mm: memcg: introduce memcontrol-v1.c
Patch series "mm: memcg: separate legacy cgroup v1 code and put under
config option", v2.
Cgroups v2 have been around for a while and many users have fully adopted
them, so they never use cgroups v1 features and functionality. Yet they
have to "pay" for the cgroup v1 support anyway:
1) the kernel binary contains an unused cgroup v1 code,
2) some code paths have additional checks which are not needed,
3) some common structures like task_struct and mem_cgroup contain unused
cgroup v1-specific members.
Cgroup v1's memory controller has a number of features that are not
supported by cgroup v2 and their implementation is pretty much self
contained. Most notably, these features are: soft limit reclaim, oom
handling in userspace, complicated event notification system, charge
migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines
in size and it's intervened with generic and cgroup v2-specific code.
It's a burden on developers and maintainers.
This patchset aims to solve these problems by:
1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file,
2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the
mm/memcontrol-v1.h header,
3) introducing the CONFIG_MEMCG_V1 config option, turned off by default,
4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set.
If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available
for mounting, however no memory-specific control knobs are present.
This patch (of 14):
This patch introduces the mm/memcontrol-v1.c source file which will be
used for all legacy (cgroup v1) memory cgroup code. It also introduces
mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and
mm/memcontrol-v1.c.
As of now, let's compile it if CONFIG_MEMCG is set, similar to
mm/memcontrol.c. Later on it can be switched to use a separate config
option, so that the legacy code won't be compiled if not required.
Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
|
2024-06-25 00:58:54 +00:00
|
|
|
#include <linux/memcontrol.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/mm_inline.h>
|
2024-06-25 00:58:56 +00:00
|
|
|
#include <linux/pagewalk.h>
|
|
|
|
#include <linux/backing-dev.h>
|
|
|
|
#include <linux/swap_cgroup.h>
|
2024-06-25 00:58:58 +00:00
|
|
|
#include <linux/eventfd.h>
|
|
|
|
#include <linux/poll.h>
|
|
|
|
#include <linux/sort.h>
|
|
|
|
#include <linux/file.h>
|
2024-06-25 00:59:02 +00:00
|
|
|
#include <linux/seq_buf.h>
|
2024-06-25 00:58:54 +00:00
|
|
|
|
2024-06-25 00:58:56 +00:00
|
|
|
#include "internal.h"
|
|
|
|
#include "swap.h"
|
mm: memcg: introduce memcontrol-v1.c
Patch series "mm: memcg: separate legacy cgroup v1 code and put under
config option", v2.
Cgroups v2 have been around for a while and many users have fully adopted
them, so they never use cgroups v1 features and functionality. Yet they
have to "pay" for the cgroup v1 support anyway:
1) the kernel binary contains an unused cgroup v1 code,
2) some code paths have additional checks which are not needed,
3) some common structures like task_struct and mem_cgroup contain unused
cgroup v1-specific members.
Cgroup v1's memory controller has a number of features that are not
supported by cgroup v2 and their implementation is pretty much self
contained. Most notably, these features are: soft limit reclaim, oom
handling in userspace, complicated event notification system, charge
migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines
in size and it's intervened with generic and cgroup v2-specific code.
It's a burden on developers and maintainers.
This patchset aims to solve these problems by:
1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file,
2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the
mm/memcontrol-v1.h header,
3) introducing the CONFIG_MEMCG_V1 config option, turned off by default,
4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set.
If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available
for mounting, however no memory-specific control knobs are present.
This patch (of 14):
This patch introduces the mm/memcontrol-v1.c source file which will be
used for all legacy (cgroup v1) memory cgroup code. It also introduces
mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and
mm/memcontrol-v1.c.
As of now, let's compile it if CONFIG_MEMCG is set, similar to
mm/memcontrol.c. Later on it can be switched to use a separate config
option, so that the legacy code won't be compiled if not required.
Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
|
|
|
#include "memcontrol-v1.h"
|
2024-06-25 00:58:54 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Cgroups above their limits are maintained in a RB-Tree, independent of
|
|
|
|
* their hierarchy representation
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct mem_cgroup_tree_per_node {
|
|
|
|
struct rb_root rb_root;
|
|
|
|
struct rb_node *rb_rightmost;
|
|
|
|
spinlock_t lock;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct mem_cgroup_tree {
|
|
|
|
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Maximum loops in mem_cgroup_soft_reclaim(), used for soft
|
|
|
|
* limit reclaim to prevent infinite loops, if they ever occur.
|
|
|
|
*/
|
|
|
|
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
|
|
|
|
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
|
|
|
|
|
2024-06-25 00:58:56 +00:00
|
|
|
/* Stuffs for move charges at task migration. */
|
|
|
|
/*
|
|
|
|
* Types of charges to be moved.
|
|
|
|
*/
|
|
|
|
#define MOVE_ANON 0x1U
|
|
|
|
#define MOVE_FILE 0x2U
|
|
|
|
#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
|
|
|
|
|
|
|
|
/* "mc" and its members are protected by cgroup_mutex */
|
|
|
|
static struct move_charge_struct {
|
|
|
|
spinlock_t lock; /* for from, to */
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct mem_cgroup *from;
|
|
|
|
struct mem_cgroup *to;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long precharge;
|
|
|
|
unsigned long moved_charge;
|
|
|
|
unsigned long moved_swap;
|
|
|
|
struct task_struct *moving_task; /* a task moving charges */
|
|
|
|
wait_queue_head_t waitq; /* a waitq for other context */
|
|
|
|
} mc = {
|
|
|
|
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
|
|
|
|
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
|
|
|
|
};
|
|
|
|
|
2024-06-25 00:58:58 +00:00
|
|
|
/* for OOM */
|
|
|
|
struct mem_cgroup_eventfd_list {
|
|
|
|
struct list_head list;
|
|
|
|
struct eventfd_ctx *eventfd;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cgroup_event represents events which userspace want to receive.
|
|
|
|
*/
|
|
|
|
struct mem_cgroup_event {
|
|
|
|
/*
|
|
|
|
* memcg which the event belongs to.
|
|
|
|
*/
|
|
|
|
struct mem_cgroup *memcg;
|
|
|
|
/*
|
|
|
|
* eventfd to signal userspace about the event.
|
|
|
|
*/
|
|
|
|
struct eventfd_ctx *eventfd;
|
|
|
|
/*
|
|
|
|
* Each of these stored in a list by the cgroup.
|
|
|
|
*/
|
|
|
|
struct list_head list;
|
|
|
|
/*
|
|
|
|
* register_event() callback will be used to add new userspace
|
|
|
|
* waiter for changes related to this event. Use eventfd_signal()
|
|
|
|
* on eventfd to send notification to userspace.
|
|
|
|
*/
|
|
|
|
int (*register_event)(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args);
|
|
|
|
/*
|
|
|
|
* unregister_event() callback will be called when userspace closes
|
|
|
|
* the eventfd or on cgroup removing. This callback must be set,
|
|
|
|
* if you want provide notification functionality.
|
|
|
|
*/
|
|
|
|
void (*unregister_event)(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd);
|
|
|
|
/*
|
|
|
|
* All fields below needed to unregister event when
|
|
|
|
* userspace closes eventfd.
|
|
|
|
*/
|
|
|
|
poll_table pt;
|
|
|
|
wait_queue_head_t *wqh;
|
|
|
|
wait_queue_entry_t wait;
|
|
|
|
struct work_struct remove;
|
|
|
|
};
|
|
|
|
|
2024-06-25 00:59:02 +00:00
|
|
|
#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
|
|
|
|
#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
|
|
|
|
#define MEMFILE_ATTR(val) ((val) & 0xffff)
|
|
|
|
|
|
|
|
enum {
|
|
|
|
RES_USAGE,
|
|
|
|
RES_LIMIT,
|
|
|
|
RES_MAX_USAGE,
|
|
|
|
RES_FAILCNT,
|
|
|
|
RES_SOFT_LIMIT,
|
|
|
|
};
|
|
|
|
|
2024-06-25 00:59:00 +00:00
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
|
|
static struct lockdep_map memcg_oom_lock_dep_map = {
|
|
|
|
.name = "memcg_oom_lock",
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
DEFINE_SPINLOCK(memcg_oom_lock);
|
2024-06-25 00:58:58 +00:00
|
|
|
|
2024-06-25 00:58:54 +00:00
|
|
|
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
|
|
|
|
struct mem_cgroup_tree_per_node *mctz,
|
|
|
|
unsigned long new_usage_in_excess)
|
|
|
|
{
|
|
|
|
struct rb_node **p = &mctz->rb_root.rb_node;
|
|
|
|
struct rb_node *parent = NULL;
|
|
|
|
struct mem_cgroup_per_node *mz_node;
|
|
|
|
bool rightmost = true;
|
|
|
|
|
|
|
|
if (mz->on_tree)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mz->usage_in_excess = new_usage_in_excess;
|
|
|
|
if (!mz->usage_in_excess)
|
|
|
|
return;
|
|
|
|
while (*p) {
|
|
|
|
parent = *p;
|
|
|
|
mz_node = rb_entry(parent, struct mem_cgroup_per_node,
|
|
|
|
tree_node);
|
|
|
|
if (mz->usage_in_excess < mz_node->usage_in_excess) {
|
|
|
|
p = &(*p)->rb_left;
|
|
|
|
rightmost = false;
|
|
|
|
} else {
|
|
|
|
p = &(*p)->rb_right;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rightmost)
|
|
|
|
mctz->rb_rightmost = &mz->tree_node;
|
|
|
|
|
|
|
|
rb_link_node(&mz->tree_node, parent, p);
|
|
|
|
rb_insert_color(&mz->tree_node, &mctz->rb_root);
|
|
|
|
mz->on_tree = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
|
|
|
|
struct mem_cgroup_tree_per_node *mctz)
|
|
|
|
{
|
|
|
|
if (!mz->on_tree)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (&mz->tree_node == mctz->rb_rightmost)
|
|
|
|
mctz->rb_rightmost = rb_prev(&mz->tree_node);
|
|
|
|
|
|
|
|
rb_erase(&mz->tree_node, &mctz->rb_root);
|
|
|
|
mz->on_tree = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
|
|
|
|
struct mem_cgroup_tree_per_node *mctz)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mctz->lock, flags);
|
|
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
|
|
spin_unlock_irqrestore(&mctz->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
unsigned long nr_pages = page_counter_read(&memcg->memory);
|
|
|
|
unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
|
|
|
|
unsigned long excess = 0;
|
|
|
|
|
|
|
|
if (nr_pages > soft_limit)
|
|
|
|
excess = nr_pages - soft_limit;
|
|
|
|
|
|
|
|
return excess;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:55 +00:00
|
|
|
void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
|
2024-06-25 00:58:54 +00:00
|
|
|
{
|
|
|
|
unsigned long excess;
|
|
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
|
|
|
|
|
|
if (lru_gen_enabled()) {
|
|
|
|
if (soft_limit_excess(memcg))
|
|
|
|
lru_gen_soft_reclaim(memcg, nid);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mctz = soft_limit_tree.rb_tree_per_node[nid];
|
|
|
|
if (!mctz)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Necessary to update all ancestors when hierarchy is used.
|
|
|
|
* because their event counter is not touched.
|
|
|
|
*/
|
|
|
|
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
|
|
|
|
mz = memcg->nodeinfo[nid];
|
|
|
|
excess = soft_limit_excess(memcg);
|
|
|
|
/*
|
|
|
|
* We have to update the tree if mz is on RB-tree or
|
|
|
|
* mem is over its softlimit.
|
|
|
|
*/
|
|
|
|
if (excess || mz->on_tree) {
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&mctz->lock, flags);
|
|
|
|
/* if on-tree, remove it */
|
|
|
|
if (mz->on_tree)
|
|
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
|
|
/*
|
|
|
|
* Insert again. mz->usage_in_excess will be updated.
|
|
|
|
* If excess is 0, no tree ops.
