linux-stable/include/linux/kexec.h

489 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LINUX_KEXEC_H
#define LINUX_KEXEC_H
#define IND_DESTINATION_BIT 0
#define IND_INDIRECTION_BIT 1
#define IND_DONE_BIT 2
#define IND_SOURCE_BIT 3
#define IND_DESTINATION (1 << IND_DESTINATION_BIT)
#define IND_INDIRECTION (1 << IND_INDIRECTION_BIT)
#define IND_DONE (1 << IND_DONE_BIT)
#define IND_SOURCE (1 << IND_SOURCE_BIT)
#define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
#if !defined(__ASSEMBLY__)
#include <linux/vmcore_info.h>
kexec: split crashkernel reservation code out from crash_core.c Patch series "Split crash out from kexec and clean up related config items", v3. Motivation: ============= Previously, LKP reported a building error. When investigating, it can't be resolved reasonablly with the present messy kdump config items. https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/ The kdump (crash dumping) related config items could causes confusions: Firstly, CRASH_CORE enables codes including - crashkernel reservation; - elfcorehdr updating; - vmcoreinfo exporting; - crash hotplug handling; Now fadump of powerpc, kcore dynamic debugging and kdump all selects CRASH_CORE, while fadump - fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing global variable 'elfcorehdr_addr'; - kcore only needs vmcoreinfo exporting; - kdump needs all of the current kernel/crash_core.c. So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this mislead people that we enable crash dumping, actual it's not. Secondly, It's not reasonable to allow KEXEC_CORE select CRASH_CORE. Because KEXEC_CORE enables codes which allocate control pages, copy kexec/kdump segments, and prepare for switching. These codes are shared by both kexec reboot and kdump. We could want kexec reboot, but disable kdump. In that case, CRASH_CORE should not be selected. -------------------- CONFIG_CRASH_CORE=y CONFIG_KEXEC_CORE=y CONFIG_KEXEC=y CONFIG_KEXEC_FILE=y --------------------- Thirdly, It's not reasonable to allow CRASH_DUMP select KEXEC_CORE. That could make KEXEC_CORE, CRASH_DUMP are enabled independently from KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE code built in doesn't make any sense because no kernel loading or switching will happen to utilize the KEXEC_CORE code. --------------------- CONFIG_CRASH_CORE=y CONFIG_KEXEC_CORE=y CONFIG_CRASH_DUMP=y --------------------- In this case, what is worse, on arch sh and arm, KEXEC relies on MMU, while CRASH_DUMP can still be enabled when !MMU, then compiling error is seen as the lkp test robot reported in above link. ------arch/sh/Kconfig------ config ARCH_SUPPORTS_KEXEC def_bool MMU config ARCH_SUPPORTS_CRASH_DUMP def_bool BROKEN_ON_SMP --------------------------- Changes: =========== 1, split out crash_reserve.c from crash_core.c; 2, split out vmcore_infoc. from crash_core.c; 3, move crash related codes in kexec_core.c into crash_core.c; 4, remove dependency of FA_DUMP on CRASH_DUMP; 5, clean up kdump related config items; 6, wrap up crash codes in crash related ifdefs on all 8 arch-es which support crash dumping, except of ppc; Achievement: =========== With above changes, I can rearrange the config item logic as below (the right item depends on or is selected by the left item): PROC_KCORE -----------> VMCORE_INFO |----------> VMCORE_INFO FA_DUMP----| |----------> CRASH_RESERVE ---->VMCORE_INFO / |---->CRASH_RESERVE KEXEC --| /| |--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE KEXEC_FILE --| \ | \---->CRASH_HOTPLUG KEXEC --| |--> KEXEC_CORE (for kexec reboot only) KEXEC_FILE --| Test ======== On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips, riscv, loongarch, I did below three cases of config item setting and building all passed. Take configs on x86_64 as exampmle here: (1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump items are unset automatically: # Kexec and crash features # CONFIG_KEXEC is not set # CONFIG_KEXEC_FILE is not set # end of Kexec and crash features (2) set CONFIG_KEXEC_FILE and 'make olddefconfig': --------------- # Kexec and crash features CONFIG_CRASH_RESERVE=y CONFIG_VMCORE_INFO=y CONFIG_KEXEC_CORE=y CONFIG_KEXEC_FILE=y CONFIG_CRASH_DUMP=y CONFIG_CRASH_HOTPLUG=y CONFIG_CRASH_MAX_MEMORY_RANGES=8192 # end of Kexec and crash features --------------- (3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig': ------------------------ # Kexec and crash features CONFIG_KEXEC_CORE=y CONFIG_KEXEC_FILE=y # end of Kexec and crash features ------------------------ Note: For ppc, it needs investigation to make clear how to split out crash code in arch folder. Hope Hari and Pingfan can help have a look, see if it's doable. Now, I make it either have both kexec and crash enabled, or disable both of them altogether. This patch (of 14): Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the relevant codes into separate files: crash_reserve.c, include/linux/crash_reserve.h. And also add config item CRASH_RESERVE to control its enabling of the codes. And update config items which has relationship with crashkernel reservation. And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE when those scopes are only crashkernel reservation related. And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on arm64, x86 and risc-v because those architectures' crash_core.h is only related to crashkernel reservation. [akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin] Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Pingfan Liu <piliu@redhat.com> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Michael Kelley <mhklinux@outlook.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 05:12:41 +00:00
#include <linux/crash_reserve.h>
#include <asm/io.h>
#include <linux/range.h>
#include <uapi/linux/kexec.h>
#include <linux/verification.h>
kexec: make crashk_res, crashk_low_res and crash_notes symbols always visible Patch series "kexec: use IS_ENABLED(CONFIG_KEXEC_CORE) instead of #ifdef", v2. Replace the conditional compilation using "#ifdef CONFIG_KEXEC_CORE" by a check for "IS_ENABLED(CONFIG_KEXEC_CORE)", to simplify the code and increase compile coverage. I only modified x86, arm, arm64 and riscv, other architectures such as sh, powerpc and s390 are better to be kept kexec code as-is so they are not touched. This patch (of 5): Make the forward declarations of crashk_res, crashk_low_res and crash_notes always visible. Code referring to these symbols can then just check for IS_ENABLED(CONFIG_KEXEC_CORE), instead of requiring conditional compilation using an #ifdef, thus preparing to increase compile coverage and simplify the code. Link: https://lkml.kernel.org/r/20211206160514.2000-1-jszhang@kernel.org Link: https://lkml.kernel.org/r/20211206160514.2000-2-jszhang@kernel.org Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Acked-by: Baoquan He <bhe@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Alexandre Ghiti <alex@ghiti.fr> Cc: Palmer Dabbelt <palmer@rivosinc.com> Cc: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 23:06:33 +00:00
extern note_buf_t __percpu *crash_notes;
2015-09-09 22:38:55 +00:00
#ifdef CONFIG_KEXEC_CORE
#include <linux/list.h>
#include <linux/compat.h>
#include <linux/ioport.h>
#include <linux/module.h>
