_ctr: setup function to be called for each clone bio.
* Returns %0 for success, non %0 for failure.
* @data: private data to be passed to @bio_ctr
*
* Description:
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
* The actual data parts of @rq_src (e.g. ->cmd, ->sense)
* are not copied, and copying such parts is the caller's responsibility.
* Also, pages which the original bios are pointing to are not copied
* and the cloned bios just point same pages.
* So cloned bios must be completed before original bios, which means
* the caller must complete @rq before @rq_src.
*/
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
struct bio_set *bs, gfp_t gfp_mask,
int (*bio_ctr)(struct bio *, struct bio *, void *),
void *data)
{
struct bio *bio, *bio_src;
if (!bs)
bs = &fs_bio_set;
__rq_for_each_bio(bio_src, rq_src) {
bio = bio_clone_fast(bio_src, gfp_mask, bs);
if (!bio)
goto free_and_out;
if (bio_ctr && bio_ctr(bio, bio_src, data))
goto free_and_out;
if (rq->bio) {
rq->biotail->bi_next = bio;
rq->biotail = bio;
} else
rq->bio = rq->biotail = bio;
}
__blk_rq_prep_clone(rq, rq_src);
return 0;
free_and_out:
if (bio)
bio_put(bio);
blk_rq_unprep_clone(rq);
return -ENOMEM;
block: add request clone interface (v2) This patch adds the following 2 interfaces for request-stacking drivers: - blk_rq_prep_clone(struct request *clone, struct request *orig, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio*, void *), void *data) * Clones bios in the original request to the clone request (bio_ctr is called for each cloned bios.) * Copies attributes of the original request to the clone request. The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. - blk_rq_unprep_clone(struct request *clone) * Frees cloned bios from the clone request. Request stacking drivers (e.g. request-based dm) need to make a clone request for a submitted request and dispatch it to other devices. To allocate request for the clone, request stacking drivers may not be able to use blk_get_request() because the allocation may be done in an irq-disabled context. So blk_rq_prep_clone() takes a request allocated by the caller as an argument. For each clone bio in the clone request, request stacking drivers should be able to set up their own completion handler. So blk_rq_prep_clone() takes a callback function which is called for each clone bio, and a pointer for private data which is passed to the callback. NOTE: blk_rq_prep_clone() doesn't copy any actual data of the original request. Pages are shared between original bios and cloned bios. So caller must not complete the original request before the clone request. Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-06-11 13:10:16 +02:00
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
int kblockd_schedule_work(struct work_struct *work)
{
return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);
int kblockd_schedule_work_on(int cpu, struct work_struct *work)
{
return queue_work_on(cpu, kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work_on);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
unsigned long delay)
{
return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
/**
* blk_start_plug - initialize blk_plug and track it inside the task_struct
* @plug: The &struct blk_plug that needs to be initialized
*
* Description:
* blk_start_plug() indicates to the block layer an intent by the caller
* to submit multiple I/O requests in a batch. The block layer may use
* this hint to defer submitting I/Os from the caller until blk_finish_plug()
* is called. However, the block layer may choose to submit requests
* before a call to blk_finish_plug() if the number of queued I/Os
* exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
* %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
* the task schedules (see below).
*
* Tracking blk_plug inside the task_struct will help with auto-flushing the
* pending I/O should the task end up blocking between blk_start_plug() and
* blk_finish_plug(). This is important from a performance perspective, but
* also ensures that we don't deadlock. For instance, if the task is blocking
* for a memory allocation, memory reclaim could end up wanting to free a
* page belonging to that request that is currently residing in our private
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
* this kind of deadlock.
*/
void blk_start_plug(struct blk_plug *plug)
{
struct task_struct *tsk = current;
/*
* If this is a nested plug, don't actually assign it.
*/
if (tsk->plug)
return;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
INIT_LIST_HEAD(&plug->mq_list);
INIT_LIST_HEAD(&plug->cb_list);
plug->rq_count = 0;
plug->multiple_queues = false;
/*
* Store ordering should not be needed here, since a potential
* preempt will imply a full memory barrier
*/
tsk->plug = plug;
}
EXPORT_SYMBOL(blk_start_plug);
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
LIST_HEAD(callbacks);
while (!list_empty(&plug->cb_list)) {
list_splice_init(&plug->cb_list, &callbacks);
while (!list_empty(&callbacks)) {
struct blk_plug_cb *cb = list_first_entry(&callbacks,
struct blk_plug_cb,
list);
list_del(&cb->list);
cb->callback(cb, from_schedule);
}
}
}
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
int size)
{
struct blk_plug *plug = current->plug;
struct blk_plug_cb *cb;
if (!plug)
return NULL;
list_for_each_entry(cb, &plug->cb_list, list)
if (cb->callback == unplug && cb->data == data)
return cb;
/* Not currently on the callback list */
BUG_ON(size < sizeof(*cb));
cb = kzalloc(size, GFP_ATOMIC);
if (cb) {
cb->data = data;
cb->callback = unplug;
list_add(&cb->list, &plug->cb_list);
}
return cb;
}
EXPORT_SYMBOL(blk_check_plugged);
void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
flush_plug_callbacks(plug, from_schedule);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
if (!list_empty(&plug->mq_list))
blk_mq_flush_plug_list(plug, from_schedule);
}
/**
* blk_finish_plug - mark the end of a batch of submitted I/O
* @plug: The &struct blk_plug passed to blk_start_plug()
*
* Description:
* Indicate that a batch of I/O submissions is complete. This function
* must be paired with an initial call to blk_start_plug(). The intent
* is to allow the block layer to optimize I/O submission. See the
* documentation for blk_start_plug() for more information.
*/
void blk_finish_plug(struct blk_plug *plug)
{
if (plug != current->plug)
return;
blk_flush_plug_list(plug, false);
current->plug = NULL;
}
EXPORT_SYMBOL(blk_finish_plug);
int __init blk_dev_init(void)
{
BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
FIELD_SIZEOF(struct request, cmd_flags));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
FIELD_SIZEOF(struct bio, bi_opf));
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
kblockd_workqueue = alloc_workqueue("kblockd",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
blk_requestq_cachep = kmem_cache_create("request_queue",
sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
#ifdef CONFIG_DEBUG_FS
blk_debugfs_root = debugfs_create_dir("block", NULL);
#endif
return 0;
}