linux-stable/fs/bcachefs/btree_update_interior.c

2251 lines
58 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_methods.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "recovery.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"
#include <linux/random.h>
static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
struct btree_path *, struct btree *,
struct keylist *, unsigned);
static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
/* Debug code: */
/*
* Verify that child nodes correctly span parent node's range:
*/
static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct bpos next_node = b->data->min_key;
struct btree_node_iter iter;
struct bkey_s_c k;
struct bkey_s_c_btree_ptr_v2 bp;
struct bkey unpacked;
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
BUG_ON(!b->c.level);
if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
return;
bch2_btree_node_iter_init_from_start(&iter, b);
while (1) {
k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
if (k.k->type != KEY_TYPE_btree_ptr_v2)
break;
bp = bkey_s_c_to_btree_ptr_v2(k);
if (bpos_cmp(next_node, bp.v->min_key)) {
bch2_dump_btree_node(c, b);
bch2_bpos_to_text(&buf1, next_node);
bch2_bpos_to_text(&buf2, bp.v->min_key);
panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
}
bch2_btree_node_iter_advance(&iter, b);
if (bch2_btree_node_iter_end(&iter)) {
if (bpos_cmp(k.k->p, b->key.k.p)) {
bch2_dump_btree_node(c, b);
bch2_bpos_to_text(&buf1, b->key.k.p);
bch2_bpos_to_text(&buf2, k.k->p);
panic("expected end %s got %s\n", buf1.buf, buf2.buf);
}
break;
}
next_node = bpos_successor(k.k->p);
}
#endif
}
/* Calculate ideal packed bkey format for new btree nodes: */
void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
{
struct bkey_packed *k;
struct bset_tree *t;
struct bkey uk;
for_each_bset(b, t)
bset_tree_for_each_key(b, t, k)
if (!bkey_deleted(k)) {
uk = bkey_unpack_key(b, k);
bch2_bkey_format_add_key(s, &uk);
}
}
static struct bkey_format bch2_btree_calc_format(struct btree *b)
{
struct bkey_format_state s;
bch2_bkey_format_init(&s);
bch2_bkey_format_add_pos(&s, b->data->min_key);
bch2_bkey_format_add_pos(&s, b->data->max_key);
__bch2_btree_calc_format(&s, b);
return bch2_bkey_format_done(&s);
}
static size_t btree_node_u64s_with_format(struct btree *b,
struct bkey_format *new_f)
{
struct bkey_format *old_f = &b->format;
/* stupid integer promotion rules */
ssize_t delta =
(((int) new_f->key_u64s - old_f->key_u64s) *
(int) b->nr.packed_keys) +
(((int) new_f->key_u64s - BKEY_U64s) *
(int) b->nr.unpacked_keys);
BUG_ON(delta + b->nr.live_u64s < 0);
return b->nr.live_u64s + delta;
}
/**
* btree_node_format_fits - check if we could rewrite node with a new format
*
* This assumes all keys can pack with the new format -- it just checks if
* the re-packed keys would fit inside the node itself.
*/
bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
struct bkey_format *new_f)
{
size_t u64s = btree_node_u64s_with_format(b, new_f);
return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
}
/* Btree node freeing/allocation: */
static void __btree_node_free(struct bch_fs *c, struct btree *b)
{
trace_btree_node_free(c, b);
BUG_ON(btree_node_dirty(b));
BUG_ON(btree_node_need_write(b));
BUG_ON(b == btree_node_root(c, b));
BUG_ON(b->ob.nr);
BUG_ON(!list_empty(&b->write_blocked));
BUG_ON(b->will_make_reachable);
clear_btree_node_noevict(b);
mutex_lock(&c->btree_cache.lock);
list_move(&b->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
}
static void bch2_btree_node_free_inmem(struct btree_trans *trans,
struct btree *b)
{
struct bch_fs *c = trans->c;
struct btree_path *path;
trans_for_each_path(trans, path)
BUG_ON(path->l[b->c.level].b == b &&
path->l[b->c.level].lock_seq == b->c.lock.state.seq);
six_lock_write(&b->c.lock, NULL, NULL);
bch2_btree_node_hash_remove(&c->btree_cache, b);
__btree_node_free(c, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
}
static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
struct disk_reservation *res,
struct closure *cl,
bool interior_node,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct write_point *wp;
struct btree *b;
__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
struct open_buckets ob = { .nr = 0 };
struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
unsigned nr_reserve;
enum alloc_reserve alloc_reserve;
int ret;
if (flags & BTREE_INSERT_USE_RESERVE) {
nr_reserve = 0;
alloc_reserve = RESERVE_btree_movinggc;
} else {
nr_reserve = BTREE_NODE_RESERVE;
alloc_reserve = RESERVE_btree;
}
mutex_lock(&c->btree_reserve_cache_lock);
if (c->btree_reserve_cache_nr > nr_reserve) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
ob = a->ob;
bkey_copy(&tmp.k, &a->k);
mutex_unlock(&c->btree_reserve_cache_lock);
goto mem_alloc;
}
mutex_unlock(&c->btree_reserve_cache_lock);
retry:
ret = bch2_alloc_sectors_start_trans(trans,
c->opts.metadata_target ?:
c->opts.foreground_target,
0,
writepoint_ptr(&c->btree_write_point),
&devs_have,
res->nr_replicas,
c->opts.metadata_replicas_required,
alloc_reserve, 0, cl, &wp);
if (unlikely(ret))
return ERR_PTR(ret);
if (wp->sectors_free < btree_sectors(c)) {
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, &wp->ptrs, ob, i)
if (ob->sectors_free < btree_sectors(c))
ob->sectors_free = 0;
bch2_alloc_sectors_done(c, wp);
goto retry;
}
bkey_btree_ptr_v2_init(&tmp.k);
bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
bch2_open_bucket_get(c, wp, &ob);
bch2_alloc_sectors_done(c, wp);
mem_alloc:
b = bch2_btree_node_mem_alloc(c, interior_node);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
/* we hold cannibalize_lock: */
BUG_ON(IS_ERR(b));
BUG_ON(b->ob.nr);
bkey_copy(&b->key, &tmp.k);
b->ob = ob;
return b;
}
static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
{
struct bch_fs *c = as->c;
struct btree *b;
struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
int ret;
BUG_ON(level >= BTREE_MAX_DEPTH);
BUG_ON(!p->nr);
b = p->b[--p->nr];
six_lock_intent(&b->c.lock, NULL, NULL);
six_lock_write(&b->c.lock, NULL, NULL);
set_btree_node_accessed(b);
set_btree_node_dirty_acct(c, b);
set_btree_node_need_write(b);
bch2_bset_init_first(b, &b->data->keys);
b->c.level = level;
b->c.btree_id = as->btree_id;
b->version_ondisk = c->sb.version;
memset(&b->nr, 0, sizeof(b->nr));
b->data->magic = cpu_to_le64(bset_magic(c));
memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
b->data->flags = 0;
SET_BTREE_NODE_ID(b->data, as->btree_id);
SET_BTREE_NODE_LEVEL(b->data, level);
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
bp->v.mem_ptr = 0;
bp->v.seq = b->data->keys.seq;
bp->v.sectors_written = 0;
}
SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
bch2_btree_build_aux_trees(b);
ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
BUG_ON(ret);
trace_btree_node_alloc(c, b);
return b;
}
static void btree_set_min(struct btree *b, struct bpos pos)
{
if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
b->data->min_key = pos;
}
static void btree_set_max(struct btree *b, struct bpos pos)
{
b->key.k.p = pos;
b->data->max_key = pos;
}
struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
struct btree *b,
struct bkey_format format)
{
struct btree *n;
n = bch2_btree_node_alloc(as, b->c.level);
SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
btree_set_min(n, b->data->min_key);
btree_set_max(n, b->data->max_key);
n->data->format = format;
btree_node_set_format(n, format);
bch2_btree_sort_into(as->c, n, b);
btree_node_reset_sib_u64s(n);
n->key.k.p = b->key.k.p;
return n;
}
static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
struct btree *b)
{
struct bkey_format new_f = bch2_btree_calc_format(b);
/*
* The keys might expand with the new format - if they wouldn't fit in
* the btree node anymore, use the old format for now:
*/
if (!bch2_btree_node_format_fits(as->c, b, &new_f))
new_f = b->format;
return __bch2_btree_node_alloc_replacement(as, b, new_f);
}
static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
{
struct btree *b = bch2_btree_node_alloc(as, level);
btree_set_min(b, POS_MIN);
btree_set_max(b, SPOS_MAX);
b->data->format = bch2_btree_calc_format(b);
btree_node_set_format(b, b->data->format);
bch2_btree_build_aux_trees(b);
bch2_btree_update_add_new_node(as, b);
six_unlock_write(&b->c.lock);
return b;
}
static void bch2_btree_reserve_put(struct btree_update *as)
{
struct bch_fs *c = as->c;
struct prealloc_nodes *p;
mutex_lock(&c->btree_reserve_cache_lock);
for (p = as->prealloc_nodes;
p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
p++) {
while (p->nr) {
struct btree *b = p->b[--p->nr];
six_lock_intent(&b->c.lock, NULL, NULL);
six_lock_write(&b->c.lock, NULL, NULL);
if (c->btree_reserve_cache_nr <
ARRAY_SIZE(c->btree_reserve_cache)) {
struct btree_alloc *a =
&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
a->ob = b->ob;
b->ob.nr = 0;
bkey_copy(&a->k, &b->key);
} else {
bch2_open_buckets_put(c, &b->ob);
}
__btree_node_free(c, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
}
}
mutex_unlock(&c->btree_reserve_cache_lock);
}
static int bch2_btree_reserve_get(struct btree_trans *trans,
struct btree_update *as,
unsigned nr_nodes[2],
unsigned flags,
struct closure *cl)
{
struct bch_fs *c = as->c;
struct btree *b;
unsigned interior;
int ret = 0;
BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
/*
* Protects reaping from the btree node cache and using the btree node
* open bucket reserve:
*
* BTREE_INSERT_NOWAIT only applies to btree node allocation, not
* blocking on this lock:
*/
ret = bch2_btree_cache_cannibalize_lock(c, cl);
if (ret)
return ret;
for (interior = 0; interior < 2; interior++) {
struct prealloc_nodes *p = as->prealloc_nodes + interior;
while (p->nr < nr_nodes[interior]) {
b = __bch2_btree_node_alloc(trans, &as->disk_res,
flags & BTREE_INSERT_NOWAIT ? NULL : cl,
interior, flags);
if (IS_ERR(b)) {
ret = PTR_ERR(b);
goto err;
}
p->b[p->nr++] = b;
}
}
err:
bch2_btree_cache_cannibalize_unlock(c);
return ret;
}
/* Asynchronous interior node update machinery */
static void bch2_btree_update_free(struct btree_update *as)
{
struct bch_fs *c = as->c;
if (as->took_gc_lock)
up_read(&c->gc_lock);
as->took_gc_lock = false;
bch2_journal_preres_put(&c->journal, &as->journal_preres);
bch2_journal_pin_drop(&c->journal, &as->journal);
bch2_journal_pin_flush(&c->journal, &as->journal);
bch2_disk_reservation_put(c, &as->disk_res);
bch2_btree_reserve_put(as);
bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
as->start_time);
mutex_lock(&c->btree_interior_update_lock);
list_del(&as->unwritten_list);
list_del(&as->list);
closure_debug_destroy(&as->cl);
mempool_free(as, &c->btree_interior_update_pool);
/*
* Have to do the wakeup with btree_interior_update_lock still held,
* since being on btree_interior_update_list is our ref on @c:
*/
closure_wake_up(&c->btree_interior_update_wait);
mutex_unlock(&c->btree_interior_update_lock);
}
static void btree_update_will_delete_key(struct btree_update *as,
struct bkey_i *k)
{
BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
ARRAY_SIZE(as->_old_keys));
bch2_keylist_add(&as->old_keys, k);
}
static void btree_update_will_add_key(struct btree_update *as,
struct bkey_i *k)
{
BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
ARRAY_SIZE(as->_new_keys));
bch2_keylist_add(&as->new_keys, k);
}
/*
* The transactional part of an interior btree node update, where we journal the
* update we did to the interior node and update alloc info:
*/
static int btree_update_nodes_written_trans(struct btree_trans *trans,
struct btree_update *as)
{
struct bkey_i *k;
int ret;
ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
if (ret)
return ret;
memcpy(&darray_top(trans->extra_journal_entries),
as->journal_entries,
as->journal_u64s * sizeof(u64));
trans->extra_journal_entries.nr += as->journal_u64s;
trans->journal_pin = &as->journal;
for_each_keylist_key(&as->new_keys, k) {
ret = bch2_trans_mark_new(trans, k, 0);
if (ret)
return ret;
}
for_each_keylist_key(&as->old_keys, k) {
ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(k), 0);
if (ret)
return ret;
}
return 0;
}
static void btree_update_nodes_written(struct btree_update *as)
{
struct bch_fs *c = as->c;
struct btree *b = as->b;
struct btree_trans trans;
u64 journal_seq = 0;
unsigned i;
int ret;
/*
* If we're already in an error state, it might be because a btree node
* was never written, and we might be trying to free that same btree
* node here, but it won't have been marked as allocated and we'll see
* spurious disk usage inconsistencies in the transactional part below
* if we don't skip it:
*/
ret = bch2_journal_error(&c->journal);
if (ret)
goto err;
/*
* Wait for any in flight writes to finish before we free the old nodes
* on disk:
*/
for (i = 0; i < as->nr_old_nodes; i++) {
struct btree *old = as->old_nodes[i];
__le64 seq;
six_lock_read(&old->c.lock, NULL, NULL);
seq = old->data ? old->data->keys.seq : 0;
six_unlock_read(&old->c.lock);
if (seq == as->old_nodes_seq[i])
wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner,
TASK_UNINTERRUPTIBLE);
}
/*
* We did an update to a parent node where the pointers we added pointed
* to child nodes that weren't written yet: now, the child nodes have
* been written so we can write out the update to the interior node.
