linux-stable/fs/bcachefs/move.c

1209 lines
30 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "backpointers.h"
#include "bkey_buf.h"
#include "btree_gc.h"
#include "btree_io.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_write_buffer.h"
#include "compress.h"
#include "disk_groups.h"
#include "ec.h"
#include "errcode.h"
#include "error.h"
#include "inode.h"
#include "io_read.h"
#include "io_write.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "move.h"
#include "replicas.h"
#include "snapshot.h"
#include "super-io.h"
#include "trace.h"
#include <linux/ioprio.h>
#include <linux/kthread.h>
const char * const bch2_data_ops_strs[] = {
#define x(t, n, ...) [n] = #t,
BCH_DATA_OPS()
#undef x
NULL
};
static void bch2_data_update_opts_to_text(struct printbuf *out, struct bch_fs *c,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
printbuf_tabstop_push(out, 20);
prt_str(out, "rewrite ptrs:");
prt_tab(out);
bch2_prt_u64_base2(out, data_opts->rewrite_ptrs);
prt_newline(out);
prt_str(out, "kill ptrs: ");
prt_tab(out);
bch2_prt_u64_base2(out, data_opts->kill_ptrs);
prt_newline(out);
prt_str(out, "target: ");
prt_tab(out);
bch2_target_to_text(out, c, data_opts->target);
prt_newline(out);
prt_str(out, "compression: ");
prt_tab(out);
bch2_compression_opt_to_text(out, io_opts->background_compression ?: io_opts->compression);
prt_newline(out);
prt_str(out, "extra replicas: ");
prt_tab(out);
prt_u64(out, data_opts->extra_replicas);
}
static void trace_move_extent2(struct bch_fs *c, struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
if (trace_move_extent_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
prt_newline(&buf);
bch2_data_update_opts_to_text(&buf, c, io_opts, data_opts);
trace_move_extent(c, buf.buf);
printbuf_exit(&buf);
}
}
static void trace_move_extent_read2(struct bch_fs *c, struct bkey_s_c k)
{
if (trace_move_extent_read_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
trace_move_extent_read(c, buf.buf);
printbuf_exit(&buf);
}
}
struct moving_io {
struct list_head read_list;
struct list_head io_list;
struct move_bucket_in_flight *b;
struct closure cl;
bool read_completed;
unsigned read_sectors;
unsigned write_sectors;
struct bch_read_bio rbio;
struct data_update write;
/* Must be last since it is variable size */
struct bio_vec bi_inline_vecs[];
};
static void move_free(struct moving_io *io)
{
struct moving_context *ctxt = io->write.ctxt;
if (io->b)
atomic_dec(&io->b->count);
bch2_data_update_exit(&io->write);
mutex_lock(&ctxt->lock);
list_del(&io->io_list);
wake_up(&ctxt->wait);
mutex_unlock(&ctxt->lock);
kfree(io);
}
static void move_write_done(struct bch_write_op *op)
{
struct moving_io *io = container_of(op, struct moving_io, write.op);
struct moving_context *ctxt = io->write.ctxt;
if (io->write.op.error)
ctxt->write_error = true;
atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors);
atomic_dec(&io->write.ctxt->write_ios);
move_free(io);
closure_put(&ctxt->cl);
}
static void move_write(struct moving_io *io)
{
if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) {
move_free(io);
return;
}
if (trace_move_extent_write_enabled()) {
struct bch_fs *c = io->write.op.c;
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(io->write.k.k));
trace_move_extent_write(c, buf.buf);
printbuf_exit(&buf);
}
closure_get(&io->write.ctxt->cl);
atomic_add(io->write_sectors, &io->write.ctxt->write_sectors);
atomic_inc(&io->write.ctxt->write_ios);
bch2_data_update_read_done(&io->write, io->rbio.pick.crc);
}
struct moving_io *bch2_moving_ctxt_next_pending_write(struct moving_context *ctxt)
{
struct moving_io *io =
list_first_entry_or_null(&ctxt->reads, struct moving_io, read_list);
return io && io->read_completed ? io : NULL;
}
static void move_read_endio(struct bio *bio)
{
struct moving_io *io = container_of(bio, struct moving_io, rbio.bio);
struct moving_context *ctxt = io->write.ctxt;
atomic_sub(io->read_sectors, &ctxt->read_sectors);
atomic_dec(&ctxt->read_ios);
io->read_completed = true;
wake_up(&ctxt->wait);
closure_put(&ctxt->cl);
}