crash: add generic infrastructure for crash hotplug support To support crash hotplug, a mechanism is needed to update the crash elfcorehdr upon CPU or memory changes (eg. hot un/plug or off/ onlining). The crash elfcorehdr describes the CPUs and memory to be written into the vmcore. To track CPU changes, callbacks are registered with the cpuhp mechanism via cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN). The crash hotplug elfcorehdr update has no explicit ordering requirement (relative to other cpuhp states), so meets the criteria for utilizing CPUHP_BP_PREPARE_DYN. CPUHP_BP_PREPARE_DYN is a dynamic state and avoids the need to introduce a new state for crash hotplug. Also, CPUHP_BP_PREPARE_DYN is the last state in the PREPARE group, just prior to the STARTING group, which is very close to the CPU starting up in a plug/online situation, or stopping in a unplug/ offline situation. This minimizes the window of time during an actual plug/online or unplug/offline situation in which the elfcorehdr would be inaccurate. Note that for a CPU being unplugged or offlined, the CPU will still be present in the list of CPUs generated by crash_prepare_elf64_headers(). However, there is no need to explicitly omit the CPU, see justification in 'crash: change crash_prepare_elf64_headers() to for_each_possible_cpu()'. To track memory changes, a notifier is registered to capture the memblock MEM_ONLINE and MEM_OFFLINE events via register_memory_notifier(). The CPU callbacks and memory notifiers invoke crash_handle_hotplug_event() which performs needed tasks and then dispatches the event to the architecture specific arch_crash_handle_hotplug_event() to update the elfcorehdr with the current state of CPUs and memory. During the process, the kexec_lock is held. Link: https://lkml.kernel.org/r/20230814214446.6659-3-eric.devolder@oracle.com Signed-off-by: Eric DeVolder <eric.devolder@oracle.com> Reviewed-by: Sourabh Jain <sourabhjain@linux.ibm.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Akhil Raj <lf32.dev@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Sean Christopherson <seanjc@google.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-14 21:44:40 +00:00
#include <linux/highmem.h>
#include <asm/kexec.h>
2024-01-24 05:12:44 +00:00
#include <linux/crash_core.h>
/* Verify architecture specific macros are defined */
#ifndef KEXEC_SOURCE_MEMORY_LIMIT
#error KEXEC_SOURCE_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_DESTINATION_MEMORY_LIMIT
#error KEXEC_DESTINATION_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_LIMIT
#error KEXEC_CONTROL_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_GFP
#define KEXEC_CONTROL_MEMORY_GFP (GFP_KERNEL | __GFP_NORETRY)
#endif
#ifndef KEXEC_CONTROL_PAGE_SIZE
#error KEXEC_CONTROL_PAGE_SIZE not defined
#endif
#ifndef KEXEC_ARCH
#error KEXEC_ARCH not defined
#endif
#ifndef KEXEC_CRASH_CONTROL_MEMORY_LIMIT
#define KEXEC_CRASH_CONTROL_MEMORY_LIMIT KEXEC_CONTROL_MEMORY_LIMIT
#endif
#ifndef KEXEC_CRASH_MEM_ALIGN
#define KEXEC_CRASH_MEM_ALIGN PAGE_SIZE
#endif
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:56:18 +00:00
#define KEXEC_CORE_NOTE_NAME CRASH_CORE_NOTE_NAME
/*
* This structure is used to hold the arguments that are used when loading
* kernel binaries.
*/
typedef unsigned long kimage_entry_t;
struct kexec_segment {
/*
* This pointer can point to user memory if kexec_load() system
* call is used or will point to kernel memory if
* kexec_file_load() system call is used.
*
* Use ->buf when expecting to deal with user memory and use ->kbuf
* when expecting to deal with kernel memory.
*/
union {
void __user *buf;
void *kbuf;
};
size_t bufsz;
unsigned long mem;
size_t memsz;
};
#ifdef CONFIG_COMPAT
struct compat_kexec_segment {
compat_uptr_t buf;
compat_size_t bufsz;
compat_ulong_t mem; /* User space sees this as a (void *) ... */
compat_size_t memsz;
};
#endif
#ifdef CONFIG_KEXEC_FILE
struct purgatory_info {
/*
* Pointer to elf header at the beginning of kexec_purgatory.
* Note: kexec_purgatory is read only
*/
const Elf_Ehdr *ehdr;
/*
* Temporary, modifiable buffer for sechdrs used for relocation.
* This memory can be freed post image load.
*/
Elf_Shdr *sechdrs;
/*
* Temporary, modifiable buffer for stripped purgatory used for
* relocation. This memory can be freed post image load.
*/
void *purgatory_buf;
};
include/linux/kexec.h: silence compile warnings Patch series "kexec_file: Clean up purgatory load", v2. Following the discussion with Dave and AKASHI, here are the common code patches extracted from my recent patch set (Add kexec_file_load support to s390) [1]. The patches were extracted to allow upstream integration together with AKASHI's common code patches before the arch code gets adjusted to the new base. The reason for this series is to prepare common code for adding kexec_file_load to s390 as well as cleaning up the mis-use of the sh_offset field during purgatory load. In detail this series contains: Patch #1&2: Minor cleanups/fixes. Patch #3-9: Clean up the purgatory load/relocation code. Especially remove the mis-use of the purgatory_info->sechdrs->sh_offset field, currently holding a pointer into either kexec_purgatory (ro) or purgatory_buf (rw) depending on the section. With these patches the section address will be calculated verbosely and sh_offset will contain the offset of the section in the stripped purgatory binary (purgatory_buf). Patch #10: Allows architectures to set the purgatory load address. This patch is important for s390 as the kernel and purgatory have to be loaded to fixed addresses. In current code this is impossible as the purgatory load is opaque to the architecture. Patch #11: Moves x86 purgatories sha implementation to common lib/ directory to allow reuse in other architectures. This patch (of 11) When building the kernel with CONFIG_KEXEC_FILE enabled gcc prints a compile warning multiple times. In file included from <path>/linux/init/initramfs.c:526:0: <path>/include/linux/kexec.h:120:9: warning: `struct kimage' declared inside parameter list [enabled by default] unsigned long cmdline_len); ^ This is because the typedefs for kexec_file_load uses struct kimage before it is declared. Fix this by simply forward declaring struct kimage. Link: http://lkml.kernel.org/r/20180321112751.22196-2-prudo@linux.vnet.ibm.com Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-13 22:36:10 +00:00
struct kimage;
typedef int (kexec_probe_t)(const char *kernel_buf, unsigned long kernel_size);
typedef void *(kexec_load_t)(struct kimage *image, char *kernel_buf,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len);
typedef int (kexec_cleanup_t)(void *loader_data);
#ifdef CONFIG_KEXEC_SIG
typedef int (kexec_verify_sig_t)(const char *kernel_buf,
unsigned long kernel_len);
#endif
struct kexec_file_ops {
kexec_probe_t *probe;
kexec_load_t *load;
kexec_cleanup_t *cleanup;
#ifdef CONFIG_KEXEC_SIG
kexec_verify_sig_t *verify_sig;
#endif
};
extern const struct kexec_file_ops * const kexec_file_loaders[];
int kexec_image_probe_default(struct kimage *image, void *buf,
unsigned long buf_len);
int kexec_image_post_load_cleanup_default(struct kimage *image);
/*
* If kexec_buf.mem is set to this value, kexec_locate_mem_hole()
* will try to allocate free memory. Arch may overwrite it.