*/
/*
* We can't call into journal reclaim here: we'd block on the journal
* reclaim lock, but we may need to release the open buckets we have
* pinned in order for other btree updates to make forward progress, and
* journal reclaim does btree updates when flushing bkey_cached entries,
* which may require allocations as well.
*/
bch2_trans_init(&trans, c, 0, 512);
ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_JOURNAL_RECLAIM|
JOURNAL_WATERMARK_reserved,
btree_update_nodes_written_trans(&trans, as));
bch2_trans_exit(&trans);
bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
"error %i in btree_update_nodes_written()", ret);
err:
if (b) {
/*
* @b is the node we did the final insert into:
*
* On failure to get a journal reservation, we still have to
* unblock the write and allow most of the write path to happen
* so that shutdown works, but the i->journal_seq mechanism
* won't work to prevent the btree write from being visible (we
* didn't get a journal sequence number) - instead
* __bch2_btree_node_write() doesn't do the actual write if
* we're in journal error state:
*/
six_lock_intent(&b->c.lock, NULL, NULL);
six_lock_write(&b->c.lock, NULL, NULL);
mutex_lock(&c->btree_interior_update_lock);
list_del(&as->write_blocked_list);
if (list_empty(&b->write_blocked))
clear_btree_node_write_blocked(b);
/*
* Node might have been freed, recheck under
* btree_interior_update_lock:
*/
if (as->b == b) {
struct bset *i = btree_bset_last(b);
BUG_ON(!b->c.level);
BUG_ON(!btree_node_dirty(b));
if (!ret) {
i->journal_seq = cpu_to_le64(
max(journal_seq,
le64_to_cpu(i->journal_seq)));
bch2_btree_add_journal_pin(c, b, journal_seq);
} else {
/*
* If we didn't get a journal sequence number we
* can't write this btree node, because recovery
* won't know to ignore this write:
*/
set_btree_node_never_write(b);
}
}
mutex_unlock(&c->btree_interior_update_lock);
six_unlock_write(&b->c.lock);
btree_node_write_if_need(c, b, SIX_LOCK_intent);
six_unlock_intent(&b->c.lock);
}
bch2_journal_pin_drop(&c->journal, &as->journal);
bch2_journal_preres_put(&c->journal, &as->journal_preres);
mutex_lock(&c->btree_interior_update_lock);
for (i = 0; i < as->nr_new_nodes; i++) {
b = as->new_nodes[i];
BUG_ON(b->will_make_reachable != (unsigned long) as);
b->will_make_reachable = 0;
clear_btree_node_will_make_reachable(b);
}
mutex_unlock(&c->btree_interior_update_lock);
for (i = 0; i < as->nr_new_nodes; i++) {
b = as->new_nodes[i];
six_lock_read(&b->c.lock, NULL, NULL);
btree_node_write_if_need(c, b, SIX_LOCK_read);
six_unlock_read(&b->c.lock);
}
for (i = 0; i < as->nr_open_buckets; i++)
bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
bch2_btree_update_free(as);
}
static void btree_interior_update_work(struct work_struct *work)
{
struct bch_fs *c =
container_of(work, struct bch_fs, btree_interior_update_work);
struct btree_update *as;
while (1) {
mutex_lock(&c->btree_interior_update_lock);
as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
struct btree_update, unwritten_list);
if (as && !as->nodes_written)
as = NULL;
mutex_unlock(&c->btree_interior_update_lock);
if (!as)
break;
btree_update_nodes_written(as);
}
}
static void btree_update_set_nodes_written(struct closure *cl)
{
struct btree_update *as = container_of(cl, struct btree_update, cl);
struct bch_fs *c = as->c;
mutex_lock(&c->btree_interior_update_lock);
as->nodes_written = true;
mutex_unlock(&c->btree_interior_update_lock);
queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
}
/*
* We're updating @b with pointers to nodes that haven't finished writing yet:
* block @b from being written until @as completes
*/
static void btree_update_updated_node(struct btree_update *as, struct btree *b)
{
struct bch_fs *c = as->c;
mutex_lock(&c->btree_interior_update_lock);
list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
BUG_ON(!btree_node_dirty(b));
as->mode = BTREE_INTERIOR_UPDATING_NODE;
as->b = b;
set_btree_node_write_blocked(b);
list_add(&as->write_blocked_list, &b->write_blocked);
mutex_unlock(&c->btree_interior_update_lock);
}
static void btree_update_reparent(struct btree_update *as,
struct btree_update *child)
{
struct bch_fs *c = as->c;
lockdep_assert_held(&c->btree_interior_update_lock);
child->b = NULL;
child->mode = BTREE_INTERIOR_UPDATING_AS;
bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
}
static void btree_update_updated_root(struct btree_update *as, struct btree *b)
{
struct bkey_i *insert = &b->key;
struct bch_fs *c = as->c;
BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
ARRAY_SIZE(as->journal_entries));
as->journal_u64s +=
journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
BCH_JSET_ENTRY_btree_root,
b->c.btree_id, b->c.level,
insert, insert->k.u64s);
mutex_lock(&c->btree_interior_update_lock);
list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
as->mode = BTREE_INTERIOR_UPDATING_ROOT;
mutex_unlock(&c->btree_interior_update_lock);
}
/*
* bch2_btree_update_add_new_node:
*
* This causes @as to wait on @b to be written, before it gets to
* bch2_btree_update_nodes_written
*
* Additionally, it sets b->will_make_reachable to prevent any additional writes
* to @b from happening besides the first until @b is reachable on disk
*
* And it adds @b to the list of @as's new nodes, so that we can update sector
* counts in bch2_btree_update_nodes_written:
*/
static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
{
struct bch_fs *c = as->c;
closure_get(&as->cl);
mutex_lock(&c->btree_interior_update_lock);
BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
BUG_ON(b->will_make_reachable);
as->new_nodes[as->nr_new_nodes++] = b;
b->will_make_reachable = 1UL|(unsigned long) as;
set_btree_node_will_make_reachable(b);
mutex_unlock(&c->btree_interior_update_lock);
btree_update_will_add_key(as, &b->key);
}
/*
* returns true if @b was a new node
*/
static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
{
struct btree_update *as;
unsigned long v;
unsigned i;
mutex_lock(&c->btree_interior_update_lock);
/*
* When b->will_make_reachable != 0, it owns a ref on as->cl that's
* dropped when it gets written by bch2_btree_complete_write - the
* xchg() is for synchronization with bch2_btree_complete_write:
*/
v = xchg(&b->will_make_reachable, 0);
clear_btree_node_will_make_reachable(b);
as = (struct btree_update *) (v & ~1UL);
if (!as) {
mutex_unlock(&c->btree_interior_update_lock);
return;
}
for (i = 0; i < as->nr_new_nodes; i++)
if (as->new_nodes[i] == b)
goto found;
BUG();
found:
array_remove_item(as->new_nodes, as->nr_new_nodes, i);
mutex_unlock(&c->btree_interior_update_lock);
if (v & 1)
closure_put(&as->cl);
}
static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
{
while (b->ob.nr)
as->open_buckets[as->nr_open_buckets++] =
b->ob.v[--b->ob.nr];
}
/*
* @b is being split/rewritten: it may have pointers to not-yet-written btree
* nodes and thus outstanding btree_updates - redirect @b's
* btree_updates to point to this btree_update:
*/
static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
struct btree *b)
{
struct bch_fs *c = as->c;
struct btree_update *p, *n;
struct btree_write *w;
set_btree_node_dying(b);
if (btree_node_fake(b))
return;
mutex_lock(&c->btree_interior_update_lock);
/*
* Does this node have any btree_update operations preventing
* it from being written?
