linux-stable/mm/memcontrol-v1.c

2121 lines
52 KiB
C
Raw Normal View History

mm: memcg: introduce memcontrol-v1.c Patch series "mm: memcg: separate legacy cgroup v1 code and put under config option", v2. Cgroups v2 have been around for a while and many users have fully adopted them, so they never use cgroups v1 features and functionality. Yet they have to "pay" for the cgroup v1 support anyway: 1) the kernel binary contains an unused cgroup v1 code, 2) some code paths have additional checks which are not needed, 3) some common structures like task_struct and mem_cgroup contain unused cgroup v1-specific members. Cgroup v1's memory controller has a number of features that are not supported by cgroup v2 and their implementation is pretty much self contained. Most notably, these features are: soft limit reclaim, oom handling in userspace, complicated event notification system, charge migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines in size and it's intervened with generic and cgroup v2-specific code. It's a burden on developers and maintainers. This patchset aims to solve these problems by: 1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file, 2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the mm/memcontrol-v1.h header, 3) introducing the CONFIG_MEMCG_V1 config option, turned off by default, 4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set. If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available for mounting, however no memory-specific control knobs are present. This patch (of 14): This patch introduces the mm/memcontrol-v1.c source file which will be used for all legacy (cgroup v1) memory cgroup code. It also introduces mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and mm/memcontrol-v1.c. As of now, let's compile it if CONFIG_MEMCG is set, similar to mm/memcontrol.c. Later on it can be switched to use a separate config option, so that the legacy code won't be compiled if not required. Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/memcontrol.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/pagewalk.h>
#include <linux/backing-dev.h>
#include <linux/swap_cgroup.h>
#include <linux/eventfd.h>
#include <linux/poll.h>
#include <linux/sort.h>
#include <linux/file.h>
#include <linux/seq_buf.h>
#include "internal.h"
#include "swap.h"
mm: memcg: introduce memcontrol-v1.c Patch series "mm: memcg: separate legacy cgroup v1 code and put under config option", v2. Cgroups v2 have been around for a while and many users have fully adopted them, so they never use cgroups v1 features and functionality. Yet they have to "pay" for the cgroup v1 support anyway: 1) the kernel binary contains an unused cgroup v1 code, 2) some code paths have additional checks which are not needed, 3) some common structures like task_struct and mem_cgroup contain unused cgroup v1-specific members. Cgroup v1's memory controller has a number of features that are not supported by cgroup v2 and their implementation is pretty much self contained. Most notably, these features are: soft limit reclaim, oom handling in userspace, complicated event notification system, charge migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines in size and it's intervened with generic and cgroup v2-specific code. It's a burden on developers and maintainers. This patchset aims to solve these problems by: 1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file, 2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the mm/memcontrol-v1.h header, 3) introducing the CONFIG_MEMCG_V1 config option, turned off by default, 4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set. If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available for mounting, however no memory-specific control knobs are present. This patch (of 14): This patch introduces the mm/memcontrol-v1.c source file which will be used for all legacy (cgroup v1) memory cgroup code. It also introduces mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and mm/memcontrol-v1.c. As of now, let's compile it if CONFIG_MEMCG is set, similar to mm/memcontrol.c. Later on it can be switched to use a separate config option, so that the legacy code won't be compiled if not required. Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
#include "memcontrol-v1.h"
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_node {
struct rb_root rb_root;
struct rb_node *rb_rightmost;
spinlock_t lock;
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
/*
* Maximum loops in mem_cgroup_soft_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
/* for OOM */
struct mem_cgroup_eventfd_list {
struct list_head list;
struct eventfd_ctx *eventfd;
};
/*
* cgroup_event represents events which userspace want to receive.
*/
struct mem_cgroup_event {
/*
* memcg which the event belongs to.
*/
struct mem_cgroup *memcg;
/*
* eventfd to signal userspace about the event.
*/
struct eventfd_ctx *eventfd;
/*
* Each of these stored in a list by the cgroup.
*/
struct list_head list;
/*
* register_event() callback will be used to add new userspace
* waiter for changes related to this event. Use eventfd_signal()
* on eventfd to send notification to userspace.
*/
int (*register_event)(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args);
/*
* unregister_event() callback will be called when userspace closes
* the eventfd or on cgroup removing. This callback must be set,
* if you want provide notification functionality.
*/
void (*unregister_event)(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd);
/*
* All fields below needed to unregister event when
* userspace closes eventfd.
*/
poll_table pt;
wait_queue_head_t *wqh;
wait_queue_entry_t wait;
struct work_struct remove;
};
#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
enum {
RES_USAGE,
RES_LIMIT,
RES_MAX_USAGE,
RES_FAILCNT,
RES_SOFT_LIMIT,
};
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
.name = "memcg_oom_lock",
};
#endif
DEFINE_SPINLOCK(memcg_oom_lock);
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz,
unsigned long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_node *mz_node;
bool rightmost = true;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_node,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess) {
p = &(*p)->rb_left;
rightmost = false;
} else {
p = &(*p)->rb_right;
}
}
if (rightmost)
mctz->rb_rightmost = &mz->tree_node;
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
if (!mz->on_tree)
return;
if (&mz->tree_node == mctz->rb_rightmost)
mctz->rb_rightmost = rb_prev(&mz->tree_node);
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
__mem_cgroup_remove_exceeded(mz, mctz);
spin_unlock_irqrestore(&mctz->lock, flags);
}
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
unsigned long excess = 0;
if (nr_pages > soft_limit)
excess = nr_pages - soft_limit;
return excess;
}
static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
{
unsigned long excess;
struct mem_cgroup_per_node *mz;
struct mem_cgroup_tree_per_node *mctz;
if (lru_gen_enabled()) {
if (soft_limit_excess(memcg))
lru_gen_soft_reclaim(memcg, nid);
return;
}
mctz = soft_limit_tree.rb_tree_per_node[nid];
if (!mctz)
return;
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
mz = memcg->nodeinfo[nid];
excess = soft_limit_excess(memcg);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irqrestore(&mctz->lock, flags);
}
}
}
void memcg1_remove_from_trees(struct mem_cgroup *memcg)
{
struct mem_cgroup_tree_per_node *mctz;
struct mem_cgroup_per_node *mz;
int nid;
for_each_node(nid) {
mz = memcg->nodeinfo[nid];
mctz = soft_limit_tree.rb_tree_per_node[nid];
if (mctz)
mem_cgroup_remove_exceeded(mz, mctz);
}
}
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
retry:
mz = NULL;
if (!mctz->rb_rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(mctz->rb_rightmost,
struct mem_cgroup_per_node, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz, mctz);
if (!soft_limit_excess(mz->memcg) ||
!css_tryget(&mz->memcg->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
spin_lock_irq(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock_irq(&mctz->lock);
return mz;
}
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
pg_data_t *pgdat,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
struct mem_cgroup *victim = NULL;
int total = 0;
int loop = 0;
unsigned long excess;
unsigned long nr_scanned;
struct mem_cgroup_reclaim_cookie reclaim = {
.pgdat = pgdat,
};
excess = soft_limit_excess(root_memcg);
while (1) {
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
if (!victim) {
loop++;
if (loop >= 2) {
/*
* If we have not been able to reclaim
* anything, it might because there are
* no reclaimable pages under this hierarchy
*/
if (!total)
break;
/*
* We want to do more targeted reclaim.