*/
#ifndef KEXEC_BUF_MEM_UNKNOWN
#define KEXEC_BUF_MEM_UNKNOWN 0
#endif
/**
* struct kexec_buf - parameters for finding a place for a buffer in memory
* @image: kexec image in which memory to search.
* @buffer: Contents which will be copied to the allocated memory.
* @bufsz: Size of @buffer.
* @mem: On return will have address of the buffer in memory.
* @memsz: Size for the buffer in memory.
* @buf_align: Minimum alignment needed.
* @buf_min: The buffer can't be placed below this address.
* @buf_max: The buffer can't be placed above this address.
* @top_down: Allocate from top of memory.
*/
struct kexec_buf {
struct kimage *image;
void *buffer;
unsigned long bufsz;
unsigned long mem;
unsigned long memsz;
unsigned long buf_align;
unsigned long buf_min;
unsigned long buf_max;
bool top_down;
};
kernel/kexec_file.c: allow archs to set purgatory load address For s390 new kernels are loaded to fixed addresses in memory before they are booted. With the current code this is a problem as it assumes the kernel will be loaded to an 'arbitrary' address. In particular, kexec_locate_mem_hole searches for a large enough memory region and sets the load address (kexec_bufer->mem) to it. Luckily there is a simple workaround for this problem. By returning 1 in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This allows the architecture to set kbuf->mem by hand. While the trick works fine for the kernel it does not for the purgatory as here the architectures don't have access to its kexec_buffer. Give architectures access to the purgatories kexec_buffer by changing kexec_load_purgatory to take a pointer to it. With this change architectures have access to the buffer and can edit it as they need. A nice side effect of this change is that we can get rid of the purgatory_info->purgatory_load_address field. As now the information stored there can directly be accessed from kbuf->mem. Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-13 22:36:43 +00:00
int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf);
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
void *buf, unsigned int size,
bool get_value);
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name);
kexec_file: drop weak attribute from functions As requested (http://lkml.kernel.org/r/87ee0q7b92.fsf@email.froward.int.ebiederm.org), this series converts weak functions in kexec to use the #ifdef approach. Quoting the 3e35142ef99fe ("kexec_file: drop weak attribute from arch_kexec_apply_relocations[_add]") changelog: : Since commit d1bcae833b32f1 ("ELF: Don't generate unused section symbols") : [1], binutils (v2.36+) started dropping section symbols that it thought : were unused. This isn't an issue in general, but with kexec_file.c, gcc : is placing kexec_arch_apply_relocations[_add] into a separate : .text.unlikely section and the section symbol ".text.unlikely" is being : dropped. Due to this, recordmcount is unable to find a non-weak symbol in : .text.unlikely to generate a relocation record against. This patch (of 2); Drop __weak attribute from functions in kexec_file.c: - arch_kexec_kernel_image_probe() - arch_kimage_file_post_load_cleanup() - arch_kexec_kernel_image_load() - arch_kexec_locate_mem_hole() - arch_kexec_kernel_verify_sig() arch_kexec_kernel_image_load() calls into kexec_image_load_default(), so drop the static attribute for the latter. arch_kexec_kernel_verify_sig() is not overridden by any architecture, so drop the __weak attribute. Link: https://lkml.kernel.org/r/cover.1656659357.git.naveen.n.rao@linux.vnet.ibm.com Link: https://lkml.kernel.org/r/2cd7ca1fe4d6bb6ca38e3283c717878388ed6788.1656659357.git.naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Suggested-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2022-07-01 07:34:04 +00:00
#ifndef arch_kexec_kernel_image_probe
static inline int
arch_kexec_kernel_image_probe(struct kimage *image, void *buf, unsigned long buf_len)
{
return kexec_image_probe_default(image, buf, buf_len);
}
#endif
#ifndef arch_kimage_file_post_load_cleanup
static inline int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
return kexec_image_post_load_cleanup_default(image);
}
#endif
#ifdef CONFIG_KEXEC_SIG
#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len);
#endif
#endif
extern int kexec_add_buffer(struct kexec_buf *kbuf);
int kexec_locate_mem_hole(struct kexec_buf *kbuf);
kexec_file: drop weak attribute from functions As requested (http://lkml.kernel.org/r/87ee0q7b92.fsf@email.froward.int.ebiederm.org), this series converts weak functions in kexec to use the #ifdef approach. Quoting the 3e35142ef99fe ("kexec_file: drop weak attribute from arch_kexec_apply_relocations[_add]") changelog: : Since commit d1bcae833b32f1 ("ELF: Don't generate unused section symbols") : [1], binutils (v2.36+) started dropping section symbols that it thought : were unused. This isn't an issue in general, but with kexec_file.c, gcc : is placing kexec_arch_apply_relocations[_add] into a separate : .text.unlikely section and the section symbol ".text.unlikely" is being : dropped. Due to this, recordmcount is unable to find a non-weak symbol in : .text.unlikely to generate a relocation record against. This patch (of 2); Drop __weak attribute from functions in kexec_file.c: - arch_kexec_kernel_image_probe() - arch_kimage_file_post_load_cleanup() - arch_kexec_kernel_image_load() - arch_kexec_locate_mem_hole() - arch_kexec_kernel_verify_sig() arch_kexec_kernel_image_load() calls into kexec_image_load_default(), so drop the static attribute for the latter. arch_kexec_kernel_verify_sig() is not overridden by any architecture, so drop the __weak attribute. Link: https://lkml.kernel.org/r/cover.1656659357.git.naveen.n.rao@linux.vnet.ibm.com Link: https://lkml.kernel.org/r/2cd7ca1fe4d6bb6ca38e3283c717878388ed6788.1656659357.git.naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Suggested-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2022-07-01 07:34:04 +00:00
#ifndef arch_kexec_locate_mem_hole
/**
* arch_kexec_locate_mem_hole - Find free memory to place the segments.
* @kbuf: Parameters for the memory search.
*
* On success, kbuf->mem will have the start address of the memory region found.
*
* Return: 0 on success, negative errno on error.
*/
static inline int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
{
return kexec_locate_mem_hole(kbuf);
}
#endif
#ifndef arch_kexec_apply_relocations_add
/*
* arch_kexec_apply_relocations_add - apply relocations of type RELA
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELAs.
* @symtab: Corresponding symtab.
*
* Return: 0 on success, negative errno on error.
*/
static inline int
arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
pr_err("RELA relocation unsupported.\n");
return -ENOEXEC;
}
#endif
#ifndef arch_kexec_apply_relocations
/*
* arch_kexec_apply_relocations - apply relocations of type REL
* @pi: Purgatory to be relocated.
* @section: Section relocations applying to.
* @relsec: Section containing RELs.
* @symtab: Corresponding symtab.