*
* If so, redirect them to point to this btree_update: we can
* write out our new nodes, but we won't make them visible until those
* operations complete
*/
list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
list_del_init(&p->write_blocked_list);
btree_update_reparent(as, p);
/*
* for flush_held_btree_writes() waiting on updates to flush or
* nodes to be writeable:
*/
closure_wake_up(&c->btree_interior_update_wait);
}
clear_btree_node_dirty_acct(c, b);
clear_btree_node_need_write(b);
/*
* Does this node have unwritten data that has a pin on the journal?
*
* If so, transfer that pin to the btree_update operation -
* note that if we're freeing multiple nodes, we only need to keep the
* oldest pin of any of the nodes we're freeing. We'll release the pin
* when the new nodes are persistent and reachable on disk:
*/
w = btree_current_write(b);
bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
bch2_journal_pin_drop(&c->journal, &w->journal);
w = btree_prev_write(b);
bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
bch2_journal_pin_drop(&c->journal, &w->journal);
mutex_unlock(&c->btree_interior_update_lock);
/*
* Is this a node that isn't reachable on disk yet?
*
* Nodes that aren't reachable yet have writes blocked until they're
* reachable - now that we've cancelled any pending writes and moved
* things waiting on that write to wait on this update, we can drop this
* node from the list of nodes that the other update is making
* reachable, prior to freeing it:
*/
btree_update_drop_new_node(c, b);
btree_update_will_delete_key(as, &b->key);
as->old_nodes[as->nr_old_nodes] = b;
as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
as->nr_old_nodes++;
}
static void bch2_btree_update_done(struct btree_update *as)
{
struct bch_fs *c = as->c;
u64 start_time = as->start_time;
BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
if (as->took_gc_lock)
up_read(&as->c->gc_lock);
as->took_gc_lock = false;
bch2_btree_reserve_put(as);
continue_at(&as->cl, btree_update_set_nodes_written,
as->c->btree_interior_update_worker);
bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
start_time);
}
static struct btree_update *
bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
unsigned level, bool split, unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree_update *as;
u64 start_time = local_clock();
int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
? BCH_DISK_RESERVATION_NOFAIL : 0;
unsigned nr_nodes[2] = { 0, 0 };
unsigned update_level = level;
int journal_flags = flags & JOURNAL_WATERMARK_MASK;
int ret = 0;
BUG_ON(!path->should_be_locked);
if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
journal_flags |= JOURNAL_RES_GET_NONBLOCK;
while (1) {
nr_nodes[!!update_level] += 1 + split;
update_level++;
if (!btree_path_node(path, update_level))
break;
/*
* XXX: figure out how far we might need to split,
* instead of locking/reserving all the way to the root:
*/
split = update_level + 1 < BTREE_MAX_DEPTH;
}
/* Might have to allocate a new root: */
if (update_level < BTREE_MAX_DEPTH)
nr_nodes[1] += 1;
if (!bch2_btree_path_upgrade(trans, path, U8_MAX)) {
trace_trans_restart_iter_upgrade(trans->fn, _RET_IP_,
path->btree_id, &path->pos);
ret = btree_trans_restart(trans);
return ERR_PTR(ret);
}
if (flags & BTREE_INSERT_GC_LOCK_HELD)
lockdep_assert_held(&c->gc_lock);
else if (!down_read_trylock(&c->gc_lock)) {
bch2_trans_unlock(trans);
down_read(&c->gc_lock);
if (!bch2_trans_relock(trans)) {
up_read(&c->gc_lock);
return ERR_PTR(-EINTR);
}
}
as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
memset(as, 0, sizeof(*as));
closure_init(&as->cl, NULL);
as->c = c;
as->start_time = start_time;
as->mode = BTREE_INTERIOR_NO_UPDATE;
as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
as->btree_id = path->btree_id;
INIT_LIST_HEAD(&as->list);
INIT_LIST_HEAD(&as->unwritten_list);
INIT_LIST_HEAD(&as->write_blocked_list);
bch2_keylist_init(&as->old_keys, as->_old_keys);
bch2_keylist_init(&as->new_keys, as->_new_keys);
bch2_keylist_init(&as->parent_keys, as->inline_keys);
mutex_lock(&c->btree_interior_update_lock);
list_add_tail(&as->list, &c->btree_interior_update_list);
mutex_unlock(&c->btree_interior_update_lock);
/*
* We don't want to allocate if we're in an error state, that can cause
* deadlock on emergency shutdown due to open buckets getting stuck in
* the btree_reserve_cache after allocator shutdown has cleared it out.
* This check needs to come after adding us to the btree_interior_update
* list but before calling bch2_btree_reserve_get, to synchronize with
* __bch2_fs_read_only().
*/
ret = bch2_journal_error(&c->journal);
if (ret)
goto err;
ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
BTREE_UPDATE_JOURNAL_RES,
journal_flags|JOURNAL_RES_GET_NONBLOCK);
if (ret) {
bch2_trans_unlock(trans);
ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
BTREE_UPDATE_JOURNAL_RES,
journal_flags);
if (ret) {
trace_trans_restart_journal_preres_get(trans->fn, _RET_IP_);
btree_trans_restart(trans);
goto err;
}
ret = bch2_trans_relock(trans);
if (ret)
goto err;
}
ret = bch2_disk_reservation_get(c, &as->disk_res,
(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
c->opts.metadata_replicas,
disk_res_flags);
if (ret)
goto err;
ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
if (ret == -EAGAIN ||
ret == -ENOMEM) {
struct closure cl;
closure_init_stack(&cl);
bch2_trans_unlock(trans);
do {
ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
closure_sync(&cl);
} while (ret == -EAGAIN);
}
if (ret) {
trace_btree_reserve_get_fail(trans->fn, _RET_IP_,
nr_nodes[0] + nr_nodes[1]);
goto err;
}
if (!bch2_trans_relock(trans)) {
ret = -EINTR;
goto err;
}
return as;
err:
bch2_btree_update_free(as);
return ERR_PTR(ret);
}
/* Btree root updates: */
static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
{
/* Root nodes cannot be reaped */
mutex_lock(&c->btree_cache.lock);
list_del_init(&b->list);
mutex_unlock(&c->btree_cache.lock);
mutex_lock(&c->btree_root_lock);
BUG_ON(btree_node_root(c, b) &&
(b->c.level < btree_node_root(c, b)->c.level ||
!btree_node_dying(btree_node_root(c, b))));
btree_node_root(c, b) = b;
mutex_unlock(&c->btree_root_lock);
bch2_recalc_btree_reserve(c);
}
/**
* bch_btree_set_root - update the root in memory and on disk
*
* To ensure forward progress, the current task must not be holding any
* btree node write locks. However, you must hold an intent lock on the
* old root.