* excess >> 2 is not to excessive so as to
* reclaim too much, nor too less that we keep
* coming back to reclaim from this cgroup
*/
if (total >= (excess >> 2) ||
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
break;
}
continue;
}
total += mem_cgroup_shrink_node(victim, gfp_mask, false,
pgdat, &nr_scanned);
*total_scanned += nr_scanned;
if (!soft_limit_excess(root_memcg))
break;
}
mem_cgroup_iter_break(root_memcg, victim);
return total;
}
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
unsigned long nr_reclaimed = 0;
struct mem_cgroup_per_node *mz, *next_mz = NULL;
unsigned long reclaimed;
int loop = 0;
struct mem_cgroup_tree_per_node *mctz;
unsigned long excess;
if (lru_gen_enabled())
return 0;
if (order > 0)
return 0;
mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
/*
* Do not even bother to check the largest node if the root
* is empty. Do it lockless to prevent lock bouncing. Races
* are acceptable as soft limit is best effort anyway.
*/
if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
return 0;
/*
* This loop can run a while, specially if mem_cgroup's continuously
* keep exceeding their soft limit and putting the system under
* pressure
*/
do {
if (next_mz)
mz = next_mz;
else
mz = mem_cgroup_largest_soft_limit_node(mctz);
if (!mz)
break;
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
gfp_mask, total_scanned);
nr_reclaimed += reclaimed;
spin_lock_irq(&mctz->lock);
/*
* If we failed to reclaim anything from this memory cgroup
* it is time to move on to the next cgroup
*/
next_mz = NULL;
if (!reclaimed)
next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
excess = soft_limit_excess(mz->memcg);
/*
* One school of thought says that we should not add
* back the node to the tree if reclaim returns 0.
* But our reclaim could return 0, simply because due
* to priority we are exposing a smaller subset of
* memory to reclaim from. Consider this as a longer
* term TODO.
*/
/* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irq(&mctz->lock);
css_put(&mz->memcg->css);
loop++;
/*
* Could not reclaim anything and there are no more
* mem cgroups to try or we seem to be looping without
* reclaiming anything.
*/
if (!nr_reclaimed &&
(next_mz == NULL ||
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
break;
} while (!nr_reclaimed);
if (next_mz)
css_put(&next_mz->memcg->css);
return nr_reclaimed;
}
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return 0;
}
#ifdef CONFIG_MMU
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
if (val != 0)
return -EINVAL;
return 0;
}
#else
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
return -ENOSYS;
}
#endif
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
struct mem_cgroup_threshold_ary *t;
unsigned long usage;
int i;
rcu_read_lock();
if (!swap)
t = rcu_dereference(memcg->thresholds.primary);
else
t = rcu_dereference(memcg->memsw_thresholds.primary);
if (!t)
goto unlock;
usage = mem_cgroup_usage(memcg, swap);
/*
* current_threshold points to threshold just below or equal to usage.
* If it's not true, a threshold was crossed after last
* call of __mem_cgroup_threshold().
*/
i = t->current_threshold;
/*
* Iterate backward over array of thresholds starting from
* current_threshold and check if a threshold is crossed.
* If none of thresholds below usage is crossed, we read
* only one element of the array here.
*/
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
eventfd_signal(t->entries[i].eventfd);
/* i = current_threshold + 1 */
i++;
/*
* Iterate forward over array of thresholds starting from
* current_threshold+1 and check if a threshold is crossed.
* If none of thresholds above usage is crossed, we read
* only one element of the array here.
*/
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
eventfd_signal(t->entries[i].eventfd);
/* Update current_threshold */
t->current_threshold = i - 1;
unlock:
rcu_read_unlock();
}
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
while (memcg) {
__mem_cgroup_threshold(memcg, false);
if (do_memsw_account())
__mem_cgroup_threshold(memcg, true);
memcg = parent_mem_cgroup(memcg);
}
}
/* Cgroup1: threshold notifications & softlimit tree updates */
struct memcg1_events_percpu {
unsigned long nr_page_events;
unsigned long targets[MEM_CGROUP_NTARGETS];
};
static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
{
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__count_memcg_events(memcg, PGPGIN, 1);
else {
__count_memcg_events(memcg, PGPGOUT, 1);
nr_pages = -nr_pages; /* for event */
}
__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
}
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
enum mem_cgroup_events_target target)
{
unsigned long val, next;
val = __this_cpu_read(memcg->events_percpu->nr_page_events);
next = __this_cpu_read(memcg->events_percpu->targets[target]);
/* from time_after() in jiffies.h */
if ((long)(next - val) < 0) {
switch (target) {
case MEM_CGROUP_TARGET_THRESH:
next = val + THRESHOLDS_EVENTS_TARGET;
break;
case MEM_CGROUP_TARGET_SOFTLIMIT:
next = val + SOFTLIMIT_EVENTS_TARGET;
break;
default:
break;
}
__this_cpu_write(memcg->events_percpu->targets[target], next);
return true;
}
return false;
}
/*
* Check events in order.
*
*/
static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
{
if (IS_ENABLED(CONFIG_PREEMPT_RT))
return;
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(memcg1_event_ratelimit(memcg,
MEM_CGROUP_TARGET_THRESH))) {
bool do_softlimit;
do_softlimit = memcg1_event_ratelimit(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT);
mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit))
memcg1_update_tree(memcg, nid);
}
}
void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
{
unsigned long flags;
local_irq_save(flags);
memcg1_charge_statistics(memcg, folio_nr_pages(folio));
memcg1_check_events(memcg, folio_nid(folio));
local_irq_restore(flags);
}
void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
{
/*
* Interrupts should be disabled here because the caller holds the
* i_pages lock which is taken with interrupts-off. It is
* important here to have the interrupts disabled because it is the
* only synchronisation we have for updating the per-CPU variables.
*/
preempt_disable_nested();
VM_WARN_ON_IRQS_ENABLED();
memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
preempt_enable_nested();
memcg1_check_events(memcg, folio_nid(folio));
}
void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
unsigned long nr_memory, int nid)
{
unsigned long flags;
local_irq_save(flags);
__count_memcg_events(memcg, PGPGOUT, pgpgout);
__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
memcg1_check_events(memcg, nid);
local_irq_restore(flags);
}
static int compare_thresholds(const void *a, const void *b)
{
const struct mem_cgroup_threshold *_a = a;
const struct mem_cgroup_threshold *_b = b;
if (_a->threshold > _b->threshold)
return 1;
if (_a->threshold < _b->threshold)
return -1;
return 0;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
{
struct mem_cgroup_eventfd_list *ev;
spin_lock(&memcg_oom_lock);
list_for_each_entry(ev, &memcg->oom_notify, list)
eventfd_signal(ev->eventfd);
spin_unlock(&memcg_oom_lock);
return 0;
}
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_oom_notify_cb(iter);
}
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args, enum res_type type)
{
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
unsigned long threshold;
unsigned long usage;
int i, size, ret;
ret = page_counter_memparse(args, "-1", &threshold);
if (ret)
return ret;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM) {
thresholds = &memcg->thresholds;
usage = mem_cgroup_usage(memcg, false);
} else if (type == _MEMSWAP) {
thresholds = &memcg->memsw_thresholds;
usage = mem_cgroup_usage(memcg, true);
} else
BUG();
/* Check if a threshold crossed before adding a new one */
if (thresholds->primary)
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
/* Allocate memory for new array of thresholds */
new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto unlock;
}
new->size = size;
/* Copy thresholds (if any) to new array */
if (thresholds->primary)
memcpy(new->entries, thresholds->primary->entries,
flex_array_size(new, entries, size - 1));
/* Add new threshold */
new->entries[size - 1].eventfd = eventfd;
new->entries[size - 1].threshold = threshold;
/* Sort thresholds. Registering of new threshold isn't time-critical */
sort(new->entries, size, sizeof(*new->entries),
compare_thresholds, NULL);
/* Find current threshold */
new->current_threshold = -1;
for (i = 0; i < size; i++) {
if (new->entries[i].threshold <= usage) {
/*
* new->current_threshold will not be used until
* rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
} else
break;
}
/* Free old spare buffer and save old primary buffer as spare */
kfree(thresholds->spare);
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
unlock:
mutex_unlock(&memcg->thresholds_lock);
return ret;
}
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
}
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
}
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, enum res_type type)
{
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
unsigned long usage;
int i, j, size, entries;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM) {
thresholds = &memcg->thresholds;
usage = mem_cgroup_usage(memcg, false);
} else if (type == _MEMSWAP) {
thresholds = &memcg->memsw_thresholds;
usage = mem_cgroup_usage(memcg, true);
} else
BUG();
if (!thresholds->primary)
goto unlock;
/* Check if a threshold crossed before removing */
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
/* Calculate new number of threshold */
size = entries = 0;
for (i = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd != eventfd)
size++;
else
entries++;
}
new = thresholds->spare;
/* If no items related to eventfd have been cleared, nothing to do */
if (!entries)
goto unlock;
/* Set thresholds array to NULL if we don't have thresholds */
if (!size) {
kfree(new);
new = NULL;
goto swap_buffers;
}
new->size = size;
/* Copy thresholds and find current threshold */
new->current_threshold = -1;
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd == eventfd)
continue;
new->entries[j] = thresholds->primary->entries[i];
if (new->entries[j].threshold <= usage) {
/*
* new->current_threshold will not be used
* until rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
j++;
}
swap_buffers:
/* Swap primary and spare array */
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
/* If all events are unregistered, free the spare array */
if (!new) {
kfree(thresholds->spare);
thresholds->spare = NULL;
}
unlock:
mutex_unlock(&memcg->thresholds_lock);
}
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
}
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
}
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup_eventfd_list *event;
event = kmalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
spin_lock(&memcg_oom_lock);
event->eventfd = eventfd;
list_add(&event->list, &memcg->oom_notify);
/* already in OOM ? */
if (memcg->under_oom)
eventfd_signal(eventfd);
spin_unlock(&memcg_oom_lock);
return 0;
}
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
struct mem_cgroup_eventfd_list *ev, *tmp;
spin_lock(&memcg_oom_lock);
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
if (ev->eventfd == eventfd) {
list_del(&ev->list);
kfree(ev);
}
}
spin_unlock(&memcg_oom_lock);
}
/*
* DO NOT USE IN NEW FILES.
*
* "cgroup.event_control" implementation.
*
* This is way over-engineered. It tries to support fully configurable
* events for each user. Such level of flexibility is completely
* unnecessary especially in the light of the planned unified hierarchy.
*
* Please deprecate this and replace with something simpler if at all
* possible.
*/
/*
* Unregister event and free resources.
*
* Gets called from workqueue.
*/
static void memcg_event_remove(struct work_struct *work)
{
struct mem_cgroup_event *event =
container_of(work, struct mem_cgroup_event, remove);
struct mem_cgroup *memcg = event->memcg;
remove_wait_queue(event->wqh, &event->wait);
event->unregister_event(memcg, event->eventfd);
/* Notify userspace the event is going away. */
eventfd_signal(event->eventfd);
eventfd_ctx_put(event->eventfd);
kfree(event);
css_put(&memcg->css);
}
/*
* Gets called on EPOLLHUP on eventfd when user closes it.
*
* Called with wqh->lock held and interrupts disabled.
*/
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
int sync, void *key)
{
struct mem_cgroup_event *event =
container_of(wait, struct mem_cgroup_event, wait);
struct mem_cgroup *memcg = event->memcg;
__poll_t flags = key_to_poll(key);
if (flags & EPOLLHUP) {
/*
* If the event has been detached at cgroup removal, we
* can simply return knowing the other side will cleanup
* for us.
*
* We can't race against event freeing since the other
* side will require wqh->lock via remove_wait_queue(),
* which we hold.
*/
spin_lock(&memcg->event_list_lock);
if (!list_empty(&event->list)) {
list_del_init(&event->list);
/*
* We are in atomic context, but cgroup_event_remove()
* may sleep, so we have to call it in workqueue.
