linux-stable/drivers/clocksource/timer-rtl-otto.c

292 lines
7.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/cpuhotplug.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/printk.h>
#include <linux/sched_clock.h>
#include "timer-of.h"
#define RTTM_DATA 0x0
#define RTTM_CNT 0x4
#define RTTM_CTRL 0x8
#define RTTM_INT 0xc
#define RTTM_CTRL_ENABLE BIT(28)
#define RTTM_INT_PENDING BIT(16)
#define RTTM_INT_ENABLE BIT(20)
/*
* The Otto platform provides multiple 28 bit timers/counters with the following
* operating logic. If enabled the timer counts up. Per timer one can set a
* maximum counter value as an end marker. If end marker is reached the timer
* fires an interrupt. If the timer "overflows" by reaching the end marker or
* by adding 1 to 0x0fffffff the counter is reset to 0. When this happens and
* the timer is in operating mode COUNTER it stops. In mode TIMER it will
* continue to count up.
*/
#define RTTM_CTRL_COUNTER 0
#define RTTM_CTRL_TIMER BIT(24)
#define RTTM_BIT_COUNT 28
#define RTTM_MIN_DELTA 8
#define RTTM_MAX_DELTA CLOCKSOURCE_MASK(28)
/*
* Timers are derived from the LXB clock frequency. Usually this is a fixed
* multiple of the 25 MHz oscillator. The 930X SOC is an exception from that.
* Its LXB clock has only dividers and uses the switch PLL of 2.45 GHz as its
* base. The only meaningful frequencies we can achieve from that are 175.000
* MHz and 153.125 MHz. The greatest common divisor of all explained possible
* speeds is 3125000. Pin the timers to this 3.125 MHz reference frequency.
*/
#define RTTM_TICKS_PER_SEC 3125000
struct rttm_cs {
struct timer_of to;
struct clocksource cs;
};
/* Simple internal register functions */
static inline void rttm_set_counter(void __iomem *base, unsigned int counter)
{
iowrite32(counter, base + RTTM_CNT);
}
static inline unsigned int rttm_get_counter(void __iomem *base)
{
return ioread32(base + RTTM_CNT);
}
static inline void rttm_set_period(void __iomem *base, unsigned int period)
{
iowrite32(period, base + RTTM_DATA);
}
static inline void rttm_disable_timer(void __iomem *base)
{
iowrite32(0, base + RTTM_CTRL);
}
static inline void rttm_enable_timer(void __iomem *base, u32 mode, u32 divisor)
{
iowrite32(RTTM_CTRL_ENABLE | mode | divisor, base + RTTM_CTRL);
}
static inline void rttm_ack_irq(void __iomem *base)
{
iowrite32(ioread32(base + RTTM_INT) | RTTM_INT_PENDING, base + RTTM_INT);
}
static inline void rttm_enable_irq(void __iomem *base)
{
iowrite32(RTTM_INT_ENABLE, base + RTTM_INT);
}
static inline void rttm_disable_irq(void __iomem *base)
{
iowrite32(0, base + RTTM_INT);
}
/* Aggregated control functions for kernel clock framework */
#define RTTM_DEBUG(base) \
pr_debug("------------- %d %p\n", \
smp_processor_id(), base)
static irqreturn_t rttm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *clkevt = dev_id;
struct timer_of *to = to_timer_of(clkevt);
rttm_ack_irq(to->of_base.base);
RTTM_DEBUG(to->of_base.base);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
static void rttm_stop_timer(void __iomem *base)
{
rttm_disable_timer(base);
rttm_ack_irq(base);
}
static void rttm_start_timer(struct timer_of *to, u32 mode)
{
rttm_set_counter(to->of_base.base, 0);
rttm_enable_timer(to->of_base.base, mode, to->of_clk.rate / RTTM_TICKS_PER_SEC);
}
static int rttm_next_event(unsigned long delta, struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
RTTM_DEBUG(to->of_base.base);
rttm_stop_timer(to->of_base.base);
rttm_set_period(to->of_base.base, delta);
rttm_start_timer(to, RTTM_CTRL_COUNTER);
return 0;
}
static int rttm_state_oneshot(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