*
* Note: This allocates a journal entry but doesn't add any keys to
* it. All the btree roots are part of every journal write, so there
* is nothing new to be done. This just guarantees that there is a
* journal write.
*/
static void bch2_btree_set_root(struct btree_update *as,
struct btree_trans *trans,
struct btree_path *path,
struct btree *b)
{
struct bch_fs *c = as->c;
struct btree *old;
trace_btree_set_root(c, b);
BUG_ON(!b->written);
old = btree_node_root(c, b);
/*
* Ensure no one is using the old root while we switch to the
* new root:
*/
bch2_btree_node_lock_write(trans, path, old);
bch2_btree_set_root_inmem(c, b);
btree_update_updated_root(as, b);
/*
* Unlock old root after new root is visible:
*
* The new root isn't persistent, but that's ok: we still have
* an intent lock on the new root, and any updates that would
* depend on the new root would have to update the new root.
*/
bch2_btree_node_unlock_write(trans, path, old);
}
/* Interior node updates: */
static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct btree_node_iter *node_iter,
struct bkey_i *insert)
{
struct bch_fs *c = as->c;
struct bkey_packed *k;
struct printbuf buf = PRINTBUF;
BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
!btree_ptr_sectors_written(insert));
if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b), &buf) ?:
bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf)) {
printbuf_reset(&buf);
pr_buf(&buf, "inserting invalid bkey\n ");
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
pr_buf(&buf, "\n ");
bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b), &buf);
bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf);
bch2_fs_inconsistent(c, "%s", buf.buf);
dump_stack();
}
BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
ARRAY_SIZE(as->journal_entries));
as->journal_u64s +=
journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
BCH_JSET_ENTRY_btree_keys,
b->c.btree_id, b->c.level,
insert, insert->k.u64s);
while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
bch2_btree_node_iter_advance(node_iter, b);
bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
set_btree_node_dirty_acct(c, b);
set_btree_node_need_write(b);
printbuf_exit(&buf);
}
static void
__bch2_btree_insert_keys_interior(struct btree_update *as,
struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct btree_node_iter node_iter,
struct keylist *keys)
{
struct bkey_i *insert = bch2_keylist_front(keys);
struct bkey_packed *k;
BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
(bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
;
while (!bch2_keylist_empty(keys)) {
bch2_insert_fixup_btree_ptr(as, trans, path, b,
&node_iter, bch2_keylist_front(keys));
bch2_keylist_pop_front(keys);
}
}
/*
* Move keys from n1 (original replacement node, now lower node) to n2 (higher
* node)
*/
static struct btree *__btree_split_node(struct btree_update *as,
struct btree *n1)
{
struct bkey_format_state s;
size_t nr_packed = 0, nr_unpacked = 0;
struct btree *n2;
struct bset *set1, *set2;
struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
struct bpos n1_pos;
n2 = bch2_btree_node_alloc(as, n1->c.level);
bch2_btree_update_add_new_node(as, n2);
n2->data->max_key = n1->data->max_key;
n2->data->format = n1->format;
SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
n2->key.k.p = n1->key.k.p;
set1 = btree_bset_first(n1);
set2 = btree_bset_first(n2);
/*
* Has to be a linear search because we don't have an auxiliary
* search tree yet
*/
k = set1->start;
while (1) {
struct bkey_packed *n = bkey_next(k);
if (n == vstruct_last(set1))
break;
if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
break;
if (bkey_packed(k))
nr_packed++;
else
nr_unpacked++;
prev = k;
k = n;
}
BUG_ON(!prev);
set2_start = k;
set2_end = vstruct_last(set1);
set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
set_btree_bset_end(n1, n1->set);
n1->nr.live_u64s = le16_to_cpu(set1->u64s);
n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
n1->nr.packed_keys = nr_packed;
n1->nr.unpacked_keys = nr_unpacked;
n1_pos = bkey_unpack_pos(n1, prev);
if (as->c->sb.version < bcachefs_metadata_version_snapshot)
n1_pos.snapshot = U32_MAX;
btree_set_max(n1, n1_pos);
btree_set_min(n2, bpos_successor(n1->key.k.p));
bch2_bkey_format_init(&s);
bch2_bkey_format_add_pos(&s, n2->data->min_key);
bch2_bkey_format_add_pos(&s, n2->data->max_key);
for (k = set2_start; k != set2_end; k = bkey_next(k)) {
struct bkey uk = bkey_unpack_key(n1, k);
bch2_bkey_format_add_key(&s, &uk);
}
n2->data->format = bch2_bkey_format_done(&s);
btree_node_set_format(n2, n2->data->format);
out = set2->start;
memset(&n2->nr, 0, sizeof(n2->nr));
for (k = set2_start; k != set2_end; k = bkey_next(k)) {
BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
? &n1->format : &bch2_bkey_format_current, k));
out->format = KEY_FORMAT_LOCAL_BTREE;
btree_keys_account_key_add(&n2->nr, 0, out);
out = bkey_next(out);
}
set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
set_btree_bset_end(n2, n2->set);
BUG_ON(!set1->u64s);
BUG_ON(!set2->u64s);
btree_node_reset_sib_u64s(n1);
btree_node_reset_sib_u64s(n2);
bch2_verify_btree_nr_keys(n1);
bch2_verify_btree_nr_keys(n2);
if (n1->c.level) {
btree_node_interior_verify(as->c, n1);
btree_node_interior_verify(as->c, n2);
}
return n2;
}
/*
* For updates to interior nodes, we've got to do the insert before we split
* because the stuff we're inserting has to be inserted atomically. Post split,
* the keys might have to go in different nodes and the split would no longer be
* atomic.