*/
schedule_work(&event->remove);
}
spin_unlock(&memcg->event_list_lock);
}
return 0;
}
static void memcg_event_ptable_queue_proc(struct file *file,
wait_queue_head_t *wqh, poll_table *pt)
{
struct mem_cgroup_event *event =
container_of(pt, struct mem_cgroup_event, pt);
event->wqh = wqh;
add_wait_queue(wqh, &event->wait);
}
/*
* DO NOT USE IN NEW FILES.
*
* Parse input and register new cgroup event handler.
*
* Input must be in format '<event_fd> <control_fd> <args>'.
* Interpretation of args is defined by control file implementation.
*/
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup_subsys_state *css = of_css(of);
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct mem_cgroup_event *event;
struct cgroup_subsys_state *cfile_css;
unsigned int efd, cfd;
struct dentry *cdentry;
const char *name;
char *endp;
int ret;
if (IS_ENABLED(CONFIG_PREEMPT_RT))
return -EOPNOTSUPP;
buf = strstrip(buf);
efd = simple_strtoul(buf, &endp, 10);
if (*endp != ' ')
return -EINVAL;
buf = endp + 1;
cfd = simple_strtoul(buf, &endp, 10);
if (*endp == '\0')
buf = endp;
else if (*endp == ' ')
buf = endp + 1;
else
return -EINVAL;
CLASS(fd, efile)(efd);
if (fd_empty(efile))
return -EBADF;
CLASS(fd, cfile)(cfd);
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
event->memcg = memcg;
INIT_LIST_HEAD(&event->list);
init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
init_waitqueue_func_entry(&event->wait, memcg_event_wake);
INIT_WORK(&event->remove, memcg_event_remove);
event->eventfd = eventfd_ctx_fileget(fd_file(efile));
if (IS_ERR(event->eventfd)) {
ret = PTR_ERR(event->eventfd);
goto out_kfree;
}
if (fd_empty(cfile)) {
ret = -EBADF;
goto out_put_eventfd;
}
/* the process need read permission on control file */
/* AV: shouldn't we check that it's been opened for read instead? */
ret = file_permission(fd_file(cfile), MAY_READ);
if (ret < 0)
goto out_put_eventfd;
/*
* The control file must be a regular cgroup1 file. As a regular cgroup
* file can't be renamed, it's safe to access its name afterwards.
*/
cdentry = fd_file(cfile)->f_path.dentry;
if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
ret = -EINVAL;
goto out_put_eventfd;
}
/*
* Determine the event callbacks and set them in @event. This used
* to be done via struct cftype but cgroup core no longer knows
* about these events. The following is crude but the whole thing
* is for compatibility anyway.
*
* DO NOT ADD NEW FILES.
*/
name = cdentry->d_name.name;
if (!strcmp(name, "memory.usage_in_bytes")) {
event->register_event = mem_cgroup_usage_register_event;
event->unregister_event = mem_cgroup_usage_unregister_event;
} else if (!strcmp(name, "memory.oom_control")) {
pr_warn_once("oom_control is deprecated and will be removed. "
"Please report your usecase to linux-mm-@kvack.org"
" if you depend on this functionality. \n");
event->register_event = mem_cgroup_oom_register_event;
event->unregister_event = mem_cgroup_oom_unregister_event;
} else if (!strcmp(name, "memory.pressure_level")) {
pr_warn_once("pressure_level is deprecated and will be removed. "
"Please report your usecase to linux-mm-@kvack.org "
"if you depend on this functionality. \n");
event->register_event = vmpressure_register_event;
event->unregister_event = vmpressure_unregister_event;
} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
event->register_event = memsw_cgroup_usage_register_event;
event->unregister_event = memsw_cgroup_usage_unregister_event;
} else {
ret = -EINVAL;
goto out_put_eventfd;
}
/*
* Verify @cfile should belong to @css. Also, remaining events are
* automatically removed on cgroup destruction but the removal is
* asynchronous, so take an extra ref on @css.
*/
cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
&memory_cgrp_subsys);
ret = -EINVAL;
if (IS_ERR(cfile_css))
goto out_put_eventfd;
if (cfile_css != css)
goto out_put_css;
ret = event->register_event(memcg, event->eventfd, buf);
if (ret)
goto out_put_css;
vfs_poll(fd_file(efile), &event->pt);
spin_lock_irq(&memcg->event_list_lock);
list_add(&event->list, &memcg->event_list);
spin_unlock_irq(&memcg->event_list_lock);
return nbytes;
out_put_css:
css_put(cfile_css);
out_put_eventfd:
eventfd_ctx_put(event->eventfd);
out_kfree:
kfree(event);
return ret;
}
void memcg1_memcg_init(struct mem_cgroup *memcg)
{
INIT_LIST_HEAD(&memcg->oom_notify);
mutex_init(&memcg->thresholds_lock);
INIT_LIST_HEAD(&memcg->event_list);
spin_lock_init(&memcg->event_list_lock);
}
void memcg1_css_offline(struct mem_cgroup *memcg)
{
struct mem_cgroup_event *event, *tmp;
/*
* Unregister events and notify userspace.
* Notify userspace about cgroup removing only after rmdir of cgroup
* directory to avoid race between userspace and kernelspace.
*/
spin_lock_irq(&memcg->event_list_lock);
list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
list_del_init(&event->list);
schedule_work(&event->remove);
}
spin_unlock_irq(&memcg->event_list_lock);
}
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
*/
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg) {
if (iter->oom_lock) {
/*
* this subtree of our hierarchy is already locked
* so we cannot give a lock.
*/
failed = iter;
mem_cgroup_iter_break(memcg, iter);
break;
} else
iter->oom_lock = true;
}
if (failed) {
/*
* OK, we failed to lock the whole subtree so we have
* to clean up what we set up to the failing subtree
*/
for_each_mem_cgroup_tree(iter, memcg) {
if (iter == failed) {
mem_cgroup_iter_break(memcg, iter);
break;
}
iter->oom_lock = false;
}
} else
mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
spin_unlock(&memcg_oom_lock);
return !failed;
}
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
spin_unlock(&memcg_oom_lock);
}
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
iter->under_oom++;
spin_unlock(&memcg_oom_lock);
}
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
/*
* Be careful about under_oom underflows because a child memcg
* could have been added after mem_cgroup_mark_under_oom.
