linux-stable/fs/bcachefs/checksum.c

823 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "checksum.h"
#include "errcode.h"
#include "super.h"
#include "super-io.h"
#include <linux/crc32c.h>
#include <linux/crypto.h>
#include <linux/xxhash.h>
#include <linux/key.h>
#include <linux/random.h>
#include <linux/ratelimit.h>
#include <linux/scatterlist.h>
#include <crypto/algapi.h>
#include <crypto/chacha.h>
#include <crypto/hash.h>
#include <crypto/poly1305.h>
#include <crypto/skcipher.h>
#include <keys/user-type.h>
/*
* bch2_checksum state is an abstraction of the checksum state calculated over different pages.
* it features page merging without having the checksum algorithm lose its state.
* for native checksum aglorithms (like crc), a default seed value will do.
* for hash-like algorithms, a state needs to be stored
*/
struct bch2_checksum_state {
union {
u64 seed;
struct xxh64_state h64state;
};
unsigned int type;
};
static void bch2_checksum_init(struct bch2_checksum_state *state)
{
switch (state->type) {
case BCH_CSUM_none:
case BCH_CSUM_crc32c:
case BCH_CSUM_crc64:
state->seed = 0;
break;
case BCH_CSUM_crc32c_nonzero:
state->seed = U32_MAX;
break;
case BCH_CSUM_crc64_nonzero:
state->seed = U64_MAX;
break;
case BCH_CSUM_xxhash:
xxh64_reset(&state->h64state, 0);
break;
default:
BUG();
}
}
static u64 bch2_checksum_final(const struct bch2_checksum_state *state)
{
switch (state->type) {
case BCH_CSUM_none:
case BCH_CSUM_crc32c:
case BCH_CSUM_crc64:
return state->seed;
case BCH_CSUM_crc32c_nonzero:
return state->seed ^ U32_MAX;
case BCH_CSUM_crc64_nonzero:
return state->seed ^ U64_MAX;
case BCH_CSUM_xxhash:
return xxh64_digest(&state->h64state);
default:
BUG();
}
}
static void bch2_checksum_update(struct bch2_checksum_state *state, const void *data, size_t len)
{
switch (state->type) {
case BCH_CSUM_none:
return;
case BCH_CSUM_crc32c_nonzero:
case BCH_CSUM_crc32c:
state->seed = crc32c(state->seed, data, len);
break;
case BCH_CSUM_crc64_nonzero:
case BCH_CSUM_crc64:
state->seed = crc64_be(state->seed, data, len);
break;
case BCH_CSUM_xxhash:
xxh64_update(&state->h64state, data, len);
break;
default:
BUG();
}
}
static inline int do_encrypt_sg(struct crypto_sync_skcipher *tfm,
struct nonce nonce,
struct scatterlist *sg, size_t len)
{
SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
skcipher_request_set_sync_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg, sg, len, nonce.d);
int ret = crypto_skcipher_encrypt(req);
if (ret)
pr_err("got error %i from crypto_skcipher_encrypt()", ret);
return ret;
}
static inline int do_encrypt(struct crypto_sync_skcipher *tfm,
struct nonce nonce,
void *buf, size_t len)
{
if (!is_vmalloc_addr(buf)) {
struct scatterlist sg = {};
sg_mark_end(&sg);
sg_set_page(&sg, virt_to_page(buf), len, offset_in_page(buf));
return do_encrypt_sg(tfm, nonce, &sg, len);
} else {
DARRAY_PREALLOCATED(struct scatterlist, 4) sgl;
size_t sgl_len = 0;
int ret;
darray_init(&sgl);
while (len) {
unsigned offset = offset_in_page(buf);
struct scatterlist sg = {
.page_link = (unsigned long) vmalloc_to_page(buf),
.offset = offset,
.length = min(len, PAGE_SIZE - offset),
};
if (darray_push(&sgl, sg)) {
sg_mark_end(&darray_last(sgl));
ret = do_encrypt_sg(tfm, nonce, sgl.data, sgl_len);
if (ret)
goto err;
nonce = nonce_add(nonce, sgl_len);
sgl_len = 0;
sgl.nr = 0;
BUG_ON(darray_push(&sgl, sg));
}
buf += sg.length;
len -= sg.length;
sgl_len += sg.length;
}
sg_mark_end(&darray_last(sgl));
ret = do_encrypt_sg(tfm, nonce, sgl.data, sgl_len);
err:
darray_exit(&sgl);
return ret;
}
}