|
|
|
|
*/
|
|
|
|
__mem_cgroup_insert_exceeded(mz, mctz, excess);
|
|
|
|
spin_unlock_irqrestore(&mctz->lock, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:55 +00:00
|
|
|
void memcg1_remove_from_trees(struct mem_cgroup *memcg)
|
2024-06-25 00:58:54 +00:00
|
|
|
{
|
|
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
for_each_node(nid) {
|
|
|
|
mz = memcg->nodeinfo[nid];
|
|
|
|
mctz = soft_limit_tree.rb_tree_per_node[nid];
|
|
|
|
if (mctz)
|
|
|
|
mem_cgroup_remove_exceeded(mz, mctz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mem_cgroup_per_node *
|
|
|
|
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
|
|
|
|
retry:
|
|
|
|
mz = NULL;
|
|
|
|
if (!mctz->rb_rightmost)
|
|
|
|
goto done; /* Nothing to reclaim from */
|
|
|
|
|
|
|
|
mz = rb_entry(mctz->rb_rightmost,
|
|
|
|
struct mem_cgroup_per_node, tree_node);
|
|
|
|
/*
|
|
|
|
* Remove the node now but someone else can add it back,
|
|
|
|
* we will to add it back at the end of reclaim to its correct
|
|
|
|
* position in the tree.
|
|
|
|
*/
|
|
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
|
|
if (!soft_limit_excess(mz->memcg) ||
|
|
|
|
!css_tryget(&mz->memcg->css))
|
|
|
|
goto retry;
|
|
|
|
done:
|
|
|
|
return mz;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mem_cgroup_per_node *
|
|
|
|
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
|
|
|
|
spin_lock_irq(&mctz->lock);
|
|
|
|
mz = __mem_cgroup_largest_soft_limit_node(mctz);
|
|
|
|
spin_unlock_irq(&mctz->lock);
|
|
|
|
return mz;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
|
|
|
|
pg_data_t *pgdat,
|
|
|
|
gfp_t gfp_mask,
|
|
|
|
unsigned long *total_scanned)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *victim = NULL;
|
|
|
|
int total = 0;
|
|
|
|
int loop = 0;
|
|
|
|
unsigned long excess;
|
|
|
|
unsigned long nr_scanned;
|
|
|
|
struct mem_cgroup_reclaim_cookie reclaim = {
|
|
|
|
.pgdat = pgdat,
|
|
|
|
};
|
|
|
|
|
|
|
|
excess = soft_limit_excess(root_memcg);
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
|
|
|
|
if (!victim) {
|
|
|
|
loop++;
|
|
|
|
if (loop >= 2) {
|
|
|
|
/*
|
|
|
|
* If we have not been able to reclaim
|
|
|
|
* anything, it might because there are
|
|
|
|
* no reclaimable pages under this hierarchy
|
|
|
|
*/
|
|
|
|
if (!total)
|
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* We want to do more targeted reclaim.
|
|
|
|
* excess >> 2 is not to excessive so as to
|
|
|
|
* reclaim too much, nor too less that we keep
|
|
|
|
* coming back to reclaim from this cgroup
|
|
|
|
*/
|
|
|
|
if (total >= (excess >> 2) ||
|
|
|
|
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
total += mem_cgroup_shrink_node(victim, gfp_mask, false,
|
|
|
|
pgdat, &nr_scanned);
|
|
|
|
*total_scanned += nr_scanned;
|
|
|
|
if (!soft_limit_excess(root_memcg))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
mem_cgroup_iter_break(root_memcg, victim);
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:55 +00:00
|
|
|
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
|
2024-06-25 00:58:54 +00:00
|
|
|
gfp_t gfp_mask,
|
|
|
|
unsigned long *total_scanned)
|
|
|
|
{
|
|
|
|
unsigned long nr_reclaimed = 0;
|
|
|
|
struct mem_cgroup_per_node *mz, *next_mz = NULL;
|
|
|
|
unsigned long reclaimed;
|
|
|
|
int loop = 0;
|
|
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
|
|
unsigned long excess;
|
|
|
|
|
|
|
|
if (lru_gen_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (order > 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do not even bother to check the largest node if the root
|
|
|
|
* is empty. Do it lockless to prevent lock bouncing. Races
|
|
|
|
* are acceptable as soft limit is best effort anyway.
|
|
|
|
*/
|
|
|
|
if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This loop can run a while, specially if mem_cgroup's continuously
|
|
|
|
* keep exceeding their soft limit and putting the system under
|
|
|
|
* pressure
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
if (next_mz)
|
|
|
|
mz = next_mz;
|
|
|
|
else
|
|
|
|
mz = mem_cgroup_largest_soft_limit_node(mctz);
|
|
|
|
if (!mz)
|
|
|
|
break;
|
|
|
|
|
|
|
|
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
|
|
|
|
gfp_mask, total_scanned);
|
|
|
|
nr_reclaimed += reclaimed;
|
|
|
|
spin_lock_irq(&mctz->lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we failed to reclaim anything from this memory cgroup
|
|
|
|
* it is time to move on to the next cgroup
|
|
|
|
*/
|
|
|
|
next_mz = NULL;
|
|
|
|
if (!reclaimed)
|
|
|
|
next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
|
|
|
|
|
|
|
|
excess = soft_limit_excess(mz->memcg);
|
|
|
|
/*
|
|
|
|
* One school of thought says that we should not add
|
|
|
|
* back the node to the tree if reclaim returns 0.
|
|
|
|
* But our reclaim could return 0, simply because due
|
|
|
|
* to priority we are exposing a smaller subset of
|
|
|
|
* memory to reclaim from. Consider this as a longer
|
|
|
|
* term TODO.
|
|
|
|
*/
|
|
|
|
/* If excess == 0, no tree ops */
|
|
|
|
__mem_cgroup_insert_exceeded(mz, mctz, excess);
|
|
|
|
spin_unlock_irq(&mctz->lock);
|
|
|
|
css_put(&mz->memcg->css);
|
|
|
|
loop++;
|
|
|
|
/*
|
|
|
|
* Could not reclaim anything and there are no more
|
|
|
|
* mem cgroups to try or we seem to be looping without
|
|
|
|
* reclaiming anything.
|
|
|
|
*/
|
|
|
|
if (!nr_reclaimed &&
|
|
|
|
(next_mz == NULL ||
|
|
|
|
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
|
|
|
|
break;
|
|
|
|
} while (!nr_reclaimed);
|
|
|
|
if (next_mz)
|
|
|
|
css_put(&next_mz->memcg->css);
|
|
|
|
return nr_reclaimed;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:56 +00:00
|
|
|
/*
|
|
|
|
* A routine for checking "mem" is under move_account() or not.
|
|
|
|
*
|
|
|
|
* Checking a cgroup is mc.from or mc.to or under hierarchy of
|
|
|
|
* moving cgroups. This is for waiting at high-memory pressure
|
|
|
|
* caused by "move".
|
|
|
|
*/
|
|
|
|
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *from;
|
|
|
|
struct mem_cgroup *to;
|
|
|
|
bool ret = false;
|
|
|
|
/*
|
|
|
|
* Unlike task_move routines, we access mc.to, mc.from not under
|
|
|
|
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
|
|
|
|
*/
|
|
|
|
spin_lock(&mc.lock);
|
|
|
|
from = mc.from;
|
|
|
|
to = mc.to;
|
|
|
|
if (!from)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
ret = mem_cgroup_is_descendant(from, memcg) ||
|
|
|
|
mem_cgroup_is_descendant(to, memcg);
|
|
|
|
unlock:
|
|
|
|
spin_unlock(&mc.lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:57 +00:00
|
|
|
bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
if (mc.moving_task && current != mc.moving_task) {
|
|
|
|
if (mem_cgroup_under_move(memcg)) {
|
|
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
/* moving charge context might have finished. */
|
|
|
|
if (mc.moving_task)
|
|
|
|
schedule();
|
|
|
|
finish_wait(&mc.waitq, &wait);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* folio_memcg_lock - Bind a folio to its memcg.
|
|
|
|
* @folio: The folio.
|
|
|
|
*
|
|
|
|
* This function prevents unlocked LRU folios from being moved to
|
|
|
|
* another cgroup.
|
|
|
|
*
|
|
|
|
* It ensures lifetime of the bound memcg. The caller is responsible
|
|
|
|
* for the lifetime of the folio.
|
|
|
|
*/
|
|
|
|
void folio_memcg_lock(struct folio *folio)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The RCU lock is held throughout the transaction. The fast
|
|
|
|
* path can get away without acquiring the memcg->move_lock
|
|
|
|
* because page moving starts with an RCU grace period.
|
|
|
|
*/
|
|
|
|
rcu_read_lock();
|
|
|
|
|
|
|
|
if (mem_cgroup_disabled())
|
|
|
|
return;
|
|
|
|
again:
|
|
|
|
memcg = folio_memcg(folio);
|
|
|
|
if (unlikely(!memcg))
|
|
|
|
return;
|
|
|
|
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
|
|
local_irq_save(flags);
|
|
|
|
might_lock(&memcg->move_lock);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (atomic_read(&memcg->moving_account) <= 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&memcg->move_lock, flags);
|
|
|
|
if (memcg != folio_memcg(folio)) {
|
|
|
|
spin_unlock_irqrestore(&memcg->move_lock, flags);
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When charge migration first begins, we can have multiple
|
|
|
|
* critical sections holding the fast-path RCU lock and one
|
|
|
|
* holding the slowpath move_lock. Track the task who has the
|
|
|
|
* move_lock for folio_memcg_unlock().
|
|
|
|
*/
|
|
|
|
memcg->move_lock_task = current;
|
|
|
|
memcg->move_lock_flags = flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
if (memcg && memcg->move_lock_task == current) {
|
|
|
|
unsigned long flags = memcg->move_lock_flags;
|
|
|
|
|
|
|
|
memcg->move_lock_task = NULL;
|
|
|
|
memcg->move_lock_flags = 0;
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&memcg->move_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* folio_memcg_unlock - Release the binding between a folio and its memcg.
|
|
|
|
* @folio: The folio.
|
|
|
|
*
|
|
|
|
* This releases the binding created by folio_memcg_lock(). This does
|
|
|
|
* not change the accounting of this folio to its memcg, but it does
|
|
|
|
* permit others to change it.
|
|
|
|
*/
|
|
|
|
void folio_memcg_unlock(struct folio *folio)
|
|
|
|
{
|
|
|
|
__folio_memcg_unlock(folio_memcg(folio));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
/**
|
|
|
|
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
|
|
|
|
* @entry: swap entry to be moved
|
|
|
|
* @from: mem_cgroup which the entry is moved from
|
|
|
|
* @to: mem_cgroup which the entry is moved to
|
|
|
|
*
|
|
|
|
* It succeeds only when the swap_cgroup's record for this entry is the same
|
|
|
|
* as the mem_cgroup's id of @from.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -EINVAL on failure.
|
|
|
|
*
|
|
|
|
* The caller must have charged to @to, IOW, called page_counter_charge() about
|
|
|
|
* both res and memsw, and called css_get().
|
|
|
|
*/
|
|
|
|
static int mem_cgroup_move_swap_account(swp_entry_t entry,
|
|
|
|
struct mem_cgroup *from, struct mem_cgroup *to)
|
|
|
|
{
|
|
|
|
unsigned short old_id, new_id;
|
|
|
|
|
|
|
|
old_id = mem_cgroup_id(from);
|
|
|
|
new_id = mem_cgroup_id(to);
|
|
|
|
|
|
|
|
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
|
|
|
|
mod_memcg_state(from, MEMCG_SWAP, -1);
|
|
|
|
mod_memcg_state(to, MEMCG_SWAP, 1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
|
|
|
|
struct mem_cgroup *from, struct mem_cgroup *to)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2024-06-25 00:59:02 +00:00
|
|
|
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
|
2024-06-25 00:58:56 +00:00
|
|
|
struct cftype *cft)
|
|
|
|
{
|
|
|
|
return mem_cgroup_from_css(css)->move_charge_at_immigrate;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_MMU
|
2024-06-25 00:59:02 +00:00
|
|
|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
|
2024-06-25 00:58:56 +00:00
|
|
|
struct cftype *cft, u64 val)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
|
|
|
|
pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
|
|
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
|
|
"depend on this functionality.\n");
|
|
|
|
|
|
|
|
if (val & ~MOVE_MASK)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No kind of locking is needed in here, because ->can_attach() will
|
|
|
|
* check this value once in the beginning of the process, and then carry
|
|
|
|
* on with stale data. This means that changes to this value will only
|
|
|
|
* affect task migrations starting after the change.