*
* Return: 0 on success, negative errno on error.
*/
static inline int
arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
const Elf_Shdr *relsec, const Elf_Shdr *symtab)
{
pr_err("REL relocation unsupported.\n");
return -ENOEXEC;
}
#endif
#endif /* CONFIG_KEXEC_FILE */
#ifdef CONFIG_KEXEC_ELF
struct kexec_elf_info {
/*
* Where the ELF binary contents are kept.
* Memory managed by the user of the struct.
*/
const char *buffer;
const struct elfhdr *ehdr;
const struct elf_phdr *proghdrs;
};
int kexec_build_elf_info(const char *buf, size_t len, struct elfhdr *ehdr,
struct kexec_elf_info *elf_info);
int kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
struct kexec_elf_info *elf_info,
struct kexec_buf *kbuf,
unsigned long *lowest_load_addr);
void kexec_free_elf_info(struct kexec_elf_info *elf_info);
int kexec_elf_probe(const char *buf, unsigned long len);
#endif
struct kimage {
kimage_entry_t head;
kimage_entry_t *entry;
kimage_entry_t *last_entry;
unsigned long start;
struct page *control_code_page;
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
struct page *swap_page;
kdump: protect vmcoreinfo data under the crash memory Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 21:33:21 +00:00
void *vmcoreinfo_data_copy; /* locates in the crash memory */
unsigned long nr_segments;
struct kexec_segment segment[KEXEC_SEGMENT_MAX];
struct list_head control_pages;
struct list_head dest_pages;
struct list_head unusable_pages;
/* Address of next control page to allocate for crash kernels. */
unsigned long control_page;
/* Flags to indicate special processing */
unsigned int type : 1;
#define KEXEC_TYPE_DEFAULT 0
#define KEXEC_TYPE_CRASH 1
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
unsigned int preserve_context : 1;
/* If set, we are using file mode kexec syscall */
unsigned int file_mode:1;
crash: hotplug support for kexec_load() The hotplug support for kexec_load() requires changes to the userspace kexec-tools and a little extra help from the kernel. Given a kdump capture kernel loaded via kexec_load(), and a subsequent hotplug event, the crash hotplug handler finds the elfcorehdr and rewrites it to reflect the hotplug change. That is the desired outcome, however, at kernel panic time, the purgatory integrity check fails (because the elfcorehdr changed), and the capture kernel does not boot and no vmcore is generated. Therefore, the userspace kexec-tools/kexec must indicate to the kernel that the elfcorehdr can be modified (because the kexec excluded the elfcorehdr from the digest, and sized the elfcorehdr memory buffer appropriately). To facilitate hotplug support with kexec_load(): - a new kexec flag KEXEC_UPATE_ELFCOREHDR indicates that it is safe for the kernel to modify the kexec_load()'d elfcorehdr - the /sys/kernel/crash_elfcorehdr_size node communicates the preferred size of the elfcorehdr memory buffer - The sysfs crash_hotplug nodes (ie. /sys/devices/system/[cpu|memory]/crash_hotplug) dynamically take into account kexec_file_load() vs kexec_load() and KEXEC_UPDATE_ELFCOREHDR. This is critical so that the udev rule processing of crash_hotplug is all that is needed to determine if the userspace unload-then-load of the kdump image is to be skipped, or not. The proposed udev rule change looks like: # The kernel updates the crash elfcorehdr for CPU and memory changes SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end" SUBSYSTEM=="memory", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end" The table below indicates the behavior of kexec_load()'d kdump image updates (with the new udev crash_hotplug rule in place): Kernel |Kexec -------+-----+---- Old |Old |New | a | a -------+-----+---- New | a | b -------+-----+---- where kexec 'old' and 'new' delineate kexec-tools has the needed modifications for the crash hotplug feature, and kernel 'old' and 'new' delineate the kernel supports this crash hotplug feature. Behavior 'a' indicates the unload-then-reload of the entire kdump image. For the kexec 'old' column, the unload-then-reload occurs due to the missing flag KEXEC_UPDATE_ELFCOREHDR. An 'old' kernel (with 'new' kexec) does not present the crash_hotplug sysfs node, which leads to the unload-then-reload of the kdump image. Behavior 'b' indicates the desired optimized behavior of the kernel directly modifying the elfcorehdr and avoiding the unload-then-reload of the kdump image. If the udev rule is not updated with crash_hotplug node check, then no matter any combination of kernel or kexec is new or old, the kdump image continues to be unload-then-reload on hotplug changes. To fully support crash hotplug feature, there needs to be a rollout of kernel, kexec-tools and udev rule changes. However, the order of the rollout of these pieces does not matter; kexec_load()'d kdump images still function for hotplug as-is. Link: https://lkml.kernel.org/r/20230814214446.6659-7-eric.devolder@oracle.com Signed-off-by: Eric DeVolder <eric.devolder@oracle.com> Suggested-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Akhil Raj <lf32.dev@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Sean Christopherson <seanjc@google.com> Cc: Sourabh Jain <sourabhjain@linux.ibm.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-14 21:44:44 +00:00
#ifdef CONFIG_CRASH_HOTPLUG
crash: add a new kexec flag for hotplug support Commit a72bbec70da2 ("crash: hotplug support for kexec_load()") introduced a new kexec flag, `KEXEC_UPDATE_ELFCOREHDR`. Kexec tool uses this flag to indicate to the kernel that it is safe to modify the elfcorehdr of the kdump image loaded using the kexec_load system call. However, it is possible that architectures may need to update kexec segments other then elfcorehdr. For example, FDT (Flatten Device Tree) on PowerPC. Introducing a new kexec flag for every new kexec segment may not be a good solution. Hence, a generic kexec flag bit, `KEXEC_CRASH_HOTPLUG_SUPPORT`, is introduced to share the CPU/Memory hotplug support intent between the kexec tool and the kernel for the kexec_load system call. Now we have two kexec flags that enables crash hotplug support for kexec_load system call. First is KEXEC_UPDATE_ELFCOREHDR (only used in x86), and second is KEXEC_CRASH_HOTPLUG_SUPPORT (for all architectures). To simplify the process of finding and reporting the crash hotplug support the following changes are introduced. 1. Define arch specific function to process the kexec flags and determine crash hotplug support 2. Rename the @update_elfcorehdr member of struct kimage to @hotplug_support and populate it for both kexec_load and kexec_file_load syscalls, because architecture can update more than one kexec segment 3. Let generic function crash_check_hotplug_support report hotplug support for loaded kdump image based on value of @hotplug_support To bring the x86 crash hotplug support in line with the above points, the following changes have been made: - Introduce the arch_crash_hotplug_support function to process kexec flags and determine crash hotplug support - Remove the arch_crash_hotplug_[cpu|memory]_support functions Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20240326055413.186534-3-sourabhjain@linux.ibm.com
2024-03-26 05:54:09 +00:00
/* If set, it is safe to update kexec segments that are
* excluded from SHA calculation.