int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce,
void *buf, size_t len)
{
struct crypto_sync_skcipher *chacha20 =
crypto_alloc_sync_skcipher("chacha20", 0, 0);
int ret;
ret = PTR_ERR_OR_ZERO(chacha20);
if (ret) {
pr_err("error requesting chacha20 cipher: %s", bch2_err_str(ret));
return ret;
}
ret = crypto_skcipher_setkey(&chacha20->base,
(void *) key, sizeof(*key));
if (ret) {
pr_err("error from crypto_skcipher_setkey(): %s", bch2_err_str(ret));
goto err;
}
ret = do_encrypt(chacha20, nonce, buf, len);
err:
crypto_free_sync_skcipher(chacha20);
return ret;
}
static int gen_poly_key(struct bch_fs *c, struct shash_desc *desc,
struct nonce nonce)
{
u8 key[POLY1305_KEY_SIZE];
int ret;
nonce.d[3] ^= BCH_NONCE_POLY;
memset(key, 0, sizeof(key));
ret = do_encrypt(c->chacha20, nonce, key, sizeof(key));
if (ret)
return ret;
desc->tfm = c->poly1305;
crypto_shash_init(desc);
crypto_shash_update(desc, key, sizeof(key));
return 0;
}
struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type,
struct nonce nonce, const void *data, size_t len)
{
switch (type) {
case BCH_CSUM_none:
case BCH_CSUM_crc32c_nonzero:
case BCH_CSUM_crc64_nonzero:
case BCH_CSUM_crc32c:
case BCH_CSUM_xxhash:
case BCH_CSUM_crc64: {
struct bch2_checksum_state state;
state.type = type;
bch2_checksum_init(&state);
bch2_checksum_update(&state, data, len);
return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
}
case BCH_CSUM_chacha20_poly1305_80:
case BCH_CSUM_chacha20_poly1305_128: {
SHASH_DESC_ON_STACK(desc, c->poly1305);
u8 digest[POLY1305_DIGEST_SIZE];
struct bch_csum ret = { 0 };
gen_poly_key(c, desc, nonce);
crypto_shash_update(desc, data, len);
crypto_shash_final(desc, digest);
memcpy(&ret, digest, bch_crc_bytes[type]);
return ret;
}
default:
return (struct bch_csum) {};
}
}
int bch2_encrypt(struct bch_fs *c, unsigned type,
struct nonce nonce, void *data, size_t len)
{
if (!bch2_csum_type_is_encryption(type))
return 0;
return do_encrypt(c->chacha20, nonce, data, len);
}
static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type,
struct nonce nonce, struct bio *bio,
struct bvec_iter *iter)
{
struct bio_vec bv;
switch (type) {
case BCH_CSUM_none:
return (struct bch_csum) { 0 };
case BCH_CSUM_crc32c_nonzero:
case BCH_CSUM_crc64_nonzero:
case BCH_CSUM_crc32c:
case BCH_CSUM_xxhash:
case BCH_CSUM_crc64: {
struct bch2_checksum_state state;
state.type = type;
bch2_checksum_init(&state);
#ifdef CONFIG_HIGHMEM
__bio_for_each_segment(bv, bio, *iter, *iter) {
void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
bch2_checksum_update(&state, p, bv.bv_len);
kunmap_local(p);
}
#else
__bio_for_each_bvec(bv, bio, *iter, *iter)
bch2_checksum_update(&state, page_address(bv.bv_page) + bv.bv_offset,
bv.bv_len);
#endif
return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
}
case BCH_CSUM_chacha20_poly1305_80:
case BCH_CSUM_chacha20_poly1305_128: {
SHASH_DESC_ON_STACK(desc, c->poly1305);
u8 digest[POLY1305_DIGEST_SIZE];
struct bch_csum ret = { 0 };
gen_poly_key(c, desc, nonce);
#ifdef CONFIG_HIGHMEM
__bio_for_each_segment(bv, bio, *iter, *iter) {
void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
crypto_shash_update(desc, p, bv.bv_len);
kunmap_local(p);
}
#else
__bio_for_each_bvec(bv, bio, *iter, *iter)
crypto_shash_update(desc,
page_address(bv.bv_page) + bv.bv_offset,
bv.bv_len);
#endif
crypto_shash_final(desc, digest);
memcpy(&ret, digest, bch_crc_bytes[type]);
return ret;
}
default:
return (struct bch_csum) {};
}
}
struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type,
struct nonce nonce, struct bio *bio)
{
struct bvec_iter iter = bio->bi_iter;