|
|
|
|
*/
|
|
|
|
memcg->move_charge_at_immigrate = val;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
2024-06-25 00:59:02 +00:00
|
|
|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
|
2024-06-25 00:58:56 +00:00
|
|
|
struct cftype *cft, u64 val)
|
|
|
|
{
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
/* Handlers for move charge at task migration. */
|
|
|
|
static int mem_cgroup_do_precharge(unsigned long count)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Try a single bulk charge without reclaim first, kswapd may wake */
|
|
|
|
ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
|
|
|
|
if (!ret) {
|
|
|
|
mc.precharge += count;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try charges one by one with reclaim, but do not retry */
|
|
|
|
while (count--) {
|
|
|
|
ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
mc.precharge++;
|
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
union mc_target {
|
|
|
|
struct folio *folio;
|
|
|
|
swp_entry_t ent;
|
|
|
|
};
|
|
|
|
|
|
|
|
enum mc_target_type {
|
|
|
|
MC_TARGET_NONE = 0,
|
|
|
|
MC_TARGET_PAGE,
|
|
|
|
MC_TARGET_SWAP,
|
|
|
|
MC_TARGET_DEVICE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pte_t ptent)
|
|
|
|
{
|
|
|
|
struct page *page = vm_normal_page(vma, addr, ptent);
|
|
|
|
|
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
if (PageAnon(page)) {
|
|
|
|
if (!(mc.flags & MOVE_ANON))
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
if (!(mc.flags & MOVE_FILE))
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
get_page(page);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
|
|
|
|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
|
|
|
|
pte_t ptent, swp_entry_t *entry)
|
|
|
|
{
|
|
|
|
struct page *page = NULL;
|
|
|
|
swp_entry_t ent = pte_to_swp_entry(ptent);
|
|
|
|
|
|
|
|
if (!(mc.flags & MOVE_ANON))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle device private pages that are not accessible by the CPU, but
|
|
|
|
* stored as special swap entries in the page table.
|
|
|
|
*/
|
|
|
|
if (is_device_private_entry(ent)) {
|
|
|
|
page = pfn_swap_entry_to_page(ent);
|
|
|
|
if (!get_page_unless_zero(page))
|
|
|
|
return NULL;
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (non_swap_entry(ent))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Because swap_cache_get_folio() updates some statistics counter,
|
|
|
|
* we call find_get_page() with swapper_space directly.
|
|
|
|
*/
|
|
|
|
page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
|
|
|
|
entry->val = ent.val;
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
|
|
|
|
pte_t ptent, swp_entry_t *entry)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pte_t ptent)
|
|
|
|
{
|
|
|
|
unsigned long index;
|
|
|
|
struct folio *folio;
|
|
|
|
|
|
|
|
if (!vma->vm_file) /* anonymous vma */
|
|
|
|
return NULL;
|
|
|
|
if (!(mc.flags & MOVE_FILE))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* folio is moved even if it's not RSS of this task(page-faulted). */
|
|
|
|
/* shmem/tmpfs may report page out on swap: account for that too. */
|
|
|
|
index = linear_page_index(vma, addr);
|
|
|
|
folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
|
|
|
|
if (IS_ERR(folio))
|
|
|
|
return NULL;
|
|
|
|
return folio_file_page(folio, index);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mem_cgroup_move_account - move account of the folio
|
|
|
|
* @folio: The folio.
|
|
|
|
* @compound: charge the page as compound or small page
|
|
|
|
* @from: mem_cgroup which the folio is moved from.
|
|
|
|
* @to: mem_cgroup which the folio is moved to. @from != @to.
|
|
|
|
*
|
|
|
|
* The folio must be locked and not on the LRU.
|
|
|
|
*
|
|
|
|
* This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
|
|
|
|
* from old cgroup.
|
|
|
|
*/
|
|
|
|
static int mem_cgroup_move_account(struct folio *folio,
|
|
|
|
bool compound,
|
|
|
|
struct mem_cgroup *from,
|
|
|
|
struct mem_cgroup *to)
|
|
|
|
{
|
|
|
|
struct lruvec *from_vec, *to_vec;
|
|
|
|
struct pglist_data *pgdat;
|
|
|
|
unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
|
|
|
|
int nid, ret;
|
|
|
|
|
|
|
|
VM_BUG_ON(from == to);
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
VM_BUG_ON(compound && !folio_test_large(folio));
|
|
|
|
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (folio_memcg(folio) != from)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
pgdat = folio_pgdat(folio);
|
|
|
|
from_vec = mem_cgroup_lruvec(from, pgdat);
|
|
|
|
to_vec = mem_cgroup_lruvec(to, pgdat);
|
|
|
|
|
|
|
|
folio_memcg_lock(folio);
|
|
|
|
|
|
|
|
if (folio_test_anon(folio)) {
|
|
|
|
if (folio_mapped(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
|
|
|
|
if (folio_test_pmd_mappable(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_ANON_THPS,
|
|
|
|
-nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_ANON_THPS,
|
|
|
|
nr_pages);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
|
|
|
|
|
|
|
|
if (folio_test_swapbacked(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (folio_mapped(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (folio_test_dirty(folio)) {
|
|
|
|
struct address_space *mapping = folio_mapping(folio);
|
|
|
|
|
|
|
|
if (mapping_can_writeback(mapping)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
|
|
|
|
-nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
|
|
|
|
nr_pages);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
if (folio_test_swapcache(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (folio_test_writeback(folio)) {
|
|
|
|
__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
|
|
|
|
__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* All state has been migrated, let's switch to the new memcg.
|
|
|
|
*
|
|
|
|
* It is safe to change page's memcg here because the page
|
|
|
|
* is referenced, charged, isolated, and locked: we can't race
|
|
|
|
* with (un)charging, migration, LRU putback, or anything else
|
|
|
|
* that would rely on a stable page's memory cgroup.
|
|
|
|
*
|
|
|
|
* Note that folio_memcg_lock is a memcg lock, not a page lock,
|
|
|
|
* to save space. As soon as we switch page's memory cgroup to a
|
|
|
|
* new memcg that isn't locked, the above state can change
|
|
|
|
* concurrently again. Make sure we're truly done with it.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
css_get(&to->css);
|
|
|
|
css_put(&from->css);
|
|
|
|
|
|
|
|
folio->memcg_data = (unsigned long)to;
|
|
|
|
|
|
|
|
__folio_memcg_unlock(from);
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
nid = folio_nid(folio);
|
|
|
|
|
|
|
|
local_irq_disable();
|
|
|
|
mem_cgroup_charge_statistics(to, nr_pages);
|
2024-06-25 00:58:59 +00:00
|
|
|
memcg1_check_events(to, nid);
|
2024-06-25 00:58:56 +00:00
|
|
|
mem_cgroup_charge_statistics(from, -nr_pages);
|
2024-06-25 00:58:59 +00:00
|
|
|
memcg1_check_events(from, nid);
|
2024-06-25 00:58:56 +00:00
|
|
|
local_irq_enable();
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* get_mctgt_type - get target type of moving charge
|
|
|
|
* @vma: the vma the pte to be checked belongs
|
|
|
|
* @addr: the address corresponding to the pte to be checked
|
|
|
|
* @ptent: the pte to be checked
|
|
|
|
* @target: the pointer the target page or swap ent will be stored(can be NULL)
|
|
|
|
*
|
|
|
|
* Context: Called with pte lock held.
|
|
|
|
* Return:
|
|
|
|
* * MC_TARGET_NONE - If the pte is not a target for move charge.
|
|
|
|
* * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
|
|
|
|
* move charge. If @target is not NULL, the folio is stored in target->folio
|
|
|
|
* with extra refcnt taken (Caller should release it).
|
|
|
|
* * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
|
|
|
|
* target for charge migration. If @target is not NULL, the entry is
|
|
|
|
* stored in target->ent.
|
|
|
|
* * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
|
|
|
|
* thus not on the lru. For now such page is charged like a regular page
|
|
|
|
* would be as it is just special memory taking the place of a regular page.
|
|
|
|
* See Documentations/vm/hmm.txt and include/linux/hmm.h
|
|
|
|
*/
|
|
|
|
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pte_t ptent, union mc_target *target)
|
|
|
|
{
|
|
|
|
struct page *page = NULL;
|
|
|
|
struct folio *folio;
|
|
|
|
enum mc_target_type ret = MC_TARGET_NONE;
|
|
|
|
swp_entry_t ent = { .val = 0 };
|
|
|
|
|
|
|
|
if (pte_present(ptent))
|
|
|
|
page = mc_handle_present_pte(vma, addr, ptent);
|
|
|
|
else if (pte_none_mostly(ptent))
|
|
|
|
/*
|
|
|
|
* PTE markers should be treated as a none pte here, separated
|
|
|
|
* from other swap handling below.
|
|
|
|
*/
|
|
|
|
page = mc_handle_file_pte(vma, addr, ptent);
|
|
|
|
else if (is_swap_pte(ptent))
|
|
|
|
page = mc_handle_swap_pte(vma, ptent, &ent);
|
|
|
|
|
|
|
|
if (page)
|
|
|
|
folio = page_folio(page);
|
|
|
|
if (target && page) {
|
|
|
|
if (!folio_trylock(folio)) {
|
|
|
|
folio_put(folio);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* page_mapped() must be stable during the move. This
|
|
|
|
* pte is locked, so if it's present, the page cannot
|
|
|
|
* become unmapped. If it isn't, we have only partial
|
|
|
|
* control over the mapped state: the page lock will
|
|
|
|
* prevent new faults against pagecache and swapcache,
|
|
|
|
* so an unmapped page cannot become mapped. However,
|
|
|
|
* if the page is already mapped elsewhere, it can
|
|
|
|
* unmap, and there is nothing we can do about it.
|
|
|
|
* Alas, skip moving the page in this case.
|
|
|
|
*/
|
|
|
|
if (!pte_present(ptent) && page_mapped(page)) {
|
|
|
|
folio_unlock(folio);
|
|
|
|
folio_put(folio);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!page && !ent.val)
|
|
|
|
return ret;
|
|
|
|
if (page) {
|
|
|
|
/*
|
|
|
|
* Do only loose check w/o serialization.
|
|
|
|
* mem_cgroup_move_account() checks the page is valid or
|
|
|
|
* not under LRU exclusion.
|
|
|
|
*/
|
|
|
|
if (folio_memcg(folio) == mc.from) {
|
|
|
|
ret = MC_TARGET_PAGE;
|
|
|
|
if (folio_is_device_private(folio) ||
|
|
|
|
folio_is_device_coherent(folio))
|
|
|
|
ret = MC_TARGET_DEVICE;
|
|
|
|
if (target)
|
|
|
|
target->folio = folio;
|
|
|
|
}
|
|
|
|
if (!ret || !target) {
|
|
|
|
if (target)
|
|
|
|
folio_unlock(folio);
|
|
|
|
folio_put(folio);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* There is a swap entry and a page doesn't exist or isn't charged.
|
|
|
|
* But we cannot move a tail-page in a THP.
|
|
|
|
*/
|
|
|
|
if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
|
|
|
|
mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
|
|
|
|
ret = MC_TARGET_SWAP;
|
|
|
|
if (target)
|
|
|
|
target->ent = ent;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
/*
|
|
|
|
* We don't consider PMD mapped swapping or file mapped pages because THP does
|
|
|
|
* not support them for now.