*/
unsigned int hotplug_support:1;
crash: hotplug support for kexec_load() The hotplug support for kexec_load() requires changes to the userspace kexec-tools and a little extra help from the kernel. Given a kdump capture kernel loaded via kexec_load(), and a subsequent hotplug event, the crash hotplug handler finds the elfcorehdr and rewrites it to reflect the hotplug change. That is the desired outcome, however, at kernel panic time, the purgatory integrity check fails (because the elfcorehdr changed), and the capture kernel does not boot and no vmcore is generated. Therefore, the userspace kexec-tools/kexec must indicate to the kernel that the elfcorehdr can be modified (because the kexec excluded the elfcorehdr from the digest, and sized the elfcorehdr memory buffer appropriately). To facilitate hotplug support with kexec_load(): - a new kexec flag KEXEC_UPATE_ELFCOREHDR indicates that it is safe for the kernel to modify the kexec_load()'d elfcorehdr - the /sys/kernel/crash_elfcorehdr_size node communicates the preferred size of the elfcorehdr memory buffer - The sysfs crash_hotplug nodes (ie. /sys/devices/system/[cpu|memory]/crash_hotplug) dynamically take into account kexec_file_load() vs kexec_load() and KEXEC_UPDATE_ELFCOREHDR. This is critical so that the udev rule processing of crash_hotplug is all that is needed to determine if the userspace unload-then-load of the kdump image is to be skipped, or not. The proposed udev rule change looks like: # The kernel updates the crash elfcorehdr for CPU and memory changes SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end" SUBSYSTEM=="memory", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end" The table below indicates the behavior of kexec_load()'d kdump image updates (with the new udev crash_hotplug rule in place): Kernel |Kexec -------+-----+---- Old |Old |New | a | a -------+-----+---- New | a | b -------+-----+---- where kexec 'old' and 'new' delineate kexec-tools has the needed modifications for the crash hotplug feature, and kernel 'old' and 'new' delineate the kernel supports this crash hotplug feature. Behavior 'a' indicates the unload-then-reload of the entire kdump image. For the kexec 'old' column, the unload-then-reload occurs due to the missing flag KEXEC_UPDATE_ELFCOREHDR. An 'old' kernel (with 'new' kexec) does not present the crash_hotplug sysfs node, which leads to the unload-then-reload of the kdump image. Behavior 'b' indicates the desired optimized behavior of the kernel directly modifying the elfcorehdr and avoiding the unload-then-reload of the kdump image. If the udev rule is not updated with crash_hotplug node check, then no matter any combination of kernel or kexec is new or old, the kdump image continues to be unload-then-reload on hotplug changes. To fully support crash hotplug feature, there needs to be a rollout of kernel, kexec-tools and udev rule changes. However, the order of the rollout of these pieces does not matter; kexec_load()'d kdump images still function for hotplug as-is. Link: https://lkml.kernel.org/r/20230814214446.6659-7-eric.devolder@oracle.com Signed-off-by: Eric DeVolder <eric.devolder@oracle.com> Suggested-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Akhil Raj <lf32.dev@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Sean Christopherson <seanjc@google.com> Cc: Sourabh Jain <sourabhjain@linux.ibm.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-14 21:44:44 +00:00
#endif
#ifdef ARCH_HAS_KIMAGE_ARCH
struct kimage_arch arch;
#endif
#ifdef CONFIG_KEXEC_FILE
/* Additional fields for file based kexec syscall */
void *kernel_buf;
unsigned long kernel_buf_len;
void *initrd_buf;
unsigned long initrd_buf_len;
char *cmdline_buf;
unsigned long cmdline_buf_len;
/* File operations provided by image loader */
const struct kexec_file_ops *fops;
/* Image loader handling the kernel can store a pointer here */
void *image_loader_data;
/* Information for loading purgatory */
struct purgatory_info purgatory_info;
#endif
crash: add generic infrastructure for crash hotplug support To support crash hotplug, a mechanism is needed to update the crash elfcorehdr upon CPU or memory changes (eg. hot un/plug or off/ onlining). The crash elfcorehdr describes the CPUs and memory to be written into the vmcore. To track CPU changes, callbacks are registered with the cpuhp mechanism via cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN). The crash hotplug elfcorehdr update has no explicit ordering requirement (relative to other cpuhp states), so meets the criteria for utilizing CPUHP_BP_PREPARE_DYN. CPUHP_BP_PREPARE_DYN is a dynamic state and avoids the need to introduce a new state for crash hotplug. Also, CPUHP_BP_PREPARE_DYN is the last state in the PREPARE group, just prior to the STARTING group, which is very close to the CPU starting up in a plug/online situation, or stopping in a unplug/ offline situation. This minimizes the window of time during an actual plug/online or unplug/offline situation in which the elfcorehdr would be inaccurate. Note that for a CPU being unplugged or offlined, the CPU will still be present in the list of CPUs generated by crash_prepare_elf64_headers(). However, there is no need to explicitly omit the CPU, see justification in 'crash: change crash_prepare_elf64_headers() to for_each_possible_cpu()'. To track memory changes, a notifier is registered to capture the memblock MEM_ONLINE and MEM_OFFLINE events via register_memory_notifier(). The CPU callbacks and memory notifiers invoke crash_handle_hotplug_event() which performs needed tasks and then dispatches the event to the architecture specific arch_crash_handle_hotplug_event() to update the elfcorehdr with the current state of CPUs and memory. During the process, the kexec_lock is held. Link: https://lkml.kernel.org/r/20230814214446.6659-3-eric.devolder@oracle.com Signed-off-by: Eric DeVolder <eric.devolder@oracle.com> Reviewed-by: Sourabh Jain <sourabhjain@linux.ibm.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Akhil Raj <lf32.dev@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Sean Christopherson <seanjc@google.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-14 21:44:40 +00:00
#ifdef CONFIG_CRASH_HOTPLUG
int hp_action;
int elfcorehdr_index;
bool elfcorehdr_updated;
#endif
#ifdef CONFIG_IMA_KEXEC
/* Virtual address of IMA measurement buffer for kexec syscall */
void *ima_buffer;
phys_addr_t ima_buffer_addr;
size_t ima_buffer_size;
#endif
/* Core ELF header buffer */
void *elf_headers;
unsigned long elf_headers_sz;
unsigned long elf_load_addr;
};
/* kexec interface functions */
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
extern void machine_kexec(struct kimage *image);
extern int machine_kexec_prepare(struct kimage *image);
extern void machine_kexec_cleanup(struct kimage *image);
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
extern int kernel_kexec(void);
extern struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order);
#ifndef machine_kexec_post_load
static inline int machine_kexec_post_load(struct kimage *image) { return 0; }
#endif
extern struct kimage *kexec_image;
extern struct kimage *kexec_crash_image;