return __bch2_checksum_bio(c, type, nonce, bio, &iter);
}
int __bch2_encrypt_bio(struct bch_fs *c, unsigned type,
struct nonce nonce, struct bio *bio)
{
struct bio_vec bv;
struct bvec_iter iter;
DARRAY_PREALLOCATED(struct scatterlist, 4) sgl;
size_t sgl_len = 0;
int ret = 0;
if (!bch2_csum_type_is_encryption(type))
return 0;
darray_init(&sgl);
bio_for_each_segment(bv, bio, iter) {
struct scatterlist sg = {
.page_link = (unsigned long) bv.bv_page,
.offset = bv.bv_offset,
.length = bv.bv_len,
};
if (darray_push(&sgl, sg)) {
sg_mark_end(&darray_last(sgl));
ret = do_encrypt_sg(c->chacha20, nonce, sgl.data, sgl_len);
if (ret)
goto err;
nonce = nonce_add(nonce, sgl_len);
sgl_len = 0;
sgl.nr = 0;
BUG_ON(darray_push(&sgl, sg));
}
sgl_len += sg.length;
}
sg_mark_end(&darray_last(sgl));
ret = do_encrypt_sg(c->chacha20, nonce, sgl.data, sgl_len);
err:
darray_exit(&sgl);
return ret;
}
struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a,
struct bch_csum b, size_t b_len)
{
struct bch2_checksum_state state;
state.type = type;
bch2_checksum_init(&state);
state.seed = le64_to_cpu(a.lo);
BUG_ON(!bch2_checksum_mergeable(type));
while (b_len) {
unsigned page_len = min_t(unsigned, b_len, PAGE_SIZE);
bch2_checksum_update(&state,
page_address(ZERO_PAGE(0)), page_len);
b_len -= page_len;
}
a.lo = cpu_to_le64(bch2_checksum_final(&state));
a.lo ^= b.lo;
a.hi ^= b.hi;
return a;
}
int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio,
struct bversion version,
struct bch_extent_crc_unpacked crc_old,
struct bch_extent_crc_unpacked *crc_a,
struct bch_extent_crc_unpacked *crc_b,
unsigned len_a, unsigned len_b,
unsigned new_csum_type)
{
struct bvec_iter iter = bio->bi_iter;
struct nonce nonce = extent_nonce(version, crc_old);
struct bch_csum merged = { 0 };
struct crc_split {
struct bch_extent_crc_unpacked *crc;
unsigned len;
unsigned csum_type;
struct bch_csum csum;
} splits[3] = {
{ crc_a, len_a, new_csum_type, { 0 }},
{ crc_b, len_b, new_csum_type, { 0 } },
{ NULL, bio_sectors(bio) - len_a - len_b, new_csum_type, { 0 } },
}, *i;
bool mergeable = crc_old.csum_type == new_csum_type &&
bch2_checksum_mergeable(new_csum_type);
unsigned crc_nonce = crc_old.nonce;
BUG_ON(len_a + len_b > bio_sectors(bio));
BUG_ON(crc_old.uncompressed_size != bio_sectors(bio));
BUG_ON(crc_is_compressed(crc_old));
BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) !=
bch2_csum_type_is_encryption(new_csum_type));
for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
iter.bi_size = i->len << 9;
if (mergeable || i->crc)
i->csum = __bch2_checksum_bio(c, i->csum_type,
nonce, bio, &iter);
else
bio_advance_iter(bio, &iter, i->len << 9);
nonce = nonce_add(nonce, i->len << 9);
}
if (mergeable)
for (i = splits; i < splits + ARRAY_SIZE(splits); i++)
merged = bch2_checksum_merge(new_csum_type, merged,
i->csum, i->len << 9);
else
merged = bch2_checksum_bio(c, crc_old.csum_type,
extent_nonce(version, crc_old), bio);
if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) {
struct printbuf buf = PRINTBUF;
prt_printf(&buf, "checksum error in %s() (memory corruption or bug?)\n"
" expected %0llx:%0llx got %0llx:%0llx (old type ",
__func__,
crc_old.csum.hi,
crc_old.csum.lo,
merged.hi,
merged.lo);
bch2_prt_csum_type(&buf, crc_old.csum_type);
prt_str(&buf, " new type ");
bch2_prt_csum_type(&buf, new_csum_type);
prt_str(&buf, ")");
WARN_RATELIMIT(1, "%s", buf.buf);
printbuf_exit(&buf);
return -EIO;
}
for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
if (i->crc)
*i->crc = (struct bch_extent_crc_unpacked) {
.csum_type = i->csum_type,