*/
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
if (iter->under_oom > 0)
iter->under_oom--;
spin_unlock(&memcg_oom_lock);
}
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
struct oom_wait_info {
struct mem_cgroup *memcg;
wait_queue_entry_t wait;
};
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
unsigned mode, int sync, void *arg)
{
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
struct mem_cgroup *oom_wait_memcg;
struct oom_wait_info *oom_wait_info;
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
oom_wait_memcg = oom_wait_info->memcg;
if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
!mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
return 0;
return autoremove_wake_function(wait, mode, sync, arg);
}
void memcg1_oom_recover(struct mem_cgroup *memcg)
{
/*
* For the following lockless ->under_oom test, the only required
* guarantee is that it must see the state asserted by an OOM when
* this function is called as a result of userland actions
* triggered by the notification of the OOM. This is trivially
* achieved by invoking mem_cgroup_mark_under_oom() before
* triggering notification.
*/
if (memcg && memcg->under_oom)
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
/**
* mem_cgroup_oom_synchronize - complete memcg OOM handling
* @handle: actually kill/wait or just clean up the OOM state
*
* This has to be called at the end of a page fault if the memcg OOM
* handler was enabled.
*
* Memcg supports userspace OOM handling where failed allocations must
* sleep on a waitqueue until the userspace task resolves the
* situation. Sleeping directly in the charge context with all kinds
* of locks held is not a good idea, instead we remember an OOM state
* in the task and mem_cgroup_oom_synchronize() has to be called at
* the end of the page fault to complete the OOM handling.
*
* Returns %true if an ongoing memcg OOM situation was detected and
* completed, %false otherwise.
*/
bool mem_cgroup_oom_synchronize(bool handle)
{
struct mem_cgroup *memcg = current->memcg_in_oom;
struct oom_wait_info owait;
bool locked;
/* OOM is global, do not handle */
if (!memcg)
return false;
if (!handle)
goto cleanup;
owait.memcg = memcg;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.entry);
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
mem_cgroup_mark_under_oom(memcg);
locked = mem_cgroup_oom_trylock(memcg);
if (locked)
mem_cgroup_oom_notify(memcg);
schedule();
mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
if (locked)
mem_cgroup_oom_unlock(memcg);
cleanup:
current->memcg_in_oom = NULL;
css_put(&memcg->css);
return true;
}
bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
{
/*
* We are in the middle of the charge context here, so we
* don't want to block when potentially sitting on a callstack
* that holds all kinds of filesystem and mm locks.
*
* cgroup1 allows disabling the OOM killer and waiting for outside
* handling until the charge can succeed; remember the context and put
* the task to sleep at the end of the page fault when all locks are
* released.
*
* On the other hand, in-kernel OOM killer allows for an async victim
* memory reclaim (oom_reaper) and that means that we are not solely
* relying on the oom victim to make a forward progress and we can
* invoke the oom killer here.
*
* Please note that mem_cgroup_out_of_memory might fail to find a
* victim and then we have to bail out from the charge path.
*/
if (READ_ONCE(memcg->oom_kill_disable)) {
if (current->in_user_fault) {
css_get(&memcg->css);
current->memcg_in_oom = memcg;
}
return false;
}
mem_cgroup_mark_under_oom(memcg);
*locked = mem_cgroup_oom_trylock(memcg);
if (*locked)
mem_cgroup_oom_notify(memcg);
mem_cgroup_unmark_under_oom(memcg);
return true;
}
void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
{
if (locked)
mem_cgroup_oom_unlock(memcg);
}
static DEFINE_MUTEX(memcg_max_mutex);
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
unsigned long max, bool memsw)
{
bool enlarge = false;
bool drained = false;
int ret;
bool limits_invariant;
struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
do {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
mutex_lock(&memcg_max_mutex);
/*
* Make sure that the new limit (memsw or memory limit) doesn't
* break our basic invariant rule memory.max <= memsw.max.
*/
limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
max <= memcg->memsw.max;
if (!limits_invariant) {
mutex_unlock(&memcg_max_mutex);
ret = -EINVAL;
break;
}
if (max > counter->max)
enlarge = true;
ret = page_counter_set_max(counter, max);
mutex_unlock(&memcg_max_mutex);
if (!ret)
break;
if (!drained) {
drain_all_stock(memcg);
drained = true;
continue;
}
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
mm: add swappiness= arg to memory.reclaim Allow proactive reclaimers to submit an additional swappiness=<val> argument to memory.reclaim. This overrides the global or per-memcg swappiness setting for that reclaim attempt. For example: echo "2M swappiness=0" > /sys/fs/cgroup/memory.reclaim will perform reclaim on the rootcg with a swappiness setting of 0 (no swap) regardless of the vm.swappiness sysctl setting. Userspace proactive reclaimers use the memory.reclaim interface to trigger reclaim. The memory.reclaim interface does not allow for any way to effect the balance of file vs anon during proactive reclaim. The only approach is to adjust the vm.swappiness setting. However, there are a few reasons we look to control the balance of file vs anon during proactive reclaim, separately from reactive reclaim: * Swapout should be limited to manage SSD write endurance. In near-OOM situations we are fine with lots of swap-out to avoid OOMs. As these are typically rare events, they have relatively little impact on write endurance. However, proactive reclaim runs continuously and so its impact on SSD write endurance is more significant. Therefore it is desireable to control swap-out for proactive reclaim separately from reactive reclaim * Some userspace OOM killers like systemd-oomd[1] support OOM killing on swap exhaustion. This makes sense if the swap exhaustion is triggered due to reactive reclaim but less so if it is triggered due to proactive reclaim (e.g. one could see OOMs when free memory is ample but anon is just particularly cold). Therefore, it's desireable to have proactive reclaim reduce or stop swap-out before the threshold at which OOM killing occurs. In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness before writes to memory.reclaim[2]. This has been in production for nearly two years and has addressed our needs to control proactive vs reactive reclaim behavior but is still not ideal for a number of reasons: * vm.swappiness is a global setting, adjusting it can race/interfere with other system administration that wishes to control vm.swappiness. In our case, we need to disable Senpai before adjusting vm.swappiness. * vm.swappiness is stateful - so a crash or restart of Senpai can leave a misconfigured setting. This requires some additional management to record the "desired" setting and ensure Senpai always adjusts to it. With this patch, we avoid these downsides of adjusting vm.swappiness globally. [1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html [2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598 Link: https://lkml.kernel.org/r/20240103164841.2800183-3-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Chris Li <chrisl@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Yue Zhao <findns94@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-03 16:48:37 +00:00
memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
ret = -EBUSY;
break;
}
} while (true);
if (!ret && enlarge)
memcg1_oom_recover(memcg);
return ret;
}
/*
* Reclaims as many pages from the given memcg as possible.
*
* Caller is responsible for holding css reference for memcg.
