linux-stable/lib/hexdump.c

296 lines
8.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* lib/hexdump.c
*/
#include <linux/types.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/minmax.h>
#include <linux/export.h>
#include <linux/unaligned.h>
const char hex_asc[] = "0123456789abcdef";
EXPORT_SYMBOL(hex_asc);
const char hex_asc_upper[] = "0123456789ABCDEF";
EXPORT_SYMBOL(hex_asc_upper);
/**
* hex_to_bin - convert a hex digit to its real value
* @ch: ascii character represents hex digit
*
* hex_to_bin() converts one hex digit to its actual value or -1 in case of bad
* input.
*
* This function is used to load cryptographic keys, so it is coded in such a
* way that there are no conditions or memory accesses that depend on data.
*
* Explanation of the logic:
* (ch - '9' - 1) is negative if ch <= '9'
* ('0' - 1 - ch) is negative if ch >= '0'
* we "and" these two values, so the result is negative if ch is in the range
* '0' ... '9'
* we are only interested in the sign, so we do a shift ">> 8"; note that right
* shift of a negative value is implementation-defined, so we cast the
* value to (unsigned) before the shift --- we have 0xffffff if ch is in
* the range '0' ... '9', 0 otherwise
* we "and" this value with (ch - '0' + 1) --- we have a value 1 ... 10 if ch is
* in the range '0' ... '9', 0 otherwise
* we add this value to -1 --- we have a value 0 ... 9 if ch is in the range '0'
* ... '9', -1 otherwise
* the next line is similar to the previous one, but we need to decode both
* uppercase and lowercase letters, so we use (ch & 0xdf), which converts
* lowercase to uppercase
*/
int hex_to_bin(unsigned char ch)
{
unsigned char cu = ch & 0xdf;
return -1 +
((ch - '0' + 1) & (unsigned)((ch - '9' - 1) & ('0' - 1 - ch)) >> 8) +
((cu - 'A' + 11) & (unsigned)((cu - 'F' - 1) & ('A' - 1 - cu)) >> 8);
}
EXPORT_SYMBOL(hex_to_bin);
/**
* hex2bin - convert an ascii hexadecimal string to its binary representation
* @dst: binary result
* @src: ascii hexadecimal string
* @count: result length
*
* Return 0 on success, -EINVAL in case of bad input.
*/
int hex2bin(u8 *dst, const char *src, size_t count)
{
while (count--) {
int hi, lo;
hi = hex_to_bin(*src++);
if (unlikely(hi < 0))
return -EINVAL;
lo = hex_to_bin(*src++);
if (unlikely(lo < 0))
return -EINVAL;
*dst++ = (hi << 4) | lo;
}
return 0;
}
EXPORT_SYMBOL(hex2bin);
/**
* bin2hex - convert binary data to an ascii hexadecimal string
* @dst: ascii hexadecimal result
* @src: binary data
* @count: binary data length
*/
char *bin2hex(char *dst, const void *src, size_t count)
{
const unsigned char *_src = src;
while (count--)
dst = hex_byte_pack(dst, *_src++);
return dst;
}
EXPORT_SYMBOL(bin2hex);
/**
* hex_dump_to_buffer - convert a blob of data to "hex ASCII" in memory
* @buf: data blob to dump
* @len: number of bytes in the @buf
* @rowsize: number of bytes to print per line; must be 16 or 32
* @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
* @linebuf: where to put the converted data
* @linebuflen: total size of @linebuf, including space for terminating NUL
* @ascii: include ASCII after the hex output
*
* hex_dump_to_buffer() works on one "line" of output at a time, i.e.,
* 16 or 32 bytes of input data converted to hex + ASCII output.
*
* Given a buffer of u8 data, hex_dump_to_buffer() converts the input data
* to a hex + ASCII dump at the supplied memory location.
* The converted output is always NUL-terminated.
*
* E.g.:
* hex_dump_to_buffer(frame->data, frame->len, 16, 1,
* linebuf, sizeof(linebuf), true);
*
* example output buffer:
* 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
*
* Return:
* The amount of bytes placed in the buffer without terminating NUL. If the
* output was truncated, then the return value is the number of bytes
* (excluding the terminating NUL) which would have been written to the final
* string if enough space had been available.