kexec: introduce sysctl parameters kexec_load_limit_* kexec allows replacing the current kernel with a different one. This is usually a source of concerns for sysadmins that want to harden a system. Linux already provides a way to disable loading new kexec kernel via kexec_load_disabled, but that control is very coard, it is all or nothing and does not make distinction between a panic kexec and a normal kexec. This patch introduces new sysctl parameters, with finer tuning to specify how many times a kexec kernel can be loaded. The sysadmin can set different limits for kexec panic and kexec reboot kernels. The value can be modified at runtime via sysctl, but only with a stricter value. With these new parameters on place, a system with loadpin and verity enabled, using the following kernel parameters: sysctl.kexec_load_limit_reboot=0 sysct.kexec_load_limit_panic=1 can have a good warranty that if initrd tries to load a panic kernel, a malitious user will have small chances to replace that kernel with a different one, even if they can trigger timeouts on the disk where the panic kernel lives. Link: https://lkml.kernel.org/r/20221114-disable-kexec-reset-v6-3-6a8531a09b9a@chromium.org Signed-off-by: Ricardo Ribalda <ribalda@chromium.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Baoquan He <bhe@redhat.com> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Philipp Rudo <prudo@redhat.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-04 14:38:48 +00:00
bool kexec_load_permitted(int kexec_image_type);
#ifndef kexec_flush_icache_page
#define kexec_flush_icache_page(page)
#endif
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
/* List of defined/legal kexec flags */
#ifndef CONFIG_KEXEC_JUMP
crash: add a new kexec flag for hotplug support Commit a72bbec70da2 ("crash: hotplug support for kexec_load()") introduced a new kexec flag, `KEXEC_UPDATE_ELFCOREHDR`. Kexec tool uses this flag to indicate to the kernel that it is safe to modify the elfcorehdr of the kdump image loaded using the kexec_load system call. However, it is possible that architectures may need to update kexec segments other then elfcorehdr. For example, FDT (Flatten Device Tree) on PowerPC. Introducing a new kexec flag for every new kexec segment may not be a good solution. Hence, a generic kexec flag bit, `KEXEC_CRASH_HOTPLUG_SUPPORT`, is introduced to share the CPU/Memory hotplug support intent between the kexec tool and the kernel for the kexec_load system call. Now we have two kexec flags that enables crash hotplug support for kexec_load system call. First is KEXEC_UPDATE_ELFCOREHDR (only used in x86), and second is KEXEC_CRASH_HOTPLUG_SUPPORT (for all architectures). To simplify the process of finding and reporting the crash hotplug support the following changes are introduced. 1. Define arch specific function to process the kexec flags and determine crash hotplug support 2. Rename the @update_elfcorehdr member of struct kimage to @hotplug_support and populate it for both kexec_load and kexec_file_load syscalls, because architecture can update more than one kexec segment 3. Let generic function crash_check_hotplug_support report hotplug support for loaded kdump image based on value of @hotplug_support To bring the x86 crash hotplug support in line with the above points, the following changes have been made: - Introduce the arch_crash_hotplug_support function to process kexec flags and determine crash hotplug support - Remove the arch_crash_hotplug_[cpu|memory]_support functions Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20240326055413.186534-3-sourabhjain@linux.ibm.com
2024-03-26 05:54:09 +00:00
#define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_UPDATE_ELFCOREHDR | KEXEC_CRASH_HOTPLUG_SUPPORT)
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
#else
crash: add a new kexec flag for hotplug support Commit a72bbec70da2 ("crash: hotplug support for kexec_load()") introduced a new kexec flag, `KEXEC_UPDATE_ELFCOREHDR`. Kexec tool uses this flag to indicate to the kernel that it is safe to modify the elfcorehdr of the kdump image loaded using the kexec_load system call. However, it is possible that architectures may need to update kexec segments other then elfcorehdr. For example, FDT (Flatten Device Tree) on PowerPC. Introducing a new kexec flag for every new kexec segment may not be a good solution. Hence, a generic kexec flag bit, `KEXEC_CRASH_HOTPLUG_SUPPORT`, is introduced to share the CPU/Memory hotplug support intent between the kexec tool and the kernel for the kexec_load system call. Now we have two kexec flags that enables crash hotplug support for kexec_load system call. First is KEXEC_UPDATE_ELFCOREHDR (only used in x86), and second is KEXEC_CRASH_HOTPLUG_SUPPORT (for all architectures). To simplify the process of finding and reporting the crash hotplug support the following changes are introduced. 1. Define arch specific function to process the kexec flags and determine crash hotplug support 2. Rename the @update_elfcorehdr member of struct kimage to @hotplug_support and populate it for both kexec_load and kexec_file_load syscalls, because architecture can update more than one kexec segment 3. Let generic function crash_check_hotplug_support report hotplug support for loaded kdump image based on value of @hotplug_support To bring the x86 crash hotplug support in line with the above points, the following changes have been made: - Introduce the arch_crash_hotplug_support function to process kexec flags and determine crash hotplug support - Remove the arch_crash_hotplug_[cpu|memory]_support functions Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com> Acked-by: Baoquan He <bhe@redhat.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20240326055413.186534-3-sourabhjain@linux.ibm.com
2024-03-26 05:54:09 +00:00
#define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_PRESERVE_CONTEXT | KEXEC_UPDATE_ELFCOREHDR | \
KEXEC_CRASH_HOTPLUG_SUPPORT)
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:07 +00:00
#endif
/* List of defined/legal kexec file flags */
#define KEXEC_FILE_FLAGS (KEXEC_FILE_UNLOAD | KEXEC_FILE_ON_CRASH | \
kexec_file: add kexec_file flag to control debug printing Patch series "kexec_file: print out debugging message if required", v4. Currently, specifying '-d' on kexec command will print a lot of debugging informationabout kexec/kdump loading with kexec_load interface. However, kexec_file_load prints nothing even though '-d' is specified. It's very inconvenient to debug or analyze the kexec/kdump loading when something wrong happened with kexec/kdump itself or develper want to check the kexec/kdump loading. In this patchset, a kexec_file flag is KEXEC_FILE_DEBUG added and checked in code. If it's passed in, debugging message of kexec_file code will be printed out and can be seen from console and dmesg. Otherwise, the debugging message is printed like beofre when pr_debug() is taken. Note: **** ===== 1) The code in kexec-tools utility also need be changed to support passing KEXEC_FILE_DEBUG to kernel when 'kexec -s -d' is specified. The patch link is here: ========= [PATCH] kexec_file: add kexec_file flag to support debug printing http://lists.infradead.org/pipermail/kexec/2023-November/028505.html 2) s390 also has kexec_file code, while I am not sure what debugging information is necessary. So leave it to s390 developer. Test: **** ==== Testing was done in v1 on x86_64 and arm64. For v4, tested on x86_64 again. And on x86_64, the printed messages look like below: -------------------------------------------------------------- kexec measurement buffer for the loaded kernel at 0x207fffe000. Loaded purgatory at 0x207fff9000 Loaded boot_param, command line and misc at 0x207fff3000 bufsz=0x1180 memsz=0x1180 Loaded 64bit kernel at 0x207c000000 bufsz=0xc88200 memsz=0x3c4a000 Loaded initrd at 0x2079e79000 bufsz=0x2186280 memsz=0x2186280 Final command line is: root=/dev/mapper/fedora_intel--knightslanding--lb--02-root ro rd.lvm.lv=fedora_intel-knightslanding-lb-02/root console=ttyS0,115200N81 crashkernel=256M E820 memmap: 0000000000000000-000000000009a3ff (1) 000000000009a400-000000000009ffff (2) 00000000000e0000-00000000000fffff (2) 0000000000100000-000000006ff83fff (1) 000000006ff84000-000000007ac50fff (2) ...... 