*
* Worse, if the insert is from btree node coalescing, if we do the insert after
* we do the split (and pick the pivot) - the pivot we pick might be between
* nodes that were coalesced, and thus in the middle of a child node post
* coalescing:
*/
static void btree_split_insert_keys(struct btree_update *as,
struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct keylist *keys)
{
struct btree_node_iter node_iter;
struct bkey_i *k = bch2_keylist_front(keys);
struct bkey_packed *src, *dst, *n;
struct bset *i;
bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
__bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
/*
* We can't tolerate whiteouts here - with whiteouts there can be
* duplicate keys, and it would be rather bad if we picked a duplicate
* for the pivot:
*/
i = btree_bset_first(b);
src = dst = i->start;
while (src != vstruct_last(i)) {
n = bkey_next(src);
if (!bkey_deleted(src)) {
memmove_u64s_down(dst, src, src->u64s);
dst = bkey_next(dst);
}
src = n;
}
/* Also clear out the unwritten whiteouts area: */
b->whiteout_u64s = 0;
i->u64s = cpu_to_le16((u64 *) dst - i->_data);
set_btree_bset_end(b, b->set);
BUG_ON(b->nsets != 1 ||
b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
btree_node_interior_verify(as->c, b);
}
static void btree_split(struct btree_update *as, struct btree_trans *trans,
struct btree_path *path, struct btree *b,
struct keylist *keys, unsigned flags)
{
struct bch_fs *c = as->c;
struct btree *parent = btree_node_parent(path, b);
struct btree *n1, *n2 = NULL, *n3 = NULL;
u64 start_time = local_clock();
BUG_ON(!parent && (b != btree_node_root(c, b)));
BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
bch2_btree_interior_update_will_free_node(as, b);
n1 = bch2_btree_node_alloc_replacement(as, b);
bch2_btree_update_add_new_node(as, n1);
if (keys)
btree_split_insert_keys(as, trans, path, n1, keys);
if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
trace_btree_split(c, b);
n2 = __btree_split_node(as, n1);
bch2_btree_build_aux_trees(n2);
bch2_btree_build_aux_trees(n1);
six_unlock_write(&n2->c.lock);
six_unlock_write(&n1->c.lock);
bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
/*
* Note that on recursive parent_keys == keys, so we
* can't start adding new keys to parent_keys before emptying it
* out (which we did with btree_split_insert_keys() above)
*/
bch2_keylist_add(&as->parent_keys, &n1->key);
bch2_keylist_add(&as->parent_keys, &n2->key);
if (!parent) {
/* Depth increases, make a new root */
n3 = __btree_root_alloc(as, b->c.level + 1);
n3->sib_u64s[0] = U16_MAX;
n3->sib_u64s[1] = U16_MAX;
btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
}
} else {
trace_btree_compact(c, b);
bch2_btree_build_aux_trees(n1);
six_unlock_write(&n1->c.lock);
bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
if (parent)
bch2_keylist_add(&as->parent_keys, &n1->key);
}
/* New nodes all written, now make them visible: */
if (parent) {
/* Split a non root node */
bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
} else if (n3) {
bch2_btree_set_root(as, trans, path, n3);
} else {
/* Root filled up but didn't need to be split */
bch2_btree_set_root(as, trans, path, n1);
}
bch2_btree_update_get_open_buckets(as, n1);
if (n2)
bch2_btree_update_get_open_buckets(as, n2);
if (n3)
bch2_btree_update_get_open_buckets(as, n3);
/* Successful split, update the path to point to the new nodes: */
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
if (n3)
bch2_trans_node_add(trans, n3);
if (n2)
bch2_trans_node_add(trans, n2);
bch2_trans_node_add(trans, n1);
/*
* The old node must be freed (in memory) _before_ unlocking the new
* nodes - else another thread could re-acquire a read lock on the old
* node after another thread has locked and updated the new node, thus
* seeing stale data:
*/
bch2_btree_node_free_inmem(trans, b);
if (n3)
six_unlock_intent(&n3->c.lock);
if (n2)
six_unlock_intent(&n2->c.lock);
six_unlock_intent(&n1->c.lock);
bch2_trans_verify_locks(trans);
bch2_time_stats_update(&c->times[n2
? BCH_TIME_btree_node_split
: BCH_TIME_btree_node_compact],
start_time);
}
static void
bch2_btree_insert_keys_interior(struct btree_update *as,
struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct keylist *keys)
{
struct btree_path *linked;
__bch2_btree_insert_keys_interior(as, trans, path, b,
path->l[b->c.level].iter, keys);
btree_update_updated_node(as, b);
trans_for_each_path_with_node(trans, b, linked)
bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
bch2_trans_verify_paths(trans);
}
/**
* bch_btree_insert_node - insert bkeys into a given btree node
*
* @iter: btree iterator
* @keys: list of keys to insert
* @hook: insert callback
* @persistent: if not null, @persistent will wait on journal write
*
* Inserts as many keys as it can into a given btree node, splitting it if full.
* If a split occurred, this function will return early. This can only happen
* for leaf nodes -- inserts into interior nodes have to be atomic.
*/
static void bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
struct btree_path *path, struct btree *b,
struct keylist *keys, unsigned flags)
{
struct bch_fs *c = as->c;
int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
int old_live_u64s = b->nr.live_u64s;
int live_u64s_added, u64s_added;
lockdep_assert_held(&c->gc_lock);
BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
BUG_ON(!b->c.level);
BUG_ON(!as || as->b);
bch2_verify_keylist_sorted(keys);
bch2_btree_node_lock_for_insert(trans, path, b);
if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
bch2_btree_node_unlock_write(trans, path, b);
goto split;
}
btree_node_interior_verify(c, b);
bch2_btree_insert_keys_interior(as, trans, path, b, keys);
live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
if (u64s_added > live_u64s_added &&
bch2_maybe_compact_whiteouts(c, b))
bch2_trans_node_reinit_iter(trans, b);
bch2_btree_node_unlock_write(trans, path, b);
btree_node_interior_verify(c, b);
return;
split:
btree_split(as, trans, path, b, keys, flags);
}
int bch2_btree_split_leaf(struct btree_trans *trans,
struct btree_path *path,
unsigned flags)
{
struct btree *b = path_l(path)->b;
struct btree_update *as;
unsigned l;
int ret = 0;
as = bch2_btree_update_start(trans, path, path->level,
true, flags);
if (IS_ERR(as))
return PTR_ERR(as);
btree_split(as, trans, path, b, NULL, flags);
bch2_btree_update_done(as);
for (l = path->level + 1; btree_path_node(path, l) && !ret; l++)
ret = bch2_foreground_maybe_merge(trans, path, l, flags);
return ret;
}
int __bch2_foreground_maybe_merge(struct btree_trans *trans,
struct btree_path *path,
unsigned level,
unsigned flags,
enum btree_node_sibling sib)
{
struct bch_fs *c = trans->c;
struct btree_path *sib_path = NULL;
struct btree_update *as;
struct bkey_format_state new_s;