|
|
|
|
* Caller should make sure that pmd_trans_huge(pmd) is true.
|
|
|
|
*/
|
|
|
|
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pmd_t pmd, union mc_target *target)
|
|
|
|
{
|
|
|
|
struct page *page = NULL;
|
|
|
|
struct folio *folio;
|
|
|
|
enum mc_target_type ret = MC_TARGET_NONE;
|
|
|
|
|
|
|
|
if (unlikely(is_swap_pmd(pmd))) {
|
|
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
|
|
!is_pmd_migration_entry(pmd));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
page = pmd_page(pmd);
|
|
|
|
VM_BUG_ON_PAGE(!page || !PageHead(page), page);
|
|
|
|
folio = page_folio(page);
|
|
|
|
if (!(mc.flags & MOVE_ANON))
|
|
|
|
return ret;
|
|
|
|
if (folio_memcg(folio) == mc.from) {
|
|
|
|
ret = MC_TARGET_PAGE;
|
|
|
|
if (target) {
|
|
|
|
folio_get(folio);
|
|
|
|
if (!folio_trylock(folio)) {
|
|
|
|
folio_put(folio);
|
|
|
|
return MC_TARGET_NONE;
|
|
|
|
}
|
|
|
|
target->folio = folio;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pmd_t pmd, union mc_target *target)
|
|
|
|
{
|
|
|
|
return MC_TARGET_NONE;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
|
|
|
|
unsigned long addr, unsigned long end,
|
|
|
|
struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
struct vm_area_struct *vma = walk->vma;
|
|
|
|
pte_t *pte;
|
|
|
|
spinlock_t *ptl;
|
|
|
|
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
|
|
if (ptl) {
|
|
|
|
/*
|
|
|
|
* Note their can not be MC_TARGET_DEVICE for now as we do not
|
|
|
|
* support transparent huge page with MEMORY_DEVICE_PRIVATE but
|
|
|
|
* this might change.
|
|
|
|
*/
|
|
|
|
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
|
|
|
|
mc.precharge += HPAGE_PMD_NR;
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
|
|
if (!pte)
|
|
|
|
return 0;
|
|
|
|
for (; addr != end; pte++, addr += PAGE_SIZE)
|
|
|
|
if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
|
|
|
|
mc.precharge++; /* increment precharge temporarily */
|
|
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
|
|
cond_resched();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct mm_walk_ops precharge_walk_ops = {
|
|
|
|
.pmd_entry = mem_cgroup_count_precharge_pte_range,
|
|
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
unsigned long precharge;
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
|
|
|
|
precharge = mc.precharge;
|
|
|
|
mc.precharge = 0;
|
|
|
|
|
|
|
|
return precharge;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
unsigned long precharge = mem_cgroup_count_precharge(mm);
|
|
|
|
|
|
|
|
VM_BUG_ON(mc.moving_task);
|
|
|
|
mc.moving_task = current;
|
|
|
|
return mem_cgroup_do_precharge(precharge);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
|
|
|
|
static void __mem_cgroup_clear_mc(void)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *from = mc.from;
|
|
|
|
struct mem_cgroup *to = mc.to;
|
|
|
|
|
|
|
|
/* we must uncharge all the leftover precharges from mc.to */
|
|
|
|
if (mc.precharge) {
|
|
|
|
mem_cgroup_cancel_charge(mc.to, mc.precharge);
|
|
|
|
mc.precharge = 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
|
|
|
|
* we must uncharge here.
|
|
|
|
*/
|
|
|
|
if (mc.moved_charge) {
|
|
|
|
mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
|
|
|
|
mc.moved_charge = 0;
|
|
|
|
}
|
|
|
|
/* we must fixup refcnts and charges */
|
|
|
|
if (mc.moved_swap) {
|
|
|
|
/* uncharge swap account from the old cgroup */
|
|
|
|
if (!mem_cgroup_is_root(mc.from))
|
|
|
|
page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
|
|
|
|
|
|
|
|
mem_cgroup_id_put_many(mc.from, mc.moved_swap);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* we charged both to->memory and to->memsw, so we
|
|
|
|
* should uncharge to->memory.
|
|
|
|
*/
|
|
|
|
if (!mem_cgroup_is_root(mc.to))
|
|
|
|
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
|
|
|
|
|
|
|
|
mc.moved_swap = 0;
|
|
|
|
}
|
2024-06-25 00:59:01 +00:00
|
|
|
memcg1_oom_recover(from);
|
|
|
|
memcg1_oom_recover(to);
|
2024-06-25 00:58:56 +00:00
|
|
|
wake_up_all(&mc.waitq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_clear_mc(void)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = mc.mm;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* we must clear moving_task before waking up waiters at the end of
|
|
|
|
* task migration.
|
|
|
|
*/
|
|
|
|
mc.moving_task = NULL;
|
|
|
|
__mem_cgroup_clear_mc();
|
|
|
|
spin_lock(&mc.lock);
|
|
|
|
mc.from = NULL;
|
|
|
|
mc.to = NULL;
|
|
|
|
mc.mm = NULL;
|
|
|
|
spin_unlock(&mc.lock);
|
|
|
|
|
|
|
|
mmput(mm);
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:57 +00:00
|
|
|
int memcg1_can_attach(struct cgroup_taskset *tset)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
struct cgroup_subsys_state *css;
|
|
|
|
struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
|
|
|
|
struct mem_cgroup *from;
|
|
|
|
struct task_struct *leader, *p;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
unsigned long move_flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/* charge immigration isn't supported on the default hierarchy */
|
|
|
|
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Multi-process migrations only happen on the default hierarchy
|
|
|
|
* where charge immigration is not used. Perform charge
|
|
|
|
* immigration if @tset contains a leader and whine if there are
|
|
|
|
* multiple.
|
|
|
|
*/
|
|
|
|
p = NULL;
|
|
|
|
cgroup_taskset_for_each_leader(leader, css, tset) {
|
|
|
|
WARN_ON_ONCE(p);
|
|
|
|
p = leader;
|
|
|
|
memcg = mem_cgroup_from_css(css);
|
|
|
|
}
|
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We are now committed to this value whatever it is. Changes in this
|
|
|
|
* tunable will only affect upcoming migrations, not the current one.
|
|
|
|
* So we need to save it, and keep it going.
|
|
|
|
*/
|
|
|
|
move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
|
|
|
|
if (!move_flags)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
from = mem_cgroup_from_task(p);
|
|
|
|
|
|
|
|
VM_BUG_ON(from == memcg);
|
|
|
|
|
|
|
|
mm = get_task_mm(p);
|
|
|
|
if (!mm)
|
|
|
|
return 0;
|
|
|
|
/* We move charges only when we move a owner of the mm */
|
|
|
|
if (mm->owner == p) {
|
|
|
|
VM_BUG_ON(mc.from);
|
|
|
|
VM_BUG_ON(mc.to);
|
|
|
|
VM_BUG_ON(mc.precharge);
|
|
|
|
VM_BUG_ON(mc.moved_charge);
|
|
|
|
VM_BUG_ON(mc.moved_swap);
|
|
|
|
|
|
|
|
spin_lock(&mc.lock);
|
|
|
|
mc.mm = mm;
|
|
|
|
mc.from = from;
|
|
|
|
mc.to = memcg;
|
|
|
|
mc.flags = move_flags;
|
|
|
|
spin_unlock(&mc.lock);
|
|
|
|
/* We set mc.moving_task later */
|
|
|
|
|
|
|
|
ret = mem_cgroup_precharge_mc(mm);
|
|
|
|
if (ret)
|
|
|
|
mem_cgroup_clear_mc();
|
|
|
|
} else {
|
|
|
|
mmput(mm);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:57 +00:00
|
|
|
void memcg1_cancel_attach(struct cgroup_taskset *tset)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
if (mc.to)
|
|
|
|
mem_cgroup_clear_mc();
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
|
|
|
|
unsigned long addr, unsigned long end,
|
|
|
|
struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
struct vm_area_struct *vma = walk->vma;
|
|
|
|
pte_t *pte;
|
|
|
|
spinlock_t *ptl;
|
|
|
|
enum mc_target_type target_type;
|
|
|
|
union mc_target target;
|
|
|
|
struct folio *folio;
|
|
|
|
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
|
|
if (ptl) {
|
|
|
|
if (mc.precharge < HPAGE_PMD_NR) {
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
|
|
|
|
if (target_type == MC_TARGET_PAGE) {
|
|
|
|
folio = target.folio;
|
|
|
|
if (folio_isolate_lru(folio)) {
|
|
|
|
if (!mem_cgroup_move_account(folio, true,
|
|
|
|
mc.from, mc.to)) {
|
|
|
|
mc.precharge -= HPAGE_PMD_NR;
|
|
|
|
mc.moved_charge += HPAGE_PMD_NR;
|
|
|
|
}
|
|
|
|
folio_putback_lru(folio);
|
|
|
|
}
|
|
|
|
folio_unlock(folio);
|
|
|
|
folio_put(folio);
|
|
|
|
} else if (target_type == MC_TARGET_DEVICE) {
|
|
|
|
folio = target.folio;
|
|
|
|
if (!mem_cgroup_move_account(folio, true,
|
|
|
|
mc.from, mc.to)) {
|
|
|
|
mc.precharge -= HPAGE_PMD_NR;
|
|
|
|
mc.moved_charge += HPAGE_PMD_NR;
|
|
|
|
}
|
|
|
|
folio_unlock(folio);
|
|
|
|
folio_put(folio);
|
|
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
retry:
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
|
|
if (!pte)
|
|
|
|
return 0;
|
|
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
|
|
pte_t ptent = ptep_get(pte++);
|
|
|
|
bool device = false;
|
|
|
|
swp_entry_t ent;
|
|
|
|
|
|
|
|
if (!mc.precharge)
|
|
|
|
break;
|
|
|
|
|
|
|
|
switch (get_mctgt_type(vma, addr, ptent, &target)) {
|
|
|
|
case MC_TARGET_DEVICE:
|
|
|
|
device = true;
|
|
|
|
fallthrough;
|
|
|
|
case MC_TARGET_PAGE:
|
|
|
|
folio = target.folio;
|
|
|
|
/*
|
|
|
|
* We can have a part of the split pmd here. Moving it
|
|
|
|
* can be done but it would be too convoluted so simply
|
|
|
|
* ignore such a partial THP and keep it in original
|
|
|
|
* memcg. There should be somebody mapping the head.
|
|
|
|
*/
|
|
|
|
if (folio_test_large(folio))
|
|
|
|
goto put;
|
|
|
|
if (!device && !folio_isolate_lru(folio))
|
|
|
|
goto put;
|
|
|
|
if (!mem_cgroup_move_account(folio, false,
|
|
|
|
mc.from, mc.to)) {
|
|
|
|
mc.precharge--;
|
|
|
|
/* we uncharge from mc.from later. */
|
|
|
|
mc.moved_charge++;
|
|
|
|
}
|
|
|
|
if (!device)
|
|
|
|
folio_putback_lru(folio);
|
|
|
|
put: /* get_mctgt_type() gets & locks the page */
|
|
|
|
folio_unlock(folio);
|
|
|
|
folio_put(folio);
|
|
|
|
break;
|
|
|
|
case MC_TARGET_SWAP:
|
|
|
|
ent = target.ent;
|
|
|
|
if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
|
|
|
|
mc.precharge--;
|
|
|
|
mem_cgroup_id_get_many(mc.to, 1);
|
|
|
|
/* we fixup other refcnts and charges later. */
|
|
|
|
mc.moved_swap++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
|
|
cond_resched();
|
|
|
|
|
|
|
|
if (addr != end) {
|
|
|
|
/*
|
|
|
|
* We have consumed all precharges we got in can_attach().
|
|
|
|
* We try charge one by one, but don't do any additional
|
|
|
|
* charges to mc.to if we have failed in charge once in attach()
|
|
|
|
* phase.