void bch2_moving_ctxt_do_pending_writes(struct moving_context *ctxt)
{
struct moving_io *io;
while ((io = bch2_moving_ctxt_next_pending_write(ctxt))) {
bch2_trans_unlock_long(ctxt->trans);
list_del(&io->read_list);
move_write(io);
}
}
void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt)
{
unsigned sectors_pending = atomic_read(&ctxt->write_sectors);
move_ctxt_wait_event(ctxt,
!atomic_read(&ctxt->write_sectors) ||
atomic_read(&ctxt->write_sectors) != sectors_pending);
}
void bch2_moving_ctxt_flush_all(struct moving_context *ctxt)
{
move_ctxt_wait_event(ctxt, list_empty(&ctxt->reads));
bch2_trans_unlock_long(ctxt->trans);
closure_sync(&ctxt->cl);
}
void bch2_moving_ctxt_exit(struct moving_context *ctxt)
{
struct bch_fs *c = ctxt->trans->c;
bch2_moving_ctxt_flush_all(ctxt);
EBUG_ON(atomic_read(&ctxt->write_sectors));
EBUG_ON(atomic_read(&ctxt->write_ios));
EBUG_ON(atomic_read(&ctxt->read_sectors));
EBUG_ON(atomic_read(&ctxt->read_ios));
mutex_lock(&c->moving_context_lock);
list_del(&ctxt->list);
mutex_unlock(&c->moving_context_lock);
bch2_trans_put(ctxt->trans);
memset(ctxt, 0, sizeof(*ctxt));
}
void bch2_moving_ctxt_init(struct moving_context *ctxt,
struct bch_fs *c,
struct bch_ratelimit *rate,
struct bch_move_stats *stats,
struct write_point_specifier wp,
bool wait_on_copygc)
{
memset(ctxt, 0, sizeof(*ctxt));
ctxt->trans = bch2_trans_get(c);
ctxt->fn = (void *) _RET_IP_;
ctxt->rate = rate;
ctxt->stats = stats;
ctxt->wp = wp;
ctxt->wait_on_copygc = wait_on_copygc;
closure_init_stack(&ctxt->cl);
mutex_init(&ctxt->lock);
INIT_LIST_HEAD(&ctxt->reads);
INIT_LIST_HEAD(&ctxt->ios);
init_waitqueue_head(&ctxt->wait);
mutex_lock(&c->moving_context_lock);
list_add(&ctxt->list, &c->moving_context_list);
mutex_unlock(&c->moving_context_lock);
}
void bch2_move_stats_exit(struct bch_move_stats *stats, struct bch_fs *c)
{
trace_move_data(c, stats);
}
void bch2_move_stats_init(struct bch_move_stats *stats, const char *name)
{
memset(stats, 0, sizeof(*stats));
stats->data_type = BCH_DATA_user;
scnprintf(stats->name, sizeof(stats->name), "%s", name);
}
int bch2_move_extent(struct moving_context *ctxt,
struct move_bucket_in_flight *bucket_in_flight,
struct btree_iter *iter,
struct bkey_s_c k,
struct bch_io_opts io_opts,
struct data_update_opts data_opts)
{
struct btree_trans *trans = ctxt->trans;
struct bch_fs *c = trans->c;
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
struct moving_io *io;
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
unsigned sectors = k.k->size, pages;
int ret = -ENOMEM;
trace_move_extent2(c, k, &io_opts, &data_opts);
if (ctxt->stats)
ctxt->stats->pos = BBPOS(iter->btree_id, iter->pos);
bch2_data_update_opts_normalize(k, &data_opts);
if (!data_opts.rewrite_ptrs &&
!data_opts.extra_replicas) {
if (data_opts.kill_ptrs)
return bch2_extent_drop_ptrs(trans, iter, k, data_opts);
return 0;
}
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 21:12:00 +00:00
/*
* Before memory allocations & taking nocow locks in
* bch2_data_update_init():
*/
bch2_trans_unlock(trans);
/* write path might have to decompress data: */
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
sectors = max_t(unsigned, sectors, p.crc.uncompressed_size);
pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
io = kzalloc(sizeof(struct moving_io) +
sizeof(struct bio_vec) * pages, GFP_KERNEL);
if (!io)
goto err;
INIT_LIST_HEAD(&io->io_list);
io->write.ctxt = ctxt;
io->read_sectors = k.k->size;
io->write_sectors = k.k->size;
bio_init(&io->write.op.wbio.bio, NULL, io->bi_inline_vecs, pages, 0);
bio_set_prio(&io->write.op.wbio.bio,
IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9,
GFP_KERNEL))
goto err_free;
io->rbio.c = c;
io->rbio.opts = io_opts;
bio_init(&io->rbio.bio, NULL, io->bi_inline_vecs, pages, 0);
io->rbio.bio.bi_vcnt = pages;
bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
io->rbio.bio.bi_iter.bi_size = sectors << 9;
io->rbio.bio.bi_opf = REQ_OP_READ;
io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(k.k);
io->rbio.bio.bi_end_io = move_read_endio;
ret = bch2_data_update_init(trