linux-stable/include/linux/moduleloader.h

130 lines
3.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MODULELOADER_H
#define _LINUX_MODULELOADER_H
/* The stuff needed for archs to support modules. */
#include <linux/module.h>
#include <linux/elf.h>
/* These may be implemented by architectures that need to hook into the
* module loader code. Architectures that don't need to do anything special
* can just rely on the 'weak' default hooks defined in kernel/module.c.
* Note, however, that at least one of apply_relocate or apply_relocate_add
* must be implemented by each architecture.
*/
/* arch may override to do additional checking of ELF header architecture */
bool module_elf_check_arch(Elf_Ehdr *hdr);
/* Adjust arch-specific sections. Return 0 on success. */
int module_frob_arch_sections(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs,
char *secstrings,
struct module *mod);
/* Additional bytes needed by arch in front of individual sections */
unsigned int arch_mod_section_prepend(struct module *mod, unsigned int section);
/* Determines if the section name is an init section (that is only used during
* module loading).
*/
bool module_init_section(const char *name);
/* Determines if the section name is an exit section (that is only used during
* module unloading)
*/
bool module_exit_section(const char *name);
module: Expose module_init_layout_section() module_init_layout_section() choses whether the core module loader considers a section as init or not. This affects the placement of the exit section when module unloading is disabled. This code will never run, so it can be free()d once the module has been initialised. arm and arm64 need to count the number of PLTs they need before applying relocations based on the section name. The init PLTs are stored separately so they can be free()d. arm and arm64 both use within_module_init() to decide which list of PLTs to use when applying the relocation. Because within_module_init()'s behaviour changes when module unloading is disabled, both architecture would need to take this into account when counting the PLTs. Today neither architecture does this, meaning when module unloading is disabled there are insufficient PLTs in the init section to load some modules, resulting in warnings: | WARNING: CPU: 2 PID: 51 at arch/arm64/kernel/module-plts.c:99 module_emit_plt_entry+0x184/0x1cc | Modules linked in: crct10dif_common | CPU: 2 PID: 51 Comm: modprobe Not tainted 6.5.0-rc4-yocto-standard-dirty #15208 | Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 | pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : module_emit_plt_entry+0x184/0x1cc | lr : module_emit_plt_entry+0x94/0x1cc | sp : ffffffc0803bba60 [...] | Call trace: | module_emit_plt_entry+0x184/0x1cc | apply_relocate_add+0x2bc/0x8e4 | load_module+0xe34/0x1bd4 | init_module_from_file+0x84/0xc0 | __arm64_sys_finit_module+0x1b8/0x27c | invoke_syscall.constprop.0+0x5c/0x104 | do_el0_svc+0x58/0x160 | el0_svc+0x38/0x110 | el0t_64_sync_handler+0xc0/0xc4 | el0t_64_sync+0x190/0x194 Instead of duplicating module_init_layout_section()s logic, expose it. Reported-by: Adam Johnston <adam.johnston@arm.com> Fixes: 055f23b74b20 ("module: check for exit sections in layout_sections() instead of module_init_section()") Cc: stable@vger.kernel.org Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-08-01 14:54:07 +00:00
/* Describes whether within_module_init() will consider this an init section
* or not. This behaviour changes with CONFIG_MODULE_UNLOAD.
*/
bool module_init_layout_section(const char *sname);
2012-09-28 05:01:03 +00:00
/*
* Apply the given relocation to the (simplified) ELF. Return -error
* or 0.