000000207fff6150-000000207fff615f (128) 000000207fff6160-000000207fff714f (1) 000000207fff7150-000000207fff715f (128) 000000207fff7160-000000207fff814f (1) 000000207fff8150-000000207fff815f (128) 000000207fff8160-000000207fffffff (1) nr_segments = 5 segment[0]: buf=0x000000004e5ece74 bufsz=0x211 mem=0x207fffe000 memsz=0x1000 segment[1]: buf=0x000000009e871498 bufsz=0x4000 mem=0x207fff9000 memsz=0x5000 segment[2]: buf=0x00000000d879f1fe bufsz=0x1180 mem=0x207fff3000 memsz=0x2000 segment[3]: buf=0x000000001101cd86 bufsz=0xc88200 mem=0x207c000000 memsz=0x3c4a000 segment[4]: buf=0x00000000c6e38ac7 bufsz=0x2186280 mem=0x2079e79000 memsz=0x2187000 kexec_file_load: type:0, start:0x207fff91a0 head:0x109e004002 flags:0x8 --------------------------------------------------------------------------- This patch (of 7): When specifying 'kexec -c -d', kexec_load interface will print loading information, e.g the regions where kernel/initrd/purgatory/cmdline are put, the memmap passed to 2nd kernel taken as system RAM ranges, and printing all contents of struct kexec_segment, etc. These are very helpful for analyzing or positioning what's happening when kexec/kdump itself failed. The debugging printing for kexec_load interface is made in user space utility kexec-tools. Whereas, with kexec_file_load interface, 'kexec -s -d' print nothing. Because kexec_file code is mostly implemented in kernel space, and the debugging printing functionality is missed. It's not convenient when debugging kexec/kdump loading and jumping with kexec_file_load interface. Now add KEXEC_FILE_DEBUG to kexec_file flag to control the debugging message printing. And add global variable kexec_file_dbg_print and macro kexec_dprintk() to facilitate the printing. This is a preparation, later kexec_dprintk() will be used to replace the existing pr_debug(). Once 'kexec -s -d' is specified, it will print out kexec/kdump loading information. If '-d' is not specified, it regresses to pr_debug(). Link: https://lkml.kernel.org/r/20231213055747.61826-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20231213055747.61826-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Conor Dooley <conor@kernel.org> Cc: Joe Perches <joe@perches.com> Cc: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-13 05:57:41 +00:00
KEXEC_FILE_NO_INITRAMFS | KEXEC_FILE_DEBUG)
/* flag to track if kexec reboot is in progress */
extern bool kexec_in_progress;
#ifndef page_to_boot_pfn
static inline unsigned long page_to_boot_pfn(struct page *page)
{
return page_to_pfn(page);
}
#endif
#ifndef boot_pfn_to_page
static inline struct page *boot_pfn_to_page(unsigned long boot_pfn)
{
return pfn_to_page(boot_pfn);
}
#endif
#ifndef phys_to_boot_phys
static inline unsigned long phys_to_boot_phys(phys_addr_t phys)
{
return phys;
}
#endif
#ifndef boot_phys_to_phys
static inline phys_addr_t boot_phys_to_phys(unsigned long boot_phys)
{
return boot_phys;
}
#endif
#ifndef crash_free_reserved_phys_range
static inline void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE)
free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
}
#endif
static inline unsigned long virt_to_boot_phys(void *addr)
{
return phys_to_boot_phys(__pa((unsigned long)addr));
}
static inline void *boot_phys_to_virt(unsigned long entry)
{
return phys_to_virt(boot_phys_to_phys(entry));
}
x86/mm, kexec: Allow kexec to be used with SME Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-17 21:10:28 +00:00
#ifndef arch_kexec_post_alloc_pages
static inline int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) { return 0; }
#endif
#ifndef arch_kexec_pre_free_pages
static inline void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) { }
#endif
kexec_file: add kexec_file flag to control debug printing Patch series "kexec_file: print out debugging message if required", v4. Currently, specifying '-d' on kexec command will print a lot of debugging informationabout kexec/kdump loading with kexec_load interface. However, kexec_file_load prints nothing even though '-d' is specified. It's very inconvenient to debug or analyze the kexec/kdump loading when something wrong happened with kexec/kdump itself or develper want to check the kexec/kdump loading. In this patchset, a kexec_file flag is KEXEC_FILE_DEBUG added and checked in code. If it's passed in, debugging message of kexec_file code will be printed out and can be seen from console and dmesg. Otherwise, the debugging message is printed like beofre when pr_debug() is taken. Note: **** ===== 1) The code in kexec-tools utility also need be changed to support passing KEXEC_FILE_DEBUG to kernel when 'kexec -s -d' is specified. The patch link is here: ========= [PATCH] kexec_file: add kexec_file flag to support debug printing http://lists.infradead.org/pipermail/kexec/2023-November/028505.html 2) s390 also has kexec_file code, while I am not sure what debugging information is necessary. So leave it to s390 developer. Test: **** ==== Testing was done in v1 on x86_64 and arm64. For v4, tested on x86_64 again. And on x86_64, the printed messages look like below: -------------------------------------------------------------- kexec measurement buffer for the loaded kernel at 0x207fffe000. Loaded purgatory at 0x207fff9000 Loaded boot_param, command line and misc at 0x207fff3000 bufsz=0x1180 memsz=0x1180 Loaded 64bit kernel at 0x207c000000 bufsz=0xc88200 memsz=0x3c4a000 Loaded initrd at 0x2079e79000 bufsz=0x2186280 memsz=0x2186280 Final command line is: root=/dev/mapper/fedora_intel--knightslanding--lb--02-root ro rd.lvm.lv=fedora_intel-knightslanding-lb-02/root console=ttyS0,115200N81 crashkernel=256M E820 memmap: 0000000000000000-000000000009a3ff (1) 000000000009a400-000000000009ffff (2) 00000000000e0000-00000000000fffff (2) 0000000000100000-000000006ff83fff (1) 000000006ff84000-000000007ac50fff (2) ...... 