|
|
|
|
*/
|
|
|
|
ret = mem_cgroup_do_precharge(1);
|
|
|
|
if (!ret)
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct mm_walk_ops charge_walk_ops = {
|
|
|
|
.pmd_entry = mem_cgroup_move_charge_pte_range,
|
|
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void mem_cgroup_move_charge(void)
|
|
|
|
{
|
|
|
|
lru_add_drain_all();
|
|
|
|
/*
|
|
|
|
* Signal folio_memcg_lock() to take the memcg's move_lock
|
|
|
|
* while we're moving its pages to another memcg. Then wait
|
|
|
|
* for already started RCU-only updates to finish.
|
|
|
|
*/
|
|
|
|
atomic_inc(&mc.from->moving_account);
|
|
|
|
synchronize_rcu();
|
|
|
|
retry:
|
|
|
|
if (unlikely(!mmap_read_trylock(mc.mm))) {
|
|
|
|
/*
|
|
|
|
* Someone who are holding the mmap_lock might be waiting in
|
|
|
|
* waitq. So we cancel all extra charges, wake up all waiters,
|
|
|
|
* and retry. Because we cancel precharges, we might not be able
|
|
|
|
* to move enough charges, but moving charge is a best-effort
|
|
|
|
* feature anyway, so it wouldn't be a big problem.
|
|
|
|
*/
|
|
|
|
__mem_cgroup_clear_mc();
|
|
|
|
cond_resched();
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* When we have consumed all precharges and failed in doing
|
|
|
|
* additional charge, the page walk just aborts.
|
|
|
|
*/
|
|
|
|
walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
|
|
|
|
mmap_read_unlock(mc.mm);
|
|
|
|
atomic_dec(&mc.from->moving_account);
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:58:57 +00:00
|
|
|
void memcg1_move_task(void)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
if (mc.to) {
|
|
|
|
mem_cgroup_move_charge();
|
|
|
|
mem_cgroup_clear_mc();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* !CONFIG_MMU */
|
2024-06-25 00:58:57 +00:00
|
|
|
int memcg1_can_attach(struct cgroup_taskset *tset)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2024-06-25 00:58:57 +00:00
|
|
|
void memcg1_cancel_attach(struct cgroup_taskset *tset)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
}
|
2024-06-25 00:58:57 +00:00
|
|
|
void memcg1_move_task(void)
|
2024-06-25 00:58:56 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2024-06-25 00:58:58 +00:00
|
|
|
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_threshold_ary *t;
|
|
|
|
unsigned long usage;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
if (!swap)
|
|
|
|
t = rcu_dereference(memcg->thresholds.primary);
|
|
|
|
else
|
|
|
|
t = rcu_dereference(memcg->memsw_thresholds.primary);
|
|
|
|
|
|
|
|
if (!t)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
usage = mem_cgroup_usage(memcg, swap);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* current_threshold points to threshold just below or equal to usage.
|
|
|
|
* If it's not true, a threshold was crossed after last
|
|
|
|
* call of __mem_cgroup_threshold().
|
|
|
|
*/
|
|
|
|
i = t->current_threshold;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Iterate backward over array of thresholds starting from
|
|
|
|
* current_threshold and check if a threshold is crossed.
|
|
|
|
* If none of thresholds below usage is crossed, we read
|
|
|
|
* only one element of the array here.
|
|
|
|
*/
|
|
|
|
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
|
|
|
|
eventfd_signal(t->entries[i].eventfd);
|
|
|
|
|
|
|
|
/* i = current_threshold + 1 */
|
|
|
|
i++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Iterate forward over array of thresholds starting from
|
|
|
|
* current_threshold+1 and check if a threshold is crossed.
|
|
|
|
* If none of thresholds above usage is crossed, we read
|
|
|
|
* only one element of the array here.
|
|
|
|
*/
|
|
|
|
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
|
|
|
|
eventfd_signal(t->entries[i].eventfd);
|
|
|
|
|
|
|
|
/* Update current_threshold */
|
|
|
|
t->current_threshold = i - 1;
|
|
|
|
unlock:
|
|
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
while (memcg) {
|
|
|
|
__mem_cgroup_threshold(memcg, false);
|
|
|
|
if (do_memsw_account())
|
|
|
|
__mem_cgroup_threshold(memcg, true);
|
|
|
|
|
|
|
|
memcg = parent_mem_cgroup(memcg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check events in order.
|
|
|
|
*
|
|
|
|
*/
|
2024-06-25 00:58:59 +00:00
|
|
|
void memcg1_check_events(struct mem_cgroup *memcg, int nid)
|
2024-06-25 00:58:58 +00:00
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* threshold event is triggered in finer grain than soft limit */
|
|
|
|
if (unlikely(mem_cgroup_event_ratelimit(memcg,
|
|
|
|
MEM_CGROUP_TARGET_THRESH))) {
|
|
|
|
bool do_softlimit;
|
|
|
|
|
|
|
|
do_softlimit = mem_cgroup_event_ratelimit(memcg,
|
|
|
|
MEM_CGROUP_TARGET_SOFTLIMIT);
|
|
|
|
mem_cgroup_threshold(memcg);
|
|
|
|
if (unlikely(do_softlimit))
|
|
|
|
memcg1_update_tree(memcg, nid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int compare_thresholds(const void *a, const void *b)
|
|
|
|
{
|
|
|
|
const struct mem_cgroup_threshold *_a = a;
|
|
|
|
const struct mem_cgroup_threshold *_b = b;
|
|
|
|
|
|
|
|
if (_a->threshold > _b->threshold)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (_a->threshold < _b->threshold)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_eventfd_list *ev;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
list_for_each_entry(ev, &memcg->oom_notify, list)
|
|
|
|
eventfd_signal(ev->eventfd);
|
|
|
|
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:59:00 +00:00
|
|
|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
|
2024-06-25 00:58:58 +00:00
|
|
|
{
|
|
|
|
struct mem_cgroup *iter;
|
|
|
|
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
|
|
mem_cgroup_oom_notify_cb(iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args, enum res_type type)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_thresholds *thresholds;
|
|
|
|
struct mem_cgroup_threshold_ary *new;
|
|
|
|
unsigned long threshold;
|
|
|
|
unsigned long usage;
|
|
|
|
int i, size, ret;
|
|
|
|
|
|
|
|
ret = page_counter_memparse(args, "-1", &threshold);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
mutex_lock(&memcg->thresholds_lock);
|
|
|
|
|
|
|
|
if (type == _MEM) {
|
|
|
|
thresholds = &memcg->thresholds;
|
|
|
|
usage = mem_cgroup_usage(memcg, false);
|
|
|
|
} else if (type == _MEMSWAP) {
|
|
|
|
thresholds = &memcg->memsw_thresholds;
|
|
|
|
usage = mem_cgroup_usage(memcg, true);
|
|
|
|
} else
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
/* Check if a threshold crossed before adding a new one */
|
|
|
|
if (thresholds->primary)
|
|
|
|
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
|
|
|
|
|
|
|
|
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
|
|
|
|
|
|
|
|
/* Allocate memory for new array of thresholds */
|
|
|
|
new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
|
|
|
|
if (!new) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
new->size = size;
|
|
|
|
|
|
|
|
/* Copy thresholds (if any) to new array */
|
|
|
|
if (thresholds->primary)
|
|
|
|
memcpy(new->entries, thresholds->primary->entries,
|
|
|
|
flex_array_size(new, entries, size - 1));
|
|
|
|
|
|
|
|
/* Add new threshold */
|
|
|
|
new->entries[size - 1].eventfd = eventfd;
|
|
|
|
new->entries[size - 1].threshold = threshold;
|
|
|
|
|
|
|
|
/* Sort thresholds. Registering of new threshold isn't time-critical */
|
|
|
|
sort(new->entries, size, sizeof(*new->entries),
|
|
|
|
compare_thresholds, NULL);
|
|
|
|
|
|
|
|
/* Find current threshold */
|
|
|
|
new->current_threshold = -1;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
|
|
if (new->entries[i].threshold <= usage) {
|
|
|
|
/*
|
|
|
|
* new->current_threshold will not be used until
|
|
|
|
* rcu_assign_pointer(), so it's safe to increment
|
|
|
|
* it here.
|
|
|
|
*/
|
|
|
|
++new->current_threshold;
|
|
|
|
} else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free old spare buffer and save old primary buffer as spare */
|
|
|
|
kfree(thresholds->spare);
|
|
|
|
thresholds->spare = thresholds->primary;
|
|
|
|
|
|
|
|
rcu_assign_pointer(thresholds->primary, new);
|
|
|
|
|
|
|
|
/* To be sure that nobody uses thresholds */
|
|
|
|
synchronize_rcu();
|
|
|
|
|
|
|
|
unlock:
|
|
|
|
mutex_unlock(&memcg->thresholds_lock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
|
|
{
|
|
|
|
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
|
|
{
|
|
|
|
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, enum res_type type)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_thresholds *thresholds;
|
|
|
|
struct mem_cgroup_threshold_ary *new;
|
|
|
|
unsigned long usage;
|
|
|
|
int i, j, size, entries;
|
|
|
|
|
|
|
|
mutex_lock(&memcg->thresholds_lock);
|
|
|
|
|
|
|
|
if (type == _MEM) {
|
|
|
|
thresholds = &memcg->thresholds;
|
|
|
|
usage = mem_cgroup_usage(memcg, false);
|
|
|
|
} else if (type == _MEMSWAP) {
|
|
|
|
thresholds = &memcg->memsw_thresholds;
|
|
|
|
usage = mem_cgroup_usage(memcg, true);
|
|
|
|
} else
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
if (!thresholds->primary)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
/* Check if a threshold crossed before removing */
|
|
|
|
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
|
|
|
|
|
|
|
|
/* Calculate new number of threshold */
|
|
|
|
size = entries = 0;
|
|
|
|
for (i = 0; i < thresholds->primary->size; i++) {
|
|
|
|
if (thresholds->primary->entries[i].eventfd != eventfd)
|
|
|
|
size++;
|
|
|
|
else
|
|
|
|
entries++;
|
|
|
|
}
|
|
|
|
|
|
|
|
new = thresholds->spare;
|
|
|
|
|
|
|
|
/* If no items related to eventfd have been cleared, nothing to do */
|
|
|
|
if (!entries)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
/* Set thresholds array to NULL if we don't have thresholds */
|
|
|
|
if (!size) {
|
|
|
|
kfree(new);
|
|
|
|
new = NULL;
|
|
|
|
goto swap_buffers;
|
|
|
|
}
|
|
|
|
|
|
|
|
new->size = size;
|
|
|
|
|
|
|
|
/* Copy thresholds and find current threshold */
|
|
|
|
new->current_threshold = -1;
|
|
|
|
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
|
|
|
|
if (thresholds->primary->entries[i].eventfd == eventfd)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
new->entries[j] = thresholds->primary->entries[i];
|
|
|
|
if (new->entries[j].threshold <= usage) {
|
|
|
|
/*
|
|
|
|
* new->current_threshold will not be used
|
|
|
|
* until rcu_assign_pointer(), so it's safe to increment
|
|
|
|
* it here.
|
|
|
|
*/
|
|
|
|
++new->current_threshold;
|
|
|
|
}
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
|
|
|
|
swap_buffers:
|
|
|
|
/* Swap primary and spare array */
|
|
|
|
thresholds->spare = thresholds->primary;
|
|
|
|
|
|
|
|
rcu_assign_pointer(thresholds->primary, new);
|
|
|
|
|
|
|
|
/* To be sure that nobody uses thresholds */
|
|
|
|
synchronize_rcu();
|
|
|
|
|
|
|
|
/* If all events are unregistered, free the spare array */
|
|
|
|
if (!new) {
|
|
|
|
kfree(thresholds->spare);
|
|
|
|
thresholds->spare = NULL;
|
|
|
|
}
|
|
|
|
unlock:
|
|
|
|
mutex_unlock(&memcg->thresholds_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd)
|
|
|
|
{
|
|
|
|
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd)
|
|
|
|
{
|
|
|
|
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_eventfd_list *event;
|
|
|
|
|
|
|
|
event = kmalloc(sizeof(*event), GFP_KERNEL);
|
|
|
|
if (!event)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
event->eventfd = eventfd;
|
|
|
|
list_add(&event->list, &memcg->oom_notify);
|
|
|
|
|
|
|
|
/* already in OOM ? */
|
|
|
|
if (memcg->under_oom)
|
|
|
|
eventfd_signal(eventfd);
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
|
|
|
|
struct eventfd_ctx *eventfd)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_eventfd_list *ev, *tmp;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
|
|
|
|
if (ev->eventfd == eventfd) {
|
|
|
|
list_del(&ev->list);
|
|
|
|
kfree(ev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DO NOT USE IN NEW FILES.