struct bkey_format new_f;
struct bkey_i delete;
struct btree *b, *m, *n, *prev, *next, *parent;
struct bpos sib_pos;
size_t sib_u64s;
u64 start_time = local_clock();
int ret = 0;
BUG_ON(!path->should_be_locked);
BUG_ON(!btree_node_locked(path, level));
b = path->l[level].b;
if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
(sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
b->sib_u64s[sib] = U16_MAX;
return 0;
}
sib_pos = sib == btree_prev_sib
? bpos_predecessor(b->data->min_key)
: bpos_successor(b->data->max_key);
sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
U8_MAX, level, BTREE_ITER_INTENT);
ret = bch2_btree_path_traverse(trans, sib_path, false);
if (ret)
goto err;
sib_path->should_be_locked = true;
m = sib_path->l[level].b;
if (btree_node_parent(path, b) !=
btree_node_parent(sib_path, m)) {
b->sib_u64s[sib] = U16_MAX;
goto out;
}
if (sib == btree_prev_sib) {
prev = m;
next = b;
} else {
prev = b;
next = m;
}
if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
bch2_bpos_to_text(&buf1, prev->data->max_key);
bch2_bpos_to_text(&buf2, next->data->min_key);
bch_err(c,
"btree topology error in btree merge:\n"
" prev ends at %s\n"
" next starts at %s",
buf1.buf, buf2.buf);
printbuf_exit(&buf1);
printbuf_exit(&buf2);
bch2_topology_error(c);
ret = -EIO;
goto err;
}
bch2_bkey_format_init(&new_s);
bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
__bch2_btree_calc_format(&new_s, prev);
__bch2_btree_calc_format(&new_s, next);
bch2_bkey_format_add_pos(&new_s, next->data->max_key);
new_f = bch2_bkey_format_done(&new_s);
sib_u64s = btree_node_u64s_with_format(b, &new_f) +
btree_node_u64s_with_format(m, &new_f);
if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
sib_u64s /= 2;
sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
}
sib_u64s = min(sib_u64s, btree_max_u64s(c));
sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
b->sib_u64s[sib] = sib_u64s;
if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
goto out;
parent = btree_node_parent(path, b);
as = bch2_btree_update_start(trans, path, level, false,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|
flags);
ret = PTR_ERR_OR_ZERO(as);
if (ret)
goto err;
trace_btree_merge(c, b);
bch2_btree_interior_update_will_free_node(as, b);
bch2_btree_interior_update_will_free_node(as, m);
n = bch2_btree_node_alloc(as, b->c.level);
bch2_btree_update_add_new_node(as, n);
SET_BTREE_NODE_SEQ(n->data,
max(BTREE_NODE_SEQ(b->data),
BTREE_NODE_SEQ(m->data)) + 1);
btree_set_min(n, prev->data->min_key);
btree_set_max(n, next->data->max_key);
n->data->format = new_f;
btree_node_set_format(n, new_f);
bch2_btree_sort_into(c, n, prev);
bch2_btree_sort_into(c, n, next);
bch2_btree_build_aux_trees(n);
six_unlock_write(&n->c.lock);
bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
bkey_init(&delete.k);
delete.k.p = prev->key.k.p;
bch2_keylist_add(&as->parent_keys, &delete);
bch2_keylist_add(&as->parent_keys, &n->key);
bch2_trans_verify_paths(trans);
bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
bch2_trans_verify_paths(trans);
bch2_btree_update_get_open_buckets(as, n);
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
six_lock_increment(&m->c.lock, SIX_LOCK_intent);
bch2_trans_node_add(trans, n);
bch2_trans_verify_paths(trans);
bch2_btree_node_free_inmem(trans, b);
bch2_btree_node_free_inmem(trans, m);
six_unlock_intent(&n->c.lock);
bch2_btree_update_done(as);
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
out:
err:
bch2_path_put(trans, sib_path, true);
bch2_trans_verify_locks(trans);
return ret;
}
/**
* bch_btree_node_rewrite - Rewrite/move a btree node
*/
int bch2_btree_node_rewrite(struct btree_trans *trans,
struct btree_iter *iter,
struct btree *b,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree *n, *parent;
struct btree_update *as;
int ret;
flags |= BTREE_INSERT_NOFAIL;
parent = btree_node_parent(iter->path, b);
as = bch2_btree_update_start(trans, iter->path, b->c.level,
false, flags);
ret = PTR_ERR_OR_ZERO(as);
if (ret) {
trace_btree_gc_rewrite_node_fail(c, b);
goto out;
}
bch2_btree_interior_update_will_free_node(as, b);
n = bch2_btree_node_alloc_replacement(as, b);
bch2_btree_update_add_new_node(as, n);
bch2_btree_build_aux_trees(n);
six_unlock_write(&n->c.lock);
trace_btree_gc_rewrite_node(c, b);
bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
if (parent) {
bch2_keylist_add(&as->parent_keys, &n->key);
bch2_btree_insert_node(as, trans, iter->path, parent,
&as->parent_keys, flags);
} else {
bch2_btree_set_root(as, trans, iter->path, n);
}
bch2_btree_update_get_open_buckets(as, n);
six_lock_increment(&b->c.lock, SIX_LOCK_intent);
bch2_trans_node_add(trans, n);
bch2_btree_node_free_inmem(trans, b);
six_unlock_intent(&n->c.lock);
bch2_btree_update_done(as);
out:
bch2_btree_path_downgrade(iter->path);
return ret;
}
struct async_btree_rewrite {
struct bch_fs *c;
struct work_struct work;
enum btree_id btree_id;
unsigned level;
struct bpos pos;
__le64 seq;
};
static int async_btree_node_rewrite_trans(struct btree_trans *trans,
struct async_btree_rewrite *a)
{
struct btree_iter iter;
struct btree *b;
int ret;
bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
BTREE_MAX_DEPTH, a->level, 0);
b = bch2_btree_iter_peek_node(&iter);
ret = PTR_ERR_OR_ZERO(b);
if (ret)
goto out;
if (!b || b->data->keys.seq != a->seq)
goto out;
ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
out :
bch2_trans_iter_exit(trans, &iter);
return ret;
}
void async_btree_node_rewrite_work(struct work_struct *work)
{
struct async_btree_rewrite *a =
container_of(work, struct async_btree_rewrite, work);
struct bch_fs *c = a->c;
bch2_trans_do(c, NULL, NULL, 0,
async_btree_node_rewrite_trans(&trans, a));
percpu_ref_put(&c->writes);
kfree(a);
}
void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
{
struct async_btree_rewrite *a;
if (!percpu_ref_tryget(&c->writes))
return;
a = kmalloc(sizeof(*a), GFP_NOFS);
if (!a) {
percpu_ref_put(&c->writes);
return;
}
a->c = c;
a->btree_id = b->c.btree_id;
a->level = b->c.level;
a->pos = b->key.k.p;
a->seq = b->data->keys.seq;
INIT_WORK(&a->work, async_btree_node_rewrite_work);
queue_work(c->btree_interior_update_worker, &a->work);
}
static int __bch2_btree_node_update_key(struct btree_trans *trans,
struct btree_iter *iter,
struct btree *b, struct btree *new_hash,
struct bkey_i *new_key,
bool skip_triggers)
{
struct bch_fs *c = trans->c;
struct btree_iter iter2 = { NULL };
struct btree *parent;
int ret;
if (!skip_triggers) {
ret = bch2_trans_mark_new(trans, new_key, 0);
if (ret)
return ret;
ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(&b->key), 0);
if (ret)
return ret;
}
if (new_hash) {
bkey_copy(&new_hash->key, new_key);
ret = bch2_btree_node_hash_insert(&c->btree_cache,
new_hash, b->c.level, b->c.btree_id);
BUG_ON(ret);
}