*/
int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize,
char *linebuf, size_t linebuflen, bool ascii)
{
const u8 *ptr = buf;
int ngroups;
u8 ch;
int j, lx = 0;
int ascii_column;
int ret;
if (rowsize != 16 && rowsize != 32)
rowsize = 16;
if (len > rowsize) /* limit to one line at a time */
len = rowsize;
if (!is_power_of_2(groupsize) || groupsize > 8)
groupsize = 1;
if ((len % groupsize) != 0) /* no mixed size output */
groupsize = 1;
ngroups = len / groupsize;
ascii_column = rowsize * 2 + rowsize / groupsize + 1;
if (!linebuflen)
goto overflow1;
if (!len)
goto nil;
if (groupsize == 8) {
const u64 *ptr8 = buf;
for (j = 0; j < ngroups; j++) {
ret = snprintf(linebuf + lx, linebuflen - lx,
"%s%16.16llx", j ? " " : "",
get_unaligned(ptr8 + j));
if (ret >= linebuflen - lx)
goto overflow1;
lx += ret;
}
} else if (groupsize == 4) {
const u32 *ptr4 = buf;
for (j = 0; j < ngroups; j++) {
ret = snprintf(linebuf + lx, linebuflen - lx,
"%s%8.8x", j ? " " : "",
get_unaligned(ptr4 + j));
if (ret >= linebuflen - lx)
goto overflow1;
lx += ret;
}
} else if (groupsize == 2) {
const u16 *ptr2 = buf;
for (j = 0; j < ngroups; j++) {
ret = snprintf(linebuf + lx, linebuflen - lx,
"%s%4.4x", j ? " " : "",
get_unaligned(ptr2 + j));
if (ret >= linebuflen - lx)
goto overflow1;
lx += ret;
}
} else {
for (j = 0; j < len; j++) {
if (linebuflen < lx + 2)
goto overflow2;
ch = ptr[j];
linebuf[lx++] = hex_asc_hi(ch);
if (linebuflen < lx + 2)
goto overflow2;
linebuf[lx++] = hex_asc_lo(ch);
if (linebuflen < lx + 2)
goto overflow2;
linebuf[lx++] = ' ';
}
if (j)
lx--;
}
if (!ascii)
goto nil;
while (lx < ascii_column) {
if (linebuflen < lx + 2)
goto overflow2;
linebuf[lx++] = ' ';
}
for (j = 0; j < len; j++) {
if (linebuflen < lx + 2)
goto overflow2;
ch = ptr[j];
linebuf[lx++] = (isascii(ch) && isprint(ch)) ? ch : '.';
}
nil:
linebuf[lx] = '\0';
return lx;
overflow2:
linebuf[lx++] = '\0';
overflow1:
return ascii ? ascii_column + len : (groupsize * 2 + 1) * ngroups - 1;
}
EXPORT_SYMBOL(hex_dump_to_buffer);
#ifdef CONFIG_PRINTK
/**
* print_hex_dump - print a text hex dump to syslog for a binary blob of data
* @level: kernel log level (e.g. KERN_DEBUG)
* @prefix_str: string to prefix each line with;
* caller supplies trailing spaces for alignment if desired
* @prefix_type: controls whether prefix of an offset, address, or none
* is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE)
* @rowsize: number of bytes to print per line; must be 16 or 32
* @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
* @buf: data blob to dump
* @len: number of bytes in the @buf
* @ascii: include ASCII after the hex output
*
* Given a buffer of u8 data, print_hex_dump() prints a hex + ASCII dump
* to the kernel log at the specified kernel log level, with an optional
* leading prefix.
*
* print_hex_dump() works on one "line" of output at a time, i.e.,
* 16 or 32 bytes of input data converted to hex + ASCII output.
* print_hex_dump() iterates over the entire input @buf, breaking it into
* "line size" chunks to format and print.
*
* E.g.:
* print_hex_dump(KERN_DEBUG, "raw data: ", DUMP_PREFIX_ADDRESS,
* 16, 1, frame->data, frame->len, true);
*
* Example output using %DUMP_PREFIX_OFFSET and 1-byte mode:
* 0009ab42: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
* Example output using %DUMP_PREFIX_ADDRESS and 4-byte mode:
* ffffffff88089af0: 73727170 77767574 7b7a7978 7f7e7d7c pqrstuvwxyz{|}~.
*/
void print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
int rowsize, int groupsize,
const void *buf, size_t len, bool ascii)
{
const u8 *ptr = buf;
int i, linelen, remaining = len;
unsigned char linebuf[32 * 3 + 2 + 32 + 1];
if (rowsize != 16 && rowsize != 32)
rowsize = 16;
for (i = 0; i < len; i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
linebuf, sizeof(linebuf), ascii);
switch (prefix_type) {
case DUMP_PREFIX_ADDRESS:
printk("%s%s%p: %s\n",
level, prefix_str, ptr + i, linebuf);
break;
case DUMP_PREFIX_OFFSET:
printk("%s%s%.8x: %s\n", level, prefix_str, i, linebuf);
break;
default:
printk("%s%s%s\n", level, prefix_str, linebuf);
break;
}
}
}
EXPORT_SYMBOL(print_hex_dump);
#endif /* defined(CONFIG_PRINTK) */