RTTM_DEBUG(to->of_base.base);
rttm_stop_timer(to->of_base.base);
rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
rttm_start_timer(to, RTTM_CTRL_COUNTER);
return 0;
}
static int rttm_state_periodic(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
RTTM_DEBUG(to->of_base.base);
rttm_stop_timer(to->of_base.base);
rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
rttm_start_timer(to, RTTM_CTRL_TIMER);
return 0;
}
static int rttm_state_shutdown(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
RTTM_DEBUG(to->of_base.base);
rttm_stop_timer(to->of_base.base);
return 0;
}
static void rttm_setup_timer(void __iomem *base)
{
RTTM_DEBUG(base);
rttm_stop_timer(base);
rttm_set_period(base, 0);
}
static u64 rttm_read_clocksource(struct clocksource *cs)
{
struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
return rttm_get_counter(rcs->to.of_base.base);
}
/* Module initialization part. */
static DEFINE_PER_CPU(struct timer_of, rttm_to) = {
.flags = TIMER_OF_BASE | TIMER_OF_CLOCK | TIMER_OF_IRQ,
.of_irq = {
.flags = IRQF_PERCPU | IRQF_TIMER,
.handler = rttm_timer_interrupt,
},
.clkevt = {
.rating = 400,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_state_periodic = rttm_state_periodic,
.set_state_shutdown = rttm_state_shutdown,
.set_state_oneshot = rttm_state_oneshot,
.set_next_event = rttm_next_event
},
};
static int rttm_enable_clocksource(struct clocksource *cs)
{
struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
rttm_disable_irq(rcs->to.of_base.base);
rttm_setup_timer(rcs->to.of_base.base);
rttm_enable_timer(rcs->to.of_base.base, RTTM_CTRL_TIMER,
rcs->to.of_clk.rate / RTTM_TICKS_PER_SEC);
return 0;
}
struct rttm_cs rttm_cs = {
.to = {
.flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
},
.cs = {
.name = "realtek_otto_timer",
.rating = 400,
.mask = CLOCKSOURCE_MASK(RTTM_BIT_COUNT),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.read = rttm_read_clocksource,
}
};
static u64 notrace rttm_read_clock(void)
{
return rttm_get_counter(rttm_cs.to.of_base.base);
}
static int rttm_cpu_starting(unsigned int cpu)
{
struct timer_of *to = per_cpu_ptr(&rttm_to, cpu);
RTTM_DEBUG(to->of_base.base);
to->clkevt.cpumask = cpumask_of(cpu);
irq_force_affinity(to->of_irq.irq, to->clkevt.cpumask);
clockevents_config_and_register(&to->clkevt, RTTM_TICKS_PER_SEC,
RTTM_MIN_DELTA, RTTM_MAX_DELTA);
rttm_enable_irq(to->of_base.base);
return 0;
}
static int __init rttm_probe(struct device_node *np)
{
unsigned int cpu, cpu_rollback;
struct timer_of *to;
unsigned int clkidx = num_possible_cpus();
/* Use the first n timers as per CPU clock event generators */
for_each_possible_cpu(cpu) {
to = per_cpu_ptr(&rttm_to, cpu);
to->of_irq.index = to->of_base.index = cpu;
if (timer_of_init(np, to)) {
pr_err("setup of timer %d failed\n", cpu);
goto rollback;
}
rttm_setup_timer(to->of_base.base);
}
/* Activate the n'th + 1 timer as a stable CPU clocksource. */
to = &rttm_cs.to;
to->of_base.index = clkidx;
timer_of_init(np, to);
if (rttm_cs.to.of_base.base && rttm_cs.to.of_clk.rate) {
rttm_enable_clocksource(&rttm_cs.cs);
clocksource_register_hz(&rttm_cs.cs, RTTM_TICKS_PER_SEC);
sched_clock_register(rttm_read_clock, RTTM_BIT_COUNT, RTTM_TICKS_PER_SEC);
} else
pr_err(" setup of timer %d as clocksource failed", clkidx);
return cpuhp_setup_state(CPUHP_AP_REALTEK_TIMER_STARTING,
"timer/realtek:online",
rttm_cpu_starting, NULL);
rollback:
pr_err("timer registration failed\n");
for_each_possible_cpu(cpu_rollback) {
if (cpu_rollback == cpu)
break;
to = per_cpu_ptr(&rttm_to, cpu_rollback);
timer_of_cleanup(to);
}
return -EINVAL;
}
TIMER_OF_DECLARE(otto_timer, "realtek,otto-timer", rttm_probe);