*/
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
int nr_retries = MAX_RECLAIM_RETRIES;
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
drain_all_stock(memcg);
/* try to free all pages in this cgroup */
while (nr_retries && page_counter_read(&memcg->memory)) {
if (signal_pending(current))
return -EINTR;
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
mm: add swappiness= arg to memory.reclaim Allow proactive reclaimers to submit an additional swappiness=<val> argument to memory.reclaim. This overrides the global or per-memcg swappiness setting for that reclaim attempt. For example: echo "2M swappiness=0" > /sys/fs/cgroup/memory.reclaim will perform reclaim on the rootcg with a swappiness setting of 0 (no swap) regardless of the vm.swappiness sysctl setting. Userspace proactive reclaimers use the memory.reclaim interface to trigger reclaim. The memory.reclaim interface does not allow for any way to effect the balance of file vs anon during proactive reclaim. The only approach is to adjust the vm.swappiness setting. However, there are a few reasons we look to control the balance of file vs anon during proactive reclaim, separately from reactive reclaim: * Swapout should be limited to manage SSD write endurance. In near-OOM situations we are fine with lots of swap-out to avoid OOMs. As these are typically rare events, they have relatively little impact on write endurance. However, proactive reclaim runs continuously and so its impact on SSD write endurance is more significant. Therefore it is desireable to control swap-out for proactive reclaim separately from reactive reclaim * Some userspace OOM killers like systemd-oomd[1] support OOM killing on swap exhaustion. This makes sense if the swap exhaustion is triggered due to reactive reclaim but less so if it is triggered due to proactive reclaim (e.g. one could see OOMs when free memory is ample but anon is just particularly cold). Therefore, it's desireable to have proactive reclaim reduce or stop swap-out before the threshold at which OOM killing occurs. In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness before writes to memory.reclaim[2]. This has been in production for nearly two years and has addressed our needs to control proactive vs reactive reclaim behavior but is still not ideal for a number of reasons: * vm.swappiness is a global setting, adjusting it can race/interfere with other system administration that wishes to control vm.swappiness. In our case, we need to disable Senpai before adjusting vm.swappiness. * vm.swappiness is stateful - so a crash or restart of Senpai can leave a misconfigured setting. This requires some additional management to record the "desired" setting and ensure Senpai always adjusts to it. With this patch, we avoid these downsides of adjusting vm.swappiness globally. [1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html [2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598 Link: https://lkml.kernel.org/r/20240103164841.2800183-3-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Chris Li <chrisl@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Yue Zhao <findns94@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-03 16:48:37 +00:00
MEMCG_RECLAIM_MAY_SWAP, NULL))
nr_retries--;
}
return 0;
}
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
if (mem_cgroup_is_root(memcg))
return -EINVAL;
return mem_cgroup_force_empty(memcg) ?: nbytes;
}
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return 1;
}
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val == 1)
return 0;
pr_warn_once("Non-hierarchical mode is deprecated. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
return -EINVAL;
}
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct page_counter *counter;
switch (MEMFILE_TYPE(cft->private)) {
case _MEM:
counter = &memcg->memory;
break;
case _MEMSWAP:
counter = &memcg->memsw;
break;
case _KMEM:
counter = &memcg->kmem;
break;
case _TCP:
counter = &memcg->tcpmem;
break;
default:
BUG();
}
switch (MEMFILE_ATTR(cft->private)) {
case RES_USAGE:
if (counter == &memcg->memory)
return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
if (counter == &memcg->memsw)
return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
return (u64)page_counter_read(counter) * PAGE_SIZE;
case RES_LIMIT:
return (u64)counter->max * PAGE_SIZE;
case RES_MAX_USAGE:
return (u64)counter->watermark * PAGE_SIZE;
case RES_FAILCNT:
return counter->failcnt;
case RES_SOFT_LIMIT:
return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
default:
BUG();
}
}
/*
* This function doesn't do anything useful. Its only job is to provide a read
* handler for a file so that cgroup_file_mode() will add read permissions.
*/
static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
__always_unused void *v)
{
return -EINVAL;
}
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
{
int ret;
mutex_lock(&memcg_max_mutex);
ret = page_counter_set_max(&memcg->tcpmem, max);
if (ret)
goto out;
if (!memcg->tcpmem_active) {
/*
* The active flag needs to be written after the static_key
* update. This is what guarantees that the socket activation
* function is the last one to run. See mem_cgroup_sk_alloc()
* for details, and note that we don't mark any socket as
* belonging to this memcg until that flag is up.
*
* We need to do this, because static_keys will span multiple
* sites, but we can't control their order. If we mark a socket
* as accounted, but the accounting functions are not patched in
* yet, we'll lose accounting.
*
* We never race with the readers in mem_cgroup_sk_alloc(),
* because when this value change, the code to process it is not
* patched in yet.
*/
static_branch_inc(&memcg_sockets_enabled_key);
memcg->tcpmem_active = true;
}
out:
mutex_unlock(&memcg_max_mutex);
return ret;
}
/*
* The user of this function is...
* RES_LIMIT.