parent = btree_node_parent(iter->path, b);
if (parent) {
bch2_trans_copy_iter(&iter2, iter);
iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
iter2.flags & BTREE_ITER_INTENT);
BUG_ON(iter2.path->level != b->c.level);
BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p));
btree_node_unlock(iter2.path, iter2.path->level);
path_l(iter2.path)->b = BTREE_ITER_NO_NODE_UP;
iter2.path->level++;
btree_path_set_dirty(iter2.path, BTREE_ITER_NEED_TRAVERSE);
trans->paths_sorted = false;
ret = bch2_btree_iter_traverse(&iter2) ?:
bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
if (ret)
goto err;
} else {
BUG_ON(btree_node_root(c, b) != b);
ret = darray_make_room(&trans->extra_journal_entries,
jset_u64s(new_key->k.u64s));
if (ret)
return ret;
journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
BCH_JSET_ENTRY_btree_root,
b->c.btree_id, b->c.level,
new_key, new_key->k.u64s);
trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
}
ret = bch2_trans_commit(trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_JOURNAL_RECLAIM|
JOURNAL_WATERMARK_reserved);
if (ret)
goto err;
bch2_btree_node_lock_write(trans, iter->path, b);
if (new_hash) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, new_key);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
} else {
bkey_copy(&b->key, new_key);
}
bch2_btree_node_unlock_write(trans, iter->path, b);
out:
bch2_trans_iter_exit(trans, &iter2);
return ret;
err:
if (new_hash) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, b);
mutex_unlock(&c->btree_cache.lock);
}
goto out;
}
int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
struct btree *b, struct bkey_i *new_key,
bool skip_triggers)
{
struct bch_fs *c = trans->c;
struct btree *new_hash = NULL;
struct btree_path *path = iter->path;
struct closure cl;
int ret = 0;
if (!btree_node_intent_locked(path, b->c.level) &&
!bch2_btree_path_upgrade(trans, path, b->c.level + 1)) {
btree_trans_restart(trans);
return -EINTR;
}
closure_init_stack(&cl);
/*
* check btree_ptr_hash_val() after @b is locked by
* btree_iter_traverse():
*/
if (btree_ptr_hash_val(new_key) != b->hash_val) {
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
if (ret) {
bch2_trans_unlock(trans);
closure_sync(&cl);
if (!bch2_trans_relock(trans))
return -EINTR;
}
new_hash = bch2_btree_node_mem_alloc(c, false);
}
path->intent_ref++;
ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
new_key, skip_triggers);
--path->intent_ref;
if (new_hash) {
mutex_lock(&c->btree_cache.lock);
list_move(&new_hash->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
six_unlock_write(&new_hash->c.lock);
six_unlock_intent(&new_hash->c.lock);
}
closure_sync(&cl);
bch2_btree_cache_cannibalize_unlock(c);
return ret;
}
int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
struct btree *b, struct bkey_i *new_key,
bool skip_triggers)
{
struct btree_iter iter;
int ret;
bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
BTREE_MAX_DEPTH, b->c.level,
BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter);
if (ret)
goto out;
/* has node been freed? */
if (iter.path->l[b->c.level].b != b) {
/* node has been freed: */
BUG_ON(!btree_node_dying(b));
goto out;
}
BUG_ON(!btree_node_hashed(b));
ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/* Init code: */
/*
* Only for filesystem bringup, when first reading the btree roots or allocating
* btree roots when initializing a new filesystem:
*/
void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
{
BUG_ON(btree_node_root(c, b));
bch2_btree_set_root_inmem(c, b);
}
void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
{
struct closure cl;
struct btree *b;
int ret;
closure_init_stack(&cl);
do {
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
b = bch2_btree_node_mem_alloc(c, false);
bch2_btree_cache_cannibalize_unlock(c);
set_btree_node_fake(b);
set_btree_node_need_rewrite(b);
b->c.level = 0;
b->c.btree_id = id;
bkey_btree_ptr_init(&b->key);
b->key.k.p = SPOS_MAX;
*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
bch2_bset_init_first(b, &b->data->keys);
bch2_btree_build_aux_trees(b);
b->data->flags = 0;
btree_set_min(b, POS_MIN);
btree_set_max(b, SPOS_MAX);
b->data->format = bch2_btree_calc_format(b);
btree_node_set_format(b, b->data->format);
ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
b->c.level, b->c.btree_id);
BUG_ON(ret);
bch2_btree_set_root_inmem(c, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
}
void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
{
struct btree_update *as;
mutex_lock(&c->btree_interior_update_lock);
list_for_each_entry(as, &c->btree_interior_update_list, list)
pr_buf(out, "%p m %u w %u r %u j %llu\n",
as,
as->mode,
as->nodes_written,
atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
as->journal.seq);
mutex_unlock(&c->btree_interior_update_lock);
}
size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
{
size_t ret = 0;
struct list_head *i;
mutex_lock(&c->btree_interior_update_lock);
list_for_each(i, &c->btree_interior_update_list)
ret++;
mutex_unlock(&c->btree_interior_update_lock);
return ret;
}
void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
{
struct btree_root *r;
struct jset_entry *entry;
mutex_lock(&c->btree_root_lock);
vstruct_for_each(jset, entry)
if (entry->type == BCH_JSET_ENTRY_btree_root) {
r = &c->btree_roots[entry->btree_id];
r->level = entry->level;
r->alive = true;
bkey_copy(&r->key, &entry->start[0]);
}
mutex_unlock(&c->btree_root_lock);
}
struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs *c,
struct jset_entry *start,
struct jset_entry *end)
{
struct jset_entry *entry;
unsigned long have = 0;
unsigned i;
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root)
__set_bit(entry->btree_id, &have);
mutex_lock(&c->btree_root_lock);
for (i = 0; i < BTREE_ID_NR; i++)
if (c->btree_roots[i].alive && !test_bit(i, &have)) {
journal_entry_set(end,
BCH_JSET_ENTRY_btree_root,
i, c->btree_roots[i].level,
&c->btree_roots[i].key,
c->btree_roots[i].key.u64s);
end = vstruct_next(end);
}
mutex_unlock(&c->btree_root_lock);
return end;
}
void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
{
if (c->btree_interior_update_worker)
destroy_workqueue(c->btree_interior_update_worker);
mempool_exit(&c->btree_interior_update_pool);
}
int bch2_fs_btree_interior_update_init(struct bch_fs *c)
{
mutex_init(&c->btree_reserve_cache_lock);
INIT_LIST_HEAD(&c->btree_interior_update_list);
INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
mutex_init(&c->btree_interior_update_lock);
INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
c->btree_interior_update_worker =
alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
if (!c->btree_interior_update_worker)
return -ENOMEM;
return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
sizeof(struct btree_update));
}