|
|
|
|
*
|
|
|
|
* "cgroup.event_control" implementation.
|
|
|
|
*
|
|
|
|
* This is way over-engineered. It tries to support fully configurable
|
|
|
|
* events for each user. Such level of flexibility is completely
|
|
|
|
* unnecessary especially in the light of the planned unified hierarchy.
|
|
|
|
*
|
|
|
|
* Please deprecate this and replace with something simpler if at all
|
|
|
|
* possible.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unregister event and free resources.
|
|
|
|
*
|
|
|
|
* Gets called from workqueue.
|
|
|
|
*/
|
|
|
|
static void memcg_event_remove(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_event *event =
|
|
|
|
container_of(work, struct mem_cgroup_event, remove);
|
|
|
|
struct mem_cgroup *memcg = event->memcg;
|
|
|
|
|
|
|
|
remove_wait_queue(event->wqh, &event->wait);
|
|
|
|
|
|
|
|
event->unregister_event(memcg, event->eventfd);
|
|
|
|
|
|
|
|
/* Notify userspace the event is going away. */
|
|
|
|
eventfd_signal(event->eventfd);
|
|
|
|
|
|
|
|
eventfd_ctx_put(event->eventfd);
|
|
|
|
kfree(event);
|
|
|
|
css_put(&memcg->css);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gets called on EPOLLHUP on eventfd when user closes it.
|
|
|
|
*
|
|
|
|
* Called with wqh->lock held and interrupts disabled.
|
|
|
|
*/
|
|
|
|
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
|
|
|
|
int sync, void *key)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_event *event =
|
|
|
|
container_of(wait, struct mem_cgroup_event, wait);
|
|
|
|
struct mem_cgroup *memcg = event->memcg;
|
|
|
|
__poll_t flags = key_to_poll(key);
|
|
|
|
|
|
|
|
if (flags & EPOLLHUP) {
|
|
|
|
/*
|
|
|
|
* If the event has been detached at cgroup removal, we
|
|
|
|
* can simply return knowing the other side will cleanup
|
|
|
|
* for us.
|
|
|
|
*
|
|
|
|
* We can't race against event freeing since the other
|
|
|
|
* side will require wqh->lock via remove_wait_queue(),
|
|
|
|
* which we hold.
|
|
|
|
*/
|
|
|
|
spin_lock(&memcg->event_list_lock);
|
|
|
|
if (!list_empty(&event->list)) {
|
|
|
|
list_del_init(&event->list);
|
|
|
|
/*
|
|
|
|
* We are in atomic context, but cgroup_event_remove()
|
|
|
|
* may sleep, so we have to call it in workqueue.
|
|
|
|
*/
|
|
|
|
schedule_work(&event->remove);
|
|
|
|
}
|
|
|
|
spin_unlock(&memcg->event_list_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void memcg_event_ptable_queue_proc(struct file *file,
|
|
|
|
wait_queue_head_t *wqh, poll_table *pt)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_event *event =
|
|
|
|
container_of(pt, struct mem_cgroup_event, pt);
|
|
|
|
|
|
|
|
event->wqh = wqh;
|
|
|
|
add_wait_queue(wqh, &event->wait);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DO NOT USE IN NEW FILES.
|
|
|
|
*
|
|
|
|
* Parse input and register new cgroup event handler.
|
|
|
|
*
|
|
|
|
* Input must be in format '<event_fd> <control_fd> <args>'.
|
|
|
|
* Interpretation of args is defined by control file implementation.
|
|
|
|
*/
|
2024-06-25 00:59:02 +00:00
|
|
|
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes, loff_t off)
|
2024-06-25 00:58:58 +00:00
|
|
|
{
|
|
|
|
struct cgroup_subsys_state *css = of_css(of);
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
struct mem_cgroup_event *event;
|
|
|
|
struct cgroup_subsys_state *cfile_css;
|
|
|
|
unsigned int efd, cfd;
|
|
|
|
struct fd efile;
|
|
|
|
struct fd cfile;
|
|
|
|
struct dentry *cdentry;
|
|
|
|
const char *name;
|
|
|
|
char *endp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
buf = strstrip(buf);
|
|
|
|
|
|
|
|
efd = simple_strtoul(buf, &endp, 10);
|
|
|
|
if (*endp != ' ')
|
|
|
|
return -EINVAL;
|
|
|
|
buf = endp + 1;
|
|
|
|
|
|
|
|
cfd = simple_strtoul(buf, &endp, 10);
|
|
|
|
if ((*endp != ' ') && (*endp != '\0'))
|
|
|
|
return -EINVAL;
|
|
|
|
buf = endp + 1;
|
|
|
|
|
|
|
|
event = kzalloc(sizeof(*event), GFP_KERNEL);
|
|
|
|
if (!event)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
event->memcg = memcg;
|
|
|
|
INIT_LIST_HEAD(&event->list);
|
|
|
|
init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
|
|
|
|
init_waitqueue_func_entry(&event->wait, memcg_event_wake);
|
|
|
|
INIT_WORK(&event->remove, memcg_event_remove);
|
|
|
|
|
|
|
|
efile = fdget(efd);
|
|
|
|
if (!efile.file) {
|
|
|
|
ret = -EBADF;
|
|
|
|
goto out_kfree;
|
|
|
|
}
|
|
|
|
|
|
|
|
event->eventfd = eventfd_ctx_fileget(efile.file);
|
|
|
|
if (IS_ERR(event->eventfd)) {
|
|
|
|
ret = PTR_ERR(event->eventfd);
|
|
|
|
goto out_put_efile;
|
|
|
|
}
|
|
|
|
|
|
|
|
cfile = fdget(cfd);
|
|
|
|
if (!cfile.file) {
|
|
|
|
ret = -EBADF;
|
|
|
|
goto out_put_eventfd;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* the process need read permission on control file */
|
|
|
|
/* AV: shouldn't we check that it's been opened for read instead? */
|
|
|
|
ret = file_permission(cfile.file, MAY_READ);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_put_cfile;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The control file must be a regular cgroup1 file. As a regular cgroup
|
|
|
|
* file can't be renamed, it's safe to access its name afterwards.
|
|
|
|
*/
|
|
|
|
cdentry = cfile.file->f_path.dentry;
|
|
|
|
if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out_put_cfile;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the event callbacks and set them in @event. This used
|
|
|
|
* to be done via struct cftype but cgroup core no longer knows
|
|
|
|
* about these events. The following is crude but the whole thing
|
|
|
|
* is for compatibility anyway.
|
|
|
|
*
|
|
|
|
* DO NOT ADD NEW FILES.
|
|
|
|
*/
|
|
|
|
name = cdentry->d_name.name;
|
|
|
|
|
|
|
|
if (!strcmp(name, "memory.usage_in_bytes")) {
|
|
|
|
event->register_event = mem_cgroup_usage_register_event;
|
|
|
|
event->unregister_event = mem_cgroup_usage_unregister_event;
|
|
|
|
} else if (!strcmp(name, "memory.oom_control")) {
|
|
|
|
event->register_event = mem_cgroup_oom_register_event;
|
|
|
|
event->unregister_event = mem_cgroup_oom_unregister_event;
|
|
|
|
} else if (!strcmp(name, "memory.pressure_level")) {
|
|
|
|
event->register_event = vmpressure_register_event;
|
|
|
|
event->unregister_event = vmpressure_unregister_event;
|
|
|
|
} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
|
|
|
|
event->register_event = memsw_cgroup_usage_register_event;
|
|
|
|
event->unregister_event = memsw_cgroup_usage_unregister_event;
|
|
|
|
} else {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out_put_cfile;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Verify @cfile should belong to @css. Also, remaining events are
|
|
|
|
* automatically removed on cgroup destruction but the removal is
|
|
|
|
* asynchronous, so take an extra ref on @css.
|
|
|
|
*/
|
|
|
|
cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
|
|
|
|
&memory_cgrp_subsys);
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (IS_ERR(cfile_css))
|
|
|
|
goto out_put_cfile;
|
|
|
|
if (cfile_css != css) {
|
|
|
|
css_put(cfile_css);
|
|
|
|
goto out_put_cfile;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = event->register_event(memcg, event->eventfd, buf);
|
|
|
|
if (ret)
|
|
|
|
goto out_put_css;
|
|
|
|
|
|
|
|
vfs_poll(efile.file, &event->pt);
|
|
|
|
|
|
|
|
spin_lock_irq(&memcg->event_list_lock);
|
|
|
|
list_add(&event->list, &memcg->event_list);
|
|
|
|
spin_unlock_irq(&memcg->event_list_lock);
|
|
|
|
|
|
|
|
fdput(cfile);
|
|
|
|
fdput(efile);
|
|
|
|
|
|
|
|
return nbytes;
|
|
|
|
|
|
|
|
out_put_css:
|
|
|
|
css_put(css);
|
|
|
|
out_put_cfile:
|
|
|
|
fdput(cfile);
|
|
|
|
out_put_eventfd:
|
|
|
|
eventfd_ctx_put(event->eventfd);
|
|
|
|
out_put_efile:
|
|
|
|
fdput(efile);
|
|
|
|
out_kfree:
|
|
|
|
kfree(event);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void memcg1_css_offline(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup_event *event, *tmp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unregister events and notify userspace.
|
|
|
|
* Notify userspace about cgroup removing only after rmdir of cgroup
|
|
|
|
* directory to avoid race between userspace and kernelspace.
|
|
|
|
*/
|
|
|
|
spin_lock_irq(&memcg->event_list_lock);
|
|
|
|
list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
|
|
|
|
list_del_init(&event->list);
|
|
|
|
schedule_work(&event->remove);
|
|
|
|
}
|
|
|
|
spin_unlock_irq(&memcg->event_list_lock);
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:59:00 +00:00
|
|
|
/*
|
|
|
|
* Check OOM-Killer is already running under our hierarchy.
|
|
|
|
* If someone is running, return false.
|
|
|
|
*/
|
|
|
|
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *iter, *failed = NULL;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg) {
|
|
|
|
if (iter->oom_lock) {
|
|
|
|
/*
|
|
|
|
* this subtree of our hierarchy is already locked
|
|
|
|
* so we cannot give a lock.
|
|
|
|
*/
|
|
|
|
failed = iter;
|
|
|
|
mem_cgroup_iter_break(memcg, iter);
|
|
|
|
break;
|
|
|
|
} else
|
|
|
|
iter->oom_lock = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (failed) {
|
|
|
|
/*
|
|
|
|
* OK, we failed to lock the whole subtree so we have
|
|
|
|
* to clean up what we set up to the failing subtree
|
|
|
|
*/
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg) {
|
|
|
|
if (iter == failed) {
|
|
|
|
mem_cgroup_iter_break(memcg, iter);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
iter->oom_lock = false;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
|
|
|
|
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
|
|
|
|
return !failed;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *iter;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
|
|
iter->oom_lock = false;
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *iter;
|
|
|
|
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
|
|
iter->under_oom++;
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *iter;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Be careful about under_oom underflows because a child memcg
|
|
|
|
* could have been added after mem_cgroup_mark_under_oom.