*/
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long nr_pages;
int ret;
buf = strstrip(buf);
ret = page_counter_memparse(buf, "-1", &nr_pages);
if (ret)
return ret;
switch (MEMFILE_ATTR(of_cft(of)->private)) {
case RES_LIMIT:
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
ret = -EINVAL;
break;
}
switch (MEMFILE_TYPE(of_cft(of)->private)) {
case _MEM:
ret = mem_cgroup_resize_max(memcg, nr_pages, false);
break;
case _MEMSWAP:
ret = mem_cgroup_resize_max(memcg, nr_pages, true);
break;
case _KMEM:
pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
"Writing any value to this file has no effect. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
ret = 0;
break;
case _TCP:
memcg: initiate deprecation of v1 tcp accounting Patch series "memcg: initiate deprecation of v1 features", v2. Start the deprecation process of the memcg v1 features which we discussed during LSFMMBPF 2024 [1]. For now add the warnings to collect the information on how the current users are using these features. Next we will work on providing better alternatives in v2 (if needed) and fully deprecate these features. Link: https://lwn.net/Articles/974575 [1] This patch (of 4): Memcg v1 provides opt-in TCP memory accounting feature. However it is mostly unused due to its performance impact on the network traffic. In v2, the TCP memory is accounted in the regular memory usage and is transparent to the users but they can observe the TCP memory usage through memcg stats. Let's initiate the deprecation process of memcg v1's tcp accounting functionality and add warnings to gather if there are any users and if there are, collect how they are using it and plan to provide them better alternative in v2. Link: https://lkml.kernel.org/r/20240814220021.3208384-1-shakeel.butt@linux.dev Link: https://lkml.kernel.org/r/20240814220021.3208384-2-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: T.J. Mercier <tjmercier@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-14 22:00:18 +00:00
pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
ret = memcg_update_tcp_max(memcg, nr_pages);
break;
}
break;
case RES_SOFT_LIMIT:
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
ret = -EOPNOTSUPP;
} else {
pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
WRITE_ONCE(memcg->soft_limit, nr_pages);
ret = 0;
}
break;
}
return ret ?: nbytes;
}
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
struct page_counter *counter;
switch (MEMFILE_TYPE(of_cft(of)->private)) {
case _MEM:
counter = &memcg->memory;
break;
case _MEMSWAP:
counter = &memcg->memsw;
break;
case _KMEM:
counter = &memcg->kmem;
break;
case _TCP:
counter = &memcg->tcpmem;
break;
default:
BUG();
}
switch (MEMFILE_ATTR(of_cft(of)->private)) {
case RES_MAX_USAGE:
page_counter_reset_watermark(counter);
break;
case RES_FAILCNT:
counter->failcnt = 0;
break;
default:
BUG();
}
return nbytes;
}
#ifdef CONFIG_NUMA
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
int nid, unsigned int lru_mask, bool tree)
{
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
unsigned long nr = 0;
enum lru_list lru;
VM_BUG_ON((unsigned)nid >= nr_node_ids);
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
if (tree)
nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
else
nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
}
return nr;
}
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
unsigned int lru_mask,
bool tree)
{
unsigned long nr = 0;
enum lru_list lru;
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
if (tree)
nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
else
nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
}
return nr;
}
static int memcg_numa_stat_show(struct seq_file *m, void *v)
{
struct numa_stat {
const char *name;
unsigned int lru_mask;
};
static const struct numa_stat stats[] = {
{ "total", LRU_ALL },
{ "file", LRU_ALL_FILE },
{ "anon", LRU_ALL_ANON },
{ "unevictable", BIT(LRU_UNEVICTABLE) },
};
const struct numa_stat *stat;
int nid;
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
mem_cgroup_flush_stats(memcg);
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
seq_printf(m, "%s=%lu", stat->name,
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
false));
for_each_node_state(nid, N_MEMORY)
seq_printf(m, " N%d=%lu", nid,
mem_cgroup_node_nr_lru_pages(memcg, nid,
stat->lru_mask, false));
seq_putc(m, '\n');
}
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
seq_printf(m, "hierarchical_%s=%lu", stat->name,
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
true));
for_each_node_state(nid, N_MEMORY)
seq_printf(m, " N%d=%lu", nid,
mem_cgroup_node_nr_lru_pages(memcg, nid,
stat->lru_mask, true));
seq_putc(m, '\n');
}
return 0;
}
#endif /* CONFIG_NUMA */
static const unsigned int memcg1_stats[] = {
NR_FILE_PAGES,
NR_ANON_MAPPED,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
NR_ANON_THPS,
#endif
NR_SHMEM,
NR_FILE_MAPPED,
NR_FILE_DIRTY,
NR_WRITEBACK,
WORKINGSET_REFAULT_ANON,
WORKINGSET_REFAULT_FILE,
#ifdef CONFIG_SWAP
MEMCG_SWAP,
NR_SWAPCACHE,
#endif
};
static const char *const memcg1_stat_names[] = {
"cache",
"rss",
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
"rss_huge",
#endif
"shmem",
"mapped_file",
"dirty",
"writeback",
"workingset_refault_anon",
"workingset_refault_file",
#ifdef CONFIG_SWAP
"swap",
"swapcached",
#endif
};
/* Universal VM events cgroup1 shows, original sort order */
static const unsigned int memcg1_events[] = {
PGPGIN,
PGPGOUT,
PGFAULT,
PGMAJFAULT,
};
void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
{
unsigned long memory, memsw;
struct mem_cgroup *mi;
unsigned int i;
BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
mem_cgroup_flush_stats(memcg);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
unsigned long nr;
nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
memcg_events_local(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
memcg_page_state_local(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
/* Hierarchical information */
memory = memsw = PAGE_COUNTER_MAX;
for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
memory = min(memory, READ_ONCE(mi->memory.max));
memsw = min(memsw, READ_ONCE(mi->memsw.max));
}
seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
(u64)memory * PAGE_SIZE);
seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
(u64)memsw * PAGE_SIZE);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
unsigned long nr;
nr = memcg_page_state_output(memcg, memcg1_stats[i]);
seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
(u64)nr);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
seq_buf_printf(s, "total_%s %llu\n",
vm_event_name(memcg1_events[i]),
(u64)memcg_events(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
#ifdef CONFIG_DEBUG_VM
{
pg_data_t *pgdat;
struct mem_cgroup_per_node *mz;
unsigned long anon_cost = 0;
unsigned long file_cost = 0;
for_each_online_pgdat(pgdat) {
mz = memcg->nodeinfo[pgdat->node_id];
anon_cost += mz->lruvec.anon_cost;
file_cost += mz->lruvec.file_cost;
}
seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
seq_buf_printf(s, "file_cost %lu\n", file_cost);
}
#endif
}
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
return mem_cgroup_swappiness(memcg);
}
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