.compression_type = crc_old.compression_type,
.compressed_size = i->len,
.uncompressed_size = i->len,
.offset = 0,
.live_size = i->len,
.nonce = crc_nonce,
.csum = i->csum,
};
if (bch2_csum_type_is_encryption(new_csum_type))
crc_nonce += i->len;
}
return 0;
}
/* BCH_SB_FIELD_crypt: */
static int bch2_sb_crypt_validate(struct bch_sb *sb, struct bch_sb_field *f,
enum bch_validate_flags flags, struct printbuf *err)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
prt_printf(err, "wrong size (got %zu should be %zu)",
vstruct_bytes(&crypt->field), sizeof(*crypt));
return -BCH_ERR_invalid_sb_crypt;
}
if (BCH_CRYPT_KDF_TYPE(crypt)) {
prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
return -BCH_ERR_invalid_sb_crypt;
}
return 0;
}
static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
prt_printf(out, "KFD: %llu\n", BCH_CRYPT_KDF_TYPE(crypt));
prt_printf(out, "scrypt n: %llu\n", BCH_KDF_SCRYPT_N(crypt));
prt_printf(out, "scrypt r: %llu\n", BCH_KDF_SCRYPT_R(crypt));
prt_printf(out, "scrypt p: %llu\n", BCH_KDF_SCRYPT_P(crypt));
}
const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
.validate = bch2_sb_crypt_validate,
.to_text = bch2_sb_crypt_to_text,
};
#ifdef __KERNEL__
static int __bch2_request_key(char *key_description, struct bch_key *key)
{
struct key *keyring_key;
const struct user_key_payload *ukp;
int ret;
keyring_key = request_key(&key_type_user, key_description, NULL);
if (IS_ERR(keyring_key))
return PTR_ERR(keyring_key);
down_read(&keyring_key->sem);
ukp = dereference_key_locked(keyring_key);
if (ukp->datalen == sizeof(*key)) {
memcpy(key, ukp->data, ukp->datalen);
ret = 0;
} else {
ret = -EINVAL;
}
up_read(&keyring_key->sem);
key_put(keyring_key);
return ret;
}
#else
#include <keyutils.h>
static int __bch2_request_key(char *key_description, struct bch_key *key)
{
key_serial_t key_id;
key_id = request_key("user", key_description, NULL,
KEY_SPEC_SESSION_KEYRING);
if (key_id >= 0)
goto got_key;
key_id = request_key("user", key_description, NULL,
KEY_SPEC_USER_KEYRING);
if (key_id >= 0)
goto got_key;
key_id = request_key("user", key_description, NULL,
KEY_SPEC_USER_SESSION_KEYRING);
if (key_id >= 0)
goto got_key;
return -errno;
got_key:
if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key))
return -1;
return 0;
}
#include "crypto.h"
#endif
int bch2_request_key(struct bch_sb *sb, struct bch_key *key)
{
struct printbuf key_description = PRINTBUF;
int ret;
prt_printf(&key_description, "bcachefs:");
pr_uuid(&key_description, sb->user_uuid.b);
ret = __bch2_request_key(key_description.buf, key);
printbuf_exit(&key_description);
#ifndef __KERNEL__
if (ret) {
char *passphrase = read_passphrase("Enter passphrase: ");
struct bch_encrypted_key sb_key;
bch2_passphrase_check(sb, passphrase,
key, &sb_key);
ret = 0;
}
#endif
/* stash with memfd, pass memfd fd to mount */
return ret;
}
#ifndef __KERNEL__
int bch2_revoke_key(struct bch_sb *sb)
{
key_serial_t key_id;
struct printbuf key_description = PRINTBUF;
prt_printf(&key_description, "bcachefs:");
pr_uuid(&key_description, sb->user_uuid.b);
key_id = request_key("user", key_description.buf, NULL, KEY_SPEC_USER_KEYRING);
printbuf_exit(&key_description);
if (key_id < 0)
return errno;
keyctl_revoke(key_id);
return 0;
}
#endif
int bch2_decrypt_sb_key(struct bch_fs *c,
struct bch_sb_field_crypt *crypt,
struct bch_key *key)
{
struct bch_encrypted_key sb_key = crypt->key;
struct bch_key user_key;
int ret = 0;
/* is key encrypted? */
if (!bch2_key_is_encrypted(&sb_key))
goto out;
ret = bch2_request_key(c->disk_sb.sb, &user_key);
if (ret) {
bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