|
|
|
|
*/
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
|
|
if (iter->under_oom > 0)
|
|
|
|
iter->under_oom--;
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
|
|
|
|
|
|
|
|
struct oom_wait_info {
|
|
|
|
struct mem_cgroup *memcg;
|
|
|
|
wait_queue_entry_t wait;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
|
|
|
|
unsigned mode, int sync, void *arg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
|
|
|
|
struct mem_cgroup *oom_wait_memcg;
|
|
|
|
struct oom_wait_info *oom_wait_info;
|
|
|
|
|
|
|
|
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
|
|
|
|
oom_wait_memcg = oom_wait_info->memcg;
|
|
|
|
|
|
|
|
if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
|
|
|
|
!mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
|
|
|
|
return 0;
|
|
|
|
return autoremove_wake_function(wait, mode, sync, arg);
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:59:01 +00:00
|
|
|
void memcg1_oom_recover(struct mem_cgroup *memcg)
|
2024-06-25 00:59:00 +00:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* For the following lockless ->under_oom test, the only required
|
|
|
|
* guarantee is that it must see the state asserted by an OOM when
|
|
|
|
* this function is called as a result of userland actions
|
|
|
|
* triggered by the notification of the OOM. This is trivially
|
|
|
|
* achieved by invoking mem_cgroup_mark_under_oom() before
|
|
|
|
* triggering notification.
|
|
|
|
*/
|
|
|
|
if (memcg && memcg->under_oom)
|
|
|
|
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mem_cgroup_oom_synchronize - complete memcg OOM handling
|
|
|
|
* @handle: actually kill/wait or just clean up the OOM state
|
|
|
|
*
|
|
|
|
* This has to be called at the end of a page fault if the memcg OOM
|
|
|
|
* handler was enabled.
|
|
|
|
*
|
|
|
|
* Memcg supports userspace OOM handling where failed allocations must
|
|
|
|
* sleep on a waitqueue until the userspace task resolves the
|
|
|
|
* situation. Sleeping directly in the charge context with all kinds
|
|
|
|
* of locks held is not a good idea, instead we remember an OOM state
|
|
|
|
* in the task and mem_cgroup_oom_synchronize() has to be called at
|
|
|
|
* the end of the page fault to complete the OOM handling.
|
|
|
|
*
|
|
|
|
* Returns %true if an ongoing memcg OOM situation was detected and
|
|
|
|
* completed, %false otherwise.
|
|
|
|
*/
|
|
|
|
bool mem_cgroup_oom_synchronize(bool handle)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = current->memcg_in_oom;
|
|
|
|
struct oom_wait_info owait;
|
|
|
|
bool locked;
|
|
|
|
|
|
|
|
/* OOM is global, do not handle */
|
|
|
|
if (!memcg)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!handle)
|
|
|
|
goto cleanup;
|
|
|
|
|
|
|
|
owait.memcg = memcg;
|
|
|
|
owait.wait.flags = 0;
|
|
|
|
owait.wait.func = memcg_oom_wake_function;
|
|
|
|
owait.wait.private = current;
|
|
|
|
INIT_LIST_HEAD(&owait.wait.entry);
|
|
|
|
|
|
|
|
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
|
|
|
|
mem_cgroup_mark_under_oom(memcg);
|
|
|
|
|
|
|
|
locked = mem_cgroup_oom_trylock(memcg);
|
|
|
|
|
|
|
|
if (locked)
|
|
|
|
mem_cgroup_oom_notify(memcg);
|
|
|
|
|
|
|
|
schedule();
|
|
|
|
mem_cgroup_unmark_under_oom(memcg);
|
|
|
|
finish_wait(&memcg_oom_waitq, &owait.wait);
|
|
|
|
|
|
|
|
if (locked)
|
|
|
|
mem_cgroup_oom_unlock(memcg);
|
|
|
|
cleanup:
|
|
|
|
current->memcg_in_oom = NULL;
|
|
|
|
css_put(&memcg->css);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We are in the middle of the charge context here, so we
|
|
|
|
* don't want to block when potentially sitting on a callstack
|
|
|
|
* that holds all kinds of filesystem and mm locks.
|
|
|
|
*
|
|
|
|
* cgroup1 allows disabling the OOM killer and waiting for outside
|
|
|
|
* handling until the charge can succeed; remember the context and put
|
|
|
|
* the task to sleep at the end of the page fault when all locks are
|
|
|
|
* released.
|
|
|
|
*
|
|
|
|
* On the other hand, in-kernel OOM killer allows for an async victim
|
|
|
|
* memory reclaim (oom_reaper) and that means that we are not solely
|
|
|
|
* relying on the oom victim to make a forward progress and we can
|
|
|
|
* invoke the oom killer here.
|
|
|
|
*
|
|
|
|
* Please note that mem_cgroup_out_of_memory might fail to find a
|
|
|
|
* victim and then we have to bail out from the charge path.
|
|
|
|
*/
|
|
|
|
if (READ_ONCE(memcg->oom_kill_disable)) {
|
|
|
|
if (current->in_user_fault) {
|
|
|
|
css_get(&memcg->css);
|
|
|
|
current->memcg_in_oom = memcg;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
mem_cgroup_mark_under_oom(memcg);
|
|
|
|
|
|
|
|
*locked = mem_cgroup_oom_trylock(memcg);
|
|
|
|
|
|
|
|
if (*locked)
|
|
|
|
mem_cgroup_oom_notify(memcg);
|
|
|
|
|
|
|
|
mem_cgroup_unmark_under_oom(memcg);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
|
|
|
|
{
|
|
|
|
if (locked)
|
|
|
|
mem_cgroup_oom_unlock(memcg);
|
|
|
|
}
|
|
|
|
|
2024-06-25 00:59:02 +00:00
|
|
|
static DEFINE_MUTEX(memcg_max_mutex);
|
|
|
|
|
|
|
|
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
|
|
|
|
unsigned long max, bool memsw)
|
|
|
|
{
|
|
|
|
bool enlarge = false;
|
|
|
|
bool drained = false;
|
|
|
|
int ret;
|
|
|
|
bool limits_invariant;
|
|
|
|
struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (signal_pending(current)) {
|
|
|
|
ret = -EINTR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_lock(&memcg_max_mutex);
|
|
|
|
/*
|
|
|
|
* Make sure that the new limit (memsw or memory limit) doesn't
|
|
|
|
* break our basic invariant rule memory.max <= memsw.max.
|
|
|
|
*/
|
|
|
|
limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
|
|
|
|
max <= memcg->memsw.max;
|
|
|
|
if (!limits_invariant) {
|
|
|
|
mutex_unlock(&memcg_max_mutex);
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (max > counter->max)
|
|
|
|
enlarge = true;
|
|
|
|
ret = page_counter_set_max(counter, max);
|
|
|
|
mutex_unlock(&memcg_max_mutex);
|
|
|
|
|
|
|
|
if (!ret)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (!drained) {
|
|
|
|
drain_all_stock(memcg);
|
|
|
|
drained = true;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
|
|
|
|
memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
|
|
|
|
ret = -EBUSY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while (true);
|
|
|
|
|
|
|
|
if (!ret && enlarge)
|
|
|
|
memcg1_oom_recover(memcg);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reclaims as many pages from the given memcg as possible.
|
|
|
|
*
|
|
|
|
* Caller is responsible for holding css reference for memcg.
|
|
|
|
*/
|
|
|
|
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
int nr_retries = MAX_RECLAIM_RETRIES;
|
|
|
|
|
|
|
|
/* we call try-to-free pages for make this cgroup empty */
|
|
|
|
lru_add_drain_all();
|
|
|
|
|
|
|
|
drain_all_stock(memcg);
|
|
|
|
|
|
|
|
/* try to free all pages in this cgroup */
|
|
|
|
while (nr_retries && page_counter_read(&memcg->memory)) {
|
|
|
|
if (signal_pending(current))
|
|
|
|
return -EINTR;
|
|
|
|
|
|
|
|
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
|
|
|
|
MEMCG_RECLAIM_MAY_SWAP))
|
|
|
|
nr_retries--;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes,
|
|
|
|
loff_t off)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
|
|
|
|
|
|
if (mem_cgroup_is_root(memcg))
|
|
|
|
return -EINVAL;
|
|
|
|
return mem_cgroup_force_empty(memcg) ?: nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft, u64 val)
|
|
|
|
{
|
|
|
|
if (val == 1)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
pr_warn_once("Non-hierarchical mode is deprecated. "
|
|
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
|
|
"depend on this functionality.\n");
|
|
|
|
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
struct page_counter *counter;
|
|
|
|
|
|
|
|
switch (MEMFILE_TYPE(cft->private)) {
|
|
|
|
case _MEM:
|
|
|
|
counter = &memcg->memory;
|
|
|
|
break;
|
|
|
|
case _MEMSWAP:
|
|
|
|
counter = &memcg->memsw;
|
|
|
|
break;
|
|
|
|
case _KMEM:
|
|
|
|
counter = &memcg->kmem;
|
|
|
|
break;
|
|
|
|
case _TCP:
|
|
|
|
counter = &memcg->tcpmem;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (MEMFILE_ATTR(cft->private)) {
|
|
|
|
case RES_USAGE:
|
|
|
|
if (counter == &memcg->memory)
|
|
|
|
return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
|
|
|
|
if (counter == &memcg->memsw)
|
|
|
|
return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
|
|
|
|
return (u64)page_counter_read(counter) * PAGE_SIZE;
|
|
|
|
case RES_LIMIT:
|
|
|
|
return (u64)counter->max * PAGE_SIZE;
|
|
|
|
case RES_MAX_USAGE:
|
|
|
|
return (u64)counter->watermark * PAGE_SIZE;
|
|
|
|
case RES_FAILCNT:
|
|
|
|
return counter->failcnt;
|
|
|
|
case RES_SOFT_LIMIT:
|
|
|
|
return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function doesn't do anything useful. Its only job is to provide a read
|
|
|
|
* handler for a file so that cgroup_file_mode() will add read permissions.
|
|
|
|
*/
|
|
|
|
static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
|
|
|
|
__always_unused void *v)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&memcg_max_mutex);
|
|
|
|
|
|
|
|
ret = page_counter_set_max(&memcg->tcpmem, max);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (!memcg->tcpmem_active) {
|
|
|
|
/*
|
|
|
|
* The active flag needs to be written after the static_key
|
|
|
|
* update. This is what guarantees that the socket activation
|
|
|
|
* function is the last one to run. See mem_cgroup_sk_alloc()
|
|
|
|
* for details, and note that we don't mark any socket as
|
|
|
|
* belonging to this memcg until that flag is up.
|
|
|
|
*
|
|
|
|
* We need to do this, because static_keys will span multiple
|
|
|
|
* sites, but we can't control their order. If we mark a socket
|
|
|
|
* as accounted, but the accounting functions are not patched in
|
|
|
|
* yet, we'll lose accounting.
|
|
|
|
*
|
|
|
|
* We never race with the readers in mem_cgroup_sk_alloc(),
|
|
|
|
* because when this value change, the code to process it is not
|
|
|
|
* patched in yet.
|
|
|
|
*/
|
|
|
|
static_branch_inc(&memcg_sockets_enabled_key);
|
|
|
|
memcg->tcpmem_active = true;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
mutex_unlock(&memcg_max_mutex);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The user of this function is...
|
|
|
|
* RES_LIMIT.