mm: add defines for min/max swappiness Patch series "Add swappiness argument to memory.reclaim", v6. This patch proposes augmenting the memory.reclaim interface with a swappiness=<val> argument that overrides the swappiness value for that instance of proactive reclaim. Userspace proactive reclaimers use the memory.reclaim interface to trigger reclaim. The memory.reclaim interface does not allow for any way to effect the balance of file vs anon during proactive reclaim. The only approach is to adjust the vm.swappiness setting. However, there are a few reasons we look to control the balance of file vs anon during proactive reclaim, separately from reactive reclaim: * Swapout should be limited to manage SSD write endurance. In near-OOM situations we are fine with lots of swap-out to avoid OOMs. As these are typically rare events, they have relatively little impact on write endurance. However, proactive reclaim runs continuously and so its impact on SSD write endurance is more significant. Therefore it is desireable to control swap-out for proactive reclaim separately from reactive reclaim * Some userspace OOM killers like systemd-oomd[1] support OOM killing on swap exhaustion. This makes sense if the swap exhaustion is triggered due to reactive reclaim but less so if it is triggered due to proactive reclaim (e.g. one could see OOMs when free memory is ample but anon is just particularly cold). Therefore, it's desireable to have proactive reclaim reduce or stop swap-out before the threshold at which OOM killing occurs. In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness before writes to memory.reclaim[2]. This has been in production for nearly two years and has addressed our needs to control proactive vs reactive reclaim behavior but is still not ideal for a number of reasons: * vm.swappiness is a global setting, adjusting it can race/interfere with other system administration that wishes to control vm.swappiness. In our case, we need to disable Senpai before adjusting vm.swappiness. * vm.swappiness is stateful - so a crash or restart of Senpai can leave a misconfigured setting. This requires some additional management to record the "desired" setting and ensure Senpai always adjusts to it. With this patch, we avoid these downsides of adjusting vm.swappiness globally. Previously, this exact interface addition was proposed by Yosry[3]. In response, Roman proposed instead an interface to specify precise file/anon/slab reclaim amounts[4]. More recently Huan also proposed this as well[5] and others similarly questioned if this was the proper interface. Previous proposals sought to use this to allow proactive reclaimers to effectively perform a custom reclaim algorithm by issuing proactive reclaim with different settings to control file vs anon reclaim (e.g. to only reclaim anon from some applications). Responses argued that adjusting swappiness is a poor interface for custom reclaim. In contrast, I argue in favor of a swappiness setting not as a way to implement custom reclaim algorithms but rather to bias the balance of anon vs file due to differences of proactive vs reactive reclaim. In this context, swappiness is the existing interface for controlling this balance and this patch simply allows for it to be configured differently for proactive vs reactive reclaim. Specifying explicit amounts of anon vs file pages to reclaim feels inappropriate for this prupose. Proactive reclaimers are un-aware of the relative age of file vs anon for a cgroup which makes it difficult to manage proactive reclaim of different memory pools. A proactive reclaimer would need some amount of anon reclaim attempts separate from the amount of file reclaim attempts which seems brittle given that it's difficult to observe the impact. [1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html [2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598 [3]https://lore.kernel.org/linux-mm/CAJD7tkbDpyoODveCsnaqBBMZEkDvshXJmNdbk51yKSNgD7aGdg@mail.gmail.com/ [4]https://lore.kernel.org/linux-mm/YoPHtHXzpK51F%2F1Z@carbon/ [5]https://lore.kernel.org/lkml/20231108065818.19932-1-link@vivo.com/ This patch (of 2): We use the constants 0 and 200 in a few places in the mm code when referring to the min and max swappiness. This patch adds MIN_SWAPPINESS and MAX_SWAPPINESS #defines to improve clarity. There are no functional changes. Link: https://lkml.kernel.org/r/20240103164841.2800183-1-schatzberg.dan@gmail.com Link: https://lkml.kernel.org/r/20240103164841.2800183-2-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Chris Li <chrisl@kernel.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Yue Zhao <findns94@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-03 16:48:36 +00:00
if (val > MAX_SWAPPINESS)
return -EINVAL;
if (!mem_cgroup_is_root(memcg))
WRITE_ONCE(memcg->swappiness, val);
else
WRITE_ONCE(vm_swappiness, val);
return 0;
}
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
seq_printf(sf, "oom_kill %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
return 0;
}
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
pr_warn_once("oom_control is deprecated and will be removed. "
"Please report your usecase to linux-mm-@kvack.org if you "
"depend on this functionality. \n");
/* cannot set to root cgroup and only 0 and 1 are allowed */
if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
return -EINVAL;
WRITE_ONCE(memcg->oom_kill_disable, val);
if (!val)
memcg1_oom_recover(memcg);
return 0;
}
#ifdef CONFIG_SLUB_DEBUG
static int mem_cgroup_slab_show(struct seq_file *m, void *p)
{
/*
* Deprecated.
* Please, take a look at tools/cgroup/memcg_slabinfo.py .
*/
return 0;
}
#endif
struct cftype mem_cgroup_legacy_files[] = {
{
.name = "usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "soft_limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "failcnt",
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "stat",
.seq_show = memory_stat_show,
},
{
.name = "force_empty",
.write = mem_cgroup_force_empty_write,
},
{
.name = "use_hierarchy",
.write_u64 = mem_cgroup_hierarchy_write,
.read_u64 = mem_cgroup_hierarchy_read,
},
{
.name = "cgroup.event_control", /* XXX: for compat */
.write = memcg_write_event_control,
.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
},
{
.name = "swappiness",
.read_u64 = mem_cgroup_swappiness_read,
.write_u64 = mem_cgroup_swappiness_write,
},
{
.name = "move_charge_at_immigrate",
.read_u64 = mem_cgroup_move_charge_read,
.write_u64 = mem_cgroup_move_charge_write,
},
{
.name = "oom_control",
.seq_show = mem_cgroup_oom_control_read,
.write_u64 = mem_cgroup_oom_control_write,
},
{
.name = "pressure_level",
.seq_show = mem_cgroup_dummy_seq_show,
},
#ifdef CONFIG_NUMA
{
.name = "numa_stat",
.seq_show = memcg_numa_stat_show,
},
#endif
{
.name = "kmem.limit_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.usage_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.failcnt",
.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
#ifdef CONFIG_SLUB_DEBUG
{
.name = "kmem.slabinfo",
.seq_show = mem_cgroup_slab_show,
},
#endif
{
.name = "kmem.tcp.limit_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.usage_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.failcnt",
.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{ }, /* terminate */
};
struct cftype memsw_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{ }, /* terminate */
};
void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
{
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
if (nr_pages > 0)
page_counter_charge(&memcg->kmem, nr_pages);
else
page_counter_uncharge(&memcg->kmem, -nr_pages);
}
}
bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
gfp_t gfp_mask)
{
struct page_counter *fail;
if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
memcg->tcpmem_pressure = 0;
return true;
}
memcg->tcpmem_pressure = 1;
if (gfp_mask & __GFP_NOFAIL) {
page_counter_charge(&memcg->tcpmem, nr_pages);
return true;
}
return false;
}
bool memcg1_alloc_events(struct mem_cgroup *memcg)
{
memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
GFP_KERNEL_ACCOUNT);
return !!memcg->events_percpu;
}
void memcg1_free_events(struct mem_cgroup *memcg)
{
if (memcg->events_percpu)
free_percpu(memcg->events_percpu);
}
static int __init memcg1_init(void)
{
int node;
for_each_node(node) {
struct mem_cgroup_tree_per_node *rtpn;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
rtpn->rb_root = RB_ROOT;
rtpn->rb_rightmost = NULL;
spin_lock_init(&rtpn->lock);
soft_limit_tree.rb_tree_per_node[node] = rtpn;
}
return 0;
}
subsys_initcall(memcg1_init);