*/
#ifdef CONFIG_MODULES_USE_ELF_REL
int apply_relocate(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *mod);
2012-09-28 05:01:03 +00:00
#else
static inline int apply_relocate(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
printk(KERN_ERR "module %s: REL relocation unsupported\n",
module_name(me));
2012-09-28 05:01:03 +00:00
return -ENOEXEC;
}
#endif
2012-09-28 05:01:03 +00:00
/*
* Apply the given add relocation to the (simplified) ELF. Return
* -error or 0
*/
#ifdef CONFIG_MODULES_USE_ELF_RELA
int apply_relocate_add(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *mod);
livepatch,x86: Clear relocation targets on a module removal Josh reported a bug: When the object to be patched is a module, and that module is rmmod'ed and reloaded, it fails to load with: module: x86/modules: Skipping invalid relocation target, existing value is nonzero for type 2, loc 00000000ba0302e9, val ffffffffa03e293c livepatch: failed to initialize patch 'livepatch_nfsd' for module 'nfsd' (-8) livepatch: patch 'livepatch_nfsd' failed for module 'nfsd', refusing to load module 'nfsd' The livepatch module has a relocation which references a symbol in the _previous_ loading of nfsd. When apply_relocate_add() tries to replace the old relocation with a new one, it sees that the previous one is nonzero and it errors out. He also proposed three different solutions. We could remove the error check in apply_relocate_add() introduced by commit eda9cec4c9a1 ("x86/module: Detect and skip invalid relocations"). However the check is useful for detecting corrupted modules. We could also deny the patched modules to be removed. If it proved to be a major drawback for users, we could still implement a different approach. The solution would also complicate the existing code a lot. We thus decided to reverse the relocation patching (clear all relocation targets on x86_64). The solution is not universal and is too much arch-specific, but it may prove to be simpler in the end. Reported-by: Josh Poimboeuf <jpoimboe@redhat.com> Originally-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Song Liu <song@kernel.org> Acked-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com> Tested-by: Joe Lawrence <joe.lawrence@redhat.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230125185401.279042-2-song@kernel.org
2023-01-25 18:54:01 +00:00
#ifdef CONFIG_LIVEPATCH
/*
* Some architectures (namely x86_64 and ppc64) perform sanity checks when
* applying relocations. If a patched module gets unloaded and then later
* reloaded (and re-patched), klp re-applies relocations to the replacement
* function(s). Any leftover relocations from the previous loading of the
* patched module might trigger the sanity checks.
*
* To prevent that, when unloading a patched module, clear out any relocations
* that might trigger arch-specific sanity checks on a future module reload.
*/
void clear_relocate_add(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me);
#endif
2012-09-28 05:01:03 +00:00
#else
static inline int apply_relocate_add(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
printk(KERN_ERR "module %s: REL relocation unsupported\n",
module_name(me));
2012-09-28 05:01:03 +00:00
return -ENOEXEC;
}
#endif
/* Any final processing of module before access. Return -error or 0. */
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod);
module: prepare to handle ROX allocations for text In order to support ROX allocations for module text, it is necessary to handle modifications to the code, such as relocations and alternatives patching, without write access to that memory. One option is to use text patching, but this would make module loading extremely slow and will expose executable code that is not finally formed. A better way is to have memory allocated with ROX permissions contain invalid instructions and keep a writable, but not executable copy of the module text. The relocations and alternative patches would be done on the writable copy using the addresses of the ROX memory. Once the module is completely ready, the updated text will be copied to ROX memory using text patching in one go and the writable copy will be freed. Add support for that to module initialization code and provide necessary interfaces in execmem. Link: https://lkml.kernel.org/r/20241023162711.2579610-5-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewd-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-23 16:27:07 +00:00
int module_post_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod);
modules: wait do_free_init correctly The synchronization here is to ensure the ordering of freeing of a module init so that it happens before W+X checking. It is worth noting it is not that the freeing was not happening, it is just that our sanity checkers raced against the permission checkers which assume init memory is already gone. Commit 1a7b7d922081 ("modules: Use vmalloc special flag") moved calling do_free_init() into a global workqueue instead of relying on it being called through call_rcu(..., do_free_init), which used to allowed us call do_free_init() asynchronously after the end of a subsequent grace period. The move to a global workqueue broke the gaurantees for code which needed to be sure the do_free_init() would complete with rcu_barrier(). To fix this callers which used to rely on rcu_barrier() must now instead use flush_work(&init_free_wq). Without this fix, we still could encounter false positive reports in W+X checking since the rcu_barrier() here can not ensure the ordering now. Even worse, the rcu_barrier() can introduce significant delay. Eric Chanudet reported that the rcu_barrier introduces ~0.1s delay on a PREEMPT_RT kernel. [ 0.291444] Freeing unused kernel memory: 5568K [ 0.402442] Run /sbin/init as init process With this fix, the above delay can be eliminated. Link: https://lkml.kernel.org/r/20240227023546.2490667-1-changbin.du@huawei.com Fixes: 1a7b7d922081 ("modules: Use vmalloc special flag") Signed-off-by: Changbin Du <changbin.du@huawei.com> Tested-by: Eric Chanudet <echanude@redhat.com> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Xiaoyi Su <suxiaoyi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-27 02:35:46 +00:00
#ifdef CONFIG_MODULES
void flush_module_init_free_work(void);
#else
static inline void flush_module_init_free_work(void)
{
}
#endif
/* Any cleanup needed when module leaves. */
void module_arch_cleanup(struct module *mod);
/* Any cleanup before freeing mod->module_init */
void module_arch_freeing_init(struct module *mod);
#endif