|
|
|
|
*/
|
|
|
|
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes, loff_t off)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
|
|
unsigned long nr_pages;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
buf = strstrip(buf);
|
|
|
|
ret = page_counter_memparse(buf, "-1", &nr_pages);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
|
|
|
case RES_LIMIT:
|
|
|
|
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
switch (MEMFILE_TYPE(of_cft(of)->private)) {
|
|
|
|
case _MEM:
|
|
|
|
ret = mem_cgroup_resize_max(memcg, nr_pages, false);
|
|
|
|
break;
|
|
|
|
case _MEMSWAP:
|
|
|
|
ret = mem_cgroup_resize_max(memcg, nr_pages, true);
|
|
|
|
break;
|
|
|
|
case _KMEM:
|
|
|
|
pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
|
|
|
|
"Writing any value to this file has no effect. "
|
|
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
|
|
"depend on this functionality.\n");
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
case _TCP:
|
|
|
|
ret = memcg_update_tcp_max(memcg, nr_pages);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case RES_SOFT_LIMIT:
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
|
|
|
|
ret = -EOPNOTSUPP;
|
|
|
|
} else {
|
|
|
|
WRITE_ONCE(memcg->soft_limit, nr_pages);
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return ret ?: nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
|
|
|
|
size_t nbytes, loff_t off)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
|
|
struct page_counter *counter;
|
|
|
|
|
|
|
|
switch (MEMFILE_TYPE(of_cft(of)->private)) {
|
|
|
|
case _MEM:
|
|
|
|
counter = &memcg->memory;
|
|
|
|
break;
|
|
|
|
case _MEMSWAP:
|
|
|
|
counter = &memcg->memsw;
|
|
|
|
break;
|
|
|
|
case _KMEM:
|
|
|
|
counter = &memcg->kmem;
|
|
|
|
break;
|
|
|
|
case _TCP:
|
|
|
|
counter = &memcg->tcpmem;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
|
|
|
case RES_MAX_USAGE:
|
|
|
|
page_counter_reset_watermark(counter);
|
|
|
|
break;
|
|
|
|
case RES_FAILCNT:
|
|
|
|
counter->failcnt = 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
|
|
|
|
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
|
|
|
|
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
|
|
|
|
|
|
|
|
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
|
|
|
|
int nid, unsigned int lru_mask, bool tree)
|
|
|
|
{
|
|
|
|
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
|
|
|
|
unsigned long nr = 0;
|
|
|
|
enum lru_list lru;
|
|
|
|
|
|
|
|
VM_BUG_ON((unsigned)nid >= nr_node_ids);
|
|
|
|
|
|
|
|
for_each_lru(lru) {
|
|
|
|
if (!(BIT(lru) & lru_mask))
|
|
|
|
continue;
|
|
|
|
if (tree)
|
|
|
|
nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
|
|
|
|
else
|
|
|
|
nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
|
|
|
|
}
|
|
|
|
return nr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
|
|
|
|
unsigned int lru_mask,
|
|
|
|
bool tree)
|
|
|
|
{
|
|
|
|
unsigned long nr = 0;
|
|
|
|
enum lru_list lru;
|
|
|
|
|
|
|
|
for_each_lru(lru) {
|
|
|
|
if (!(BIT(lru) & lru_mask))
|
|
|
|
continue;
|
|
|
|
if (tree)
|
|
|
|
nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
|
|
|
|
else
|
|
|
|
nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
|
|
|
|
}
|
|
|
|
return nr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memcg_numa_stat_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct numa_stat {
|
|
|
|
const char *name;
|
|
|
|
unsigned int lru_mask;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct numa_stat stats[] = {
|
|
|
|
{ "total", LRU_ALL },
|
|
|
|
{ "file", LRU_ALL_FILE },
|
|
|
|
{ "anon", LRU_ALL_ANON },
|
|
|
|
{ "unevictable", BIT(LRU_UNEVICTABLE) },
|
|
|
|
};
|
|
|
|
const struct numa_stat *stat;
|
|
|
|
int nid;
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
|
|
|
|
|
|
|
|
mem_cgroup_flush_stats(memcg);
|
|
|
|
|
|
|
|
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
|
|
|
|
seq_printf(m, "%s=%lu", stat->name,
|
|
|
|
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
|
|
|
|
false));
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
seq_printf(m, " N%d=%lu", nid,
|
|
|
|
mem_cgroup_node_nr_lru_pages(memcg, nid,
|
|
|
|
stat->lru_mask, false));
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
|
|
|
|
|
|
|
|
seq_printf(m, "hierarchical_%s=%lu", stat->name,
|
|
|
|
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
|
|
|
|
true));
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
seq_printf(m, " N%d=%lu", nid,
|
|
|
|
mem_cgroup_node_nr_lru_pages(memcg, nid,
|
|
|
|
stat->lru_mask, true));
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
|
|
|
static const unsigned int memcg1_stats[] = {
|
|
|
|
NR_FILE_PAGES,
|
|
|
|
NR_ANON_MAPPED,
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
NR_ANON_THPS,
|
|
|
|
#endif
|
|
|
|
NR_SHMEM,
|
|
|
|
NR_FILE_MAPPED,
|
|
|
|
NR_FILE_DIRTY,
|
|
|
|
NR_WRITEBACK,
|
|
|
|
WORKINGSET_REFAULT_ANON,
|
|
|
|
WORKINGSET_REFAULT_FILE,
|
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
MEMCG_SWAP,
|
|
|
|
NR_SWAPCACHE,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char *const memcg1_stat_names[] = {
|
|
|
|
"cache",
|
|
|
|
"rss",
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
"rss_huge",
|
|
|
|
#endif
|
|
|
|
"shmem",
|
|
|
|
"mapped_file",
|
|
|
|
"dirty",
|
|
|
|
"writeback",
|
|
|
|
"workingset_refault_anon",
|
|
|
|
"workingset_refault_file",
|
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
"swap",
|
|
|
|
"swapcached",
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Universal VM events cgroup1 shows, original sort order */
|
|
|
|
static const unsigned int memcg1_events[] = {
|
|
|
|
PGPGIN,
|
|
|
|
PGPGOUT,
|
|
|
|
PGFAULT,
|
|
|
|
PGMAJFAULT,
|
|
|
|
};
|
|
|
|
|
|
|
|
void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
|
|
|
|
{
|
|
|
|
unsigned long memory, memsw;
|
|
|
|
struct mem_cgroup *mi;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
|
|
|
|
|
|
|
|
mem_cgroup_flush_stats(memcg);
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
|
|
|
|
unsigned long nr;
|
|
|
|
|
|
|
|
nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
|
|
|
|
seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
|
|
|
|
seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
|
|
|
|
memcg_events_local(memcg, memcg1_events[i]));
|
|
|
|
|
|
|
|
for (i = 0; i < NR_LRU_LISTS; i++)
|
|
|
|
seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
|
|
|
|
memcg_page_state_local(memcg, NR_LRU_BASE + i) *
|
|
|
|
PAGE_SIZE);
|
|
|
|
|
|
|
|
/* Hierarchical information */
|
|
|
|
memory = memsw = PAGE_COUNTER_MAX;
|
|
|
|
for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
|
|
|
|
memory = min(memory, READ_ONCE(mi->memory.max));
|
|
|
|
memsw = min(memsw, READ_ONCE(mi->memsw.max));
|
|
|
|
}
|
|
|
|
seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
|
|
|
|
(u64)memory * PAGE_SIZE);
|
|
|
|
seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
|
|
|
|
(u64)memsw * PAGE_SIZE);
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
|
|
|
|
unsigned long nr;
|
|
|
|
|
|
|
|
nr = memcg_page_state_output(memcg, memcg1_stats[i]);
|
|
|
|
seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
|
|
|
|
(u64)nr);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
|
|
|
|
seq_buf_printf(s, "total_%s %llu\n",
|
|
|
|
vm_event_name(memcg1_events[i]),
|
|
|
|
(u64)memcg_events(memcg, memcg1_events[i]));
|
|
|
|
|
|
|
|
for (i = 0; i < NR_LRU_LISTS; i++)
|
|
|
|
seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
|
|
|
|
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
|
|
|
|
PAGE_SIZE);
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
|
|
{
|
|
|
|
pg_data_t *pgdat;
|
|
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
unsigned long anon_cost = 0;
|
|
|
|
unsigned long file_cost = 0;
|
|
|
|
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
|
|
mz = memcg->nodeinfo[pgdat->node_id];
|
|
|
|
|
|
|
|
anon_cost += mz->lruvec.anon_cost;
|
|
|
|
file_cost += mz->lruvec.file_cost;
|
|
|
|
}
|
|
|
|
seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
|
|
|
|
seq_buf_printf(s, "file_cost %lu\n", file_cost);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
|
|
|
|
return mem_cgroup_swappiness(memcg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft, u64 val)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
|
|
|
|
if (val > 200)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!mem_cgroup_is_root(memcg))
|
|
|
|
WRITE_ONCE(memcg->swappiness, val);
|
|
|
|
else
|
|
|
|
WRITE_ONCE(vm_swappiness, val);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
|
|
|
|
|
|
|
|
seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
|
|
|
|
seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
|
|
|
|
seq_printf(sf, "oom_kill %lu\n",
|
|
|
|
atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft, u64 val)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
|
|
|
|
/* cannot set to root cgroup and only 0 and 1 are allowed */
|
|
|
|
if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
WRITE_ONCE(memcg->oom_kill_disable, val);
|
|
|
|
if (!val)
|
|
|
|
memcg1_oom_recover(memcg);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
|
|
|
|
static int mem_cgroup_slab_show(struct seq_file *m, void *p)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Deprecated.
|
|
|
|
* Please, take a look at tools/cgroup/memcg_slabinfo.py .
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct cftype mem_cgroup_legacy_files[] = {
|
|
|
|
{
|
|
|
|
.name = "usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "max_usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "limit_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
|
|
|
|
.write = mem_cgroup_write,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "soft_limit_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
|
|
|
|
.write = mem_cgroup_write,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "failcnt",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "stat",
|
|
|
|
.seq_show = memory_stat_show,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "force_empty",
|
|
|
|
.write = mem_cgroup_force_empty_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "use_hierarchy",
|
|
|
|
.write_u64 = mem_cgroup_hierarchy_write,
|
|
|
|
.read_u64 = mem_cgroup_hierarchy_read,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "cgroup.event_control", /* XXX: for compat */
|
|
|
|
.write = memcg_write_event_control,
|
|
|
|
.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "swappiness",
|
|
|
|
.read_u64 = mem_cgroup_swappiness_read,
|
|
|
|
.write_u64 = mem_cgroup_swappiness_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "move_charge_at_immigrate",
|
|
|
|
.read_u64 = mem_cgroup_move_charge_read,
|
|
|
|
.write_u64 = mem_cgroup_move_charge_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "oom_control",
|
|
|
|
.seq_show = mem_cgroup_oom_control_read,
|
|
|
|
.write_u64 = mem_cgroup_oom_control_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "pressure_level",
|
|
|
|
.seq_show = mem_cgroup_dummy_seq_show,
|
|
|
|
},
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
{
|
|
|
|
.name = "numa_stat",
|
|
|
|
.seq_show = memcg_numa_stat_show,
|
|
|
|
},
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
.name = "kmem.limit_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
|
|
|
|
.write = mem_cgroup_write,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.failcnt",
|
|
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.max_usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
|
|
|
|
{
|
|
|
|
.name = "kmem.slabinfo",
|
|
|
|
.seq_show = mem_cgroup_slab_show,
|
|
|
|
},
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
.name = "kmem.tcp.limit_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
|
|
|
|
.write = mem_cgroup_write,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.tcp.usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.tcp.failcnt",
|
|
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "kmem.tcp.max_usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{ }, /* terminate */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct cftype memsw_files[] = {
|
|
|
|
{
|
|
|
|
.name = "memsw.usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "memsw.max_usage_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "memsw.limit_in_bytes",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
|
|
|
|
.write = mem_cgroup_write,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "memsw.failcnt",
|
|
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
|
|
|
|
.write = mem_cgroup_reset,
|
|
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{ }, /* terminate */
|
|
|
|
};
|
|
|
|
|
2024-06-25 00:58:54 +00:00
|
|
|
static int __init memcg1_init(void)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
|
|
|
|
for_each_node(node) {
|
|
|
|
struct mem_cgroup_tree_per_node *rtpn;
|
|
|
|
|
|
|
|
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
|
|
|
|
|
|
|
|
rtpn->rb_root = RB_ROOT;
|
|
|
|
rtpn->rb_rightmost = NULL;
|
|
|
|
spin_lock_init(&rtpn->lock);
|
|
|
|
soft_limit_tree.rb_tree_per_node[node] = rtpn;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
subsys_initcall(memcg1_init);
|