goto err;
}
/* decrypt real key: */
ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
&sb_key, sizeof(sb_key));
if (ret)
goto err;
if (bch2_key_is_encrypted(&sb_key)) {
bch_err(c, "incorrect encryption key");
ret = -EINVAL;
goto err;
}
out:
*key = sb_key.key;
err:
memzero_explicit(&sb_key, sizeof(sb_key));
memzero_explicit(&user_key, sizeof(user_key));
return ret;
}
static int bch2_alloc_ciphers(struct bch_fs *c)
{
if (c->chacha20)
return 0;
struct crypto_sync_skcipher *chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0);
int ret = PTR_ERR_OR_ZERO(chacha20);
if (ret) {
bch_err(c, "error requesting chacha20 module: %s", bch2_err_str(ret));
return ret;
}
struct crypto_shash *poly1305 = crypto_alloc_shash("poly1305", 0, 0);
ret = PTR_ERR_OR_ZERO(poly1305);
if (ret) {
bch_err(c, "error requesting poly1305 module: %s", bch2_err_str(ret));
crypto_free_sync_skcipher(chacha20);
return ret;
}
c->chacha20 = chacha20;
c->poly1305 = poly1305;
return 0;
}
int bch2_disable_encryption(struct bch_fs *c)
{
struct bch_sb_field_crypt *crypt;
struct bch_key key;
int ret = -EINVAL;
mutex_lock(&c->sb_lock);
crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
if (!crypt)
goto out;
/* is key encrypted? */
ret = 0;
if (bch2_key_is_encrypted(&crypt->key))
goto out;
ret = bch2_decrypt_sb_key(c, crypt, &key);
if (ret)
goto out;
crypt->key.magic = cpu_to_le64(BCH_KEY_MAGIC);
crypt->key.key = key;
SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0);
bch2_write_super(c);
out:
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_enable_encryption(struct bch_fs *c, bool keyed)
{
struct bch_encrypted_key key;
struct bch_key user_key;
struct bch_sb_field_crypt *crypt;
int ret = -EINVAL;
mutex_lock(&c->sb_lock);
/* Do we already have an encryption key? */
if (bch2_sb_field_get(c->disk_sb.sb, crypt))
goto err;
ret = bch2_alloc_ciphers(c);
if (ret)
goto err;
key.magic = cpu_to_le64(BCH_KEY_MAGIC);
get_random_bytes(&key.key, sizeof(key.key));
if (keyed) {
ret = bch2_request_key(c->disk_sb.sb, &user_key);
if (ret) {
bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
goto err;
}
ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
&key, sizeof(key));
if (ret)
goto err;
}
ret = crypto_skcipher_setkey(&c->chacha20->base,
(void *) &key.key, sizeof(key.key));
if (ret)
goto err;
crypt = bch2_sb_field_resize(&c->disk_sb, crypt,
sizeof(*crypt) / sizeof(u64));
if (!crypt) {
ret = -BCH_ERR_ENOSPC_sb_crypt;
goto err;
}
crypt->key = key;
/* write superblock */
SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1);
bch2_write_super(c);
err:
mutex_unlock(&c->sb_lock);
memzero_explicit(&user_key, sizeof(user_key));
memzero_explicit(&key, sizeof(key));
return ret;
}
void bch2_fs_encryption_exit(struct bch_fs *c)
{
if (c->poly1305)
crypto_free_shash(c->poly1305);
if (c->chacha20)
crypto_free_sync_skcipher(c->chacha20);
if (c->sha256)
crypto_free_shash(c->sha256);
}
int bch2_fs_encryption_init(struct bch_fs *c)
{
struct bch_sb_field_crypt *crypt;
struct bch_key key;
int ret = 0;
c->sha256 = crypto_alloc_shash("sha256", 0, 0);
ret = PTR_ERR_OR_ZERO(c->sha256);
if (ret) {
c->sha256 = NULL;
bch_err(c, "error requesting sha256 module: %s", bch2_err_str(ret));
goto out;
}
crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
if (!crypt)
goto out;
ret = bch2_alloc_ciphers(c);
if (ret)
goto out;
ret = bch2_decrypt_sb_key(c, crypt, &key);
if (ret)
goto out;
ret = crypto_skcipher_setkey(&c->chacha20->base,
(void *) &key.key, sizeof(key.key));
if (ret)
goto out;
out:
memzero_explicit(&key, sizeof(key));
return ret;
}