000000207fff6150-000000207fff615f (128) 000000207fff6160-000000207fff714f (1) 000000207fff7150-000000207fff715f (128) 000000207fff7160-000000207fff814f (1) 000000207fff8150-000000207fff815f (128) 000000207fff8160-000000207fffffff (1) nr_segments = 5 segment[0]: buf=0x000000004e5ece74 bufsz=0x211 mem=0x207fffe000 memsz=0x1000 segment[1]: buf=0x000000009e871498 bufsz=0x4000 mem=0x207fff9000 memsz=0x5000 segment[2]: buf=0x00000000d879f1fe bufsz=0x1180 mem=0x207fff3000 memsz=0x2000 segment[3]: buf=0x000000001101cd86 bufsz=0xc88200 mem=0x207c000000 memsz=0x3c4a000 segment[4]: buf=0x00000000c6e38ac7 bufsz=0x2186280 mem=0x2079e79000 memsz=0x2187000 kexec_file_load: type:0, start:0x207fff91a0 head:0x109e004002 flags:0x8 --------------------------------------------------------------------------- This patch (of 7): When specifying 'kexec -c -d', kexec_load interface will print loading information, e.g the regions where kernel/initrd/purgatory/cmdline are put, the memmap passed to 2nd kernel taken as system RAM ranges, and printing all contents of struct kexec_segment, etc. These are very helpful for analyzing or positioning what's happening when kexec/kdump itself failed. The debugging printing for kexec_load interface is made in user space utility kexec-tools. Whereas, with kexec_file_load interface, 'kexec -s -d' print nothing. Because kexec_file code is mostly implemented in kernel space, and the debugging printing functionality is missed. It's not convenient when debugging kexec/kdump loading and jumping with kexec_file_load interface. Now add KEXEC_FILE_DEBUG to kexec_file flag to control the debugging message printing. And add global variable kexec_file_dbg_print and macro kexec_dprintk() to facilitate the printing. This is a preparation, later kexec_dprintk() will be used to replace the existing pr_debug(). Once 'kexec -s -d' is specified, it will print out kexec/kdump loading information. If '-d' is not specified, it regresses to pr_debug(). Link: https://lkml.kernel.org/r/20231213055747.61826-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20231213055747.61826-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Conor Dooley <conor@kernel.org> Cc: Joe Perches <joe@perches.com> Cc: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-13 05:57:41 +00:00
extern bool kexec_file_dbg_print;
#define kexec_dprintk(fmt, arg...) \
do { if (kexec_file_dbg_print) pr_info(fmt, ##arg); } while (0)
kexec_file: add kexec_file flag to control debug printing Patch series "kexec_file: print out debugging message if required", v4. Currently, specifying '-d' on kexec command will print a lot of debugging informationabout kexec/kdump loading with kexec_load interface. However, kexec_file_load prints nothing even though '-d' is specified. It's very inconvenient to debug or analyze the kexec/kdump loading when something wrong happened with kexec/kdump itself or develper want to check the kexec/kdump loading. In this patchset, a kexec_file flag is KEXEC_FILE_DEBUG added and checked in code. If it's passed in, debugging message of kexec_file code will be printed out and can be seen from console and dmesg. Otherwise, the debugging message is printed like beofre when pr_debug() is taken. Note: **** ===== 1) The code in kexec-tools utility also need be changed to support passing KEXEC_FILE_DEBUG to kernel when 'kexec -s -d' is specified. The patch link is here: ========= [PATCH] kexec_file: add kexec_file flag to support debug printing http://lists.infradead.org/pipermail/kexec/2023-November/028505.html 2) s390 also has kexec_file code, while I am not sure what debugging information is necessary. So leave it to s390 developer. Test: **** ==== Testing was done in v1 on x86_64 and arm64. For v4, tested on x86_64 again. And on x86_64, the printed messages look like below: -------------------------------------------------------------- kexec measurement buffer for the loaded kernel at 0x207fffe000. Loaded purgatory at 0x207fff9000 Loaded boot_param, command line and misc at 0x207fff3000 bufsz=0x1180 memsz=0x1180 Loaded 64bit kernel at 0x207c000000 bufsz=0xc88200 memsz=0x3c4a000 Loaded initrd at 0x2079e79000 bufsz=0x2186280 memsz=0x2186280 Final command line is: root=/dev/mapper/fedora_intel--knightslanding--lb--02-root ro rd.lvm.lv=fedora_intel-knightslanding-lb-02/root console=ttyS0,115200N81 crashkernel=256M E820 memmap: 0000000000000000-000000000009a3ff (1) 000000000009a400-000000000009ffff (2) 00000000000e0000-00000000000fffff (2) 0000000000100000-000000006ff83fff (1) 000000006ff84000-000000007ac50fff (2) ...... 000000207fff6150-000000207fff615f (128) 000000207fff6160-000000207fff714f (1) 000000207fff7150-000000207fff715f (128) 000000207fff7160-000000207fff814f (1) 000000207fff8150-000000207fff815f (128) 000000207fff8160-000000207fffffff (1) nr_segments = 5 segment[0]: buf=0x000000004e5ece74 bufsz=0x211 mem=0x207fffe000 memsz=0x1000 segment[1]: buf=0x000000009e871498 bufsz=0x4000 mem=0x207fff9000 memsz=0x5000 segment[2]: buf=0x00000000d879f1fe bufsz=0x1180 mem=0x207fff3000 memsz=0x2000 segment[3]: buf=0x000000001101cd86 bufsz=0xc88200 mem=0x207c000000 memsz=0x3c4a000 segment[4]: buf=0x00000000c6e38ac7 bufsz=0x2186280 mem=0x2079e79000 memsz=0x2187000 kexec_file_load: type:0, start:0x207fff91a0 head:0x109e004002 flags:0x8 --------------------------------------------------------------------------- This patch (of 7): When specifying 'kexec -c -d', kexec_load interface will print loading information, e.g the regions where kernel/initrd/purgatory/cmdline are put, the memmap passed to 2nd kernel taken as system RAM ranges, and printing all contents of struct kexec_segment, etc. These are very helpful for analyzing or positioning what's happening when kexec/kdump itself failed. The debugging printing for kexec_load interface is made in user space utility kexec-tools. Whereas, with kexec_file_load interface, 'kexec -s -d' print nothing. Because kexec_file code is mostly implemented in kernel space, and the debugging printing functionality is missed. It's not convenient when debugging kexec/kdump loading and jumping with kexec_file_load interface. Now add KEXEC_FILE_DEBUG to kexec_file flag to control the debugging message printing. And add global variable kexec_file_dbg_print and macro kexec_dprintk() to facilitate the printing. This is a preparation, later kexec_dprintk() will be used to replace the existing pr_debug(). Once 'kexec -s -d' is specified, it will print out kexec/kdump loading information. If '-d' is not specified, it regresses to pr_debug(). Link: https://lkml.kernel.org/r/20231213055747.61826-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20231213055747.61826-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Conor Dooley <conor@kernel.org> Cc: Joe Perches <joe@perches.com> Cc: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-13 05:57:41 +00:00
2015-09-09 22:38:55 +00:00
#else /* !CONFIG_KEXEC_CORE */
struct pt_regs;
struct task_struct;
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 10:19:11 +00:00
static inline void __crash_kexec(struct pt_regs *regs) { }
static inline void crash_kexec(struct pt_regs *regs) { }
static inline int kexec_should_crash(struct task_struct *p) { return 0; }
static inline int kexec_crash_loaded(void) { return 0; }
#define kexec_in_progress false
2015-09-09 22:38:55 +00:00
#endif /* CONFIG_KEXEC_CORE */
#ifdef CONFIG_KEXEC_SIG
void set_kexec_sig_enforced(void);
#else
static inline void set_kexec_sig_enforced(void) {}
#endif
#endif /* !defined(__ASSEBMLY__) */
#endif /* LINUX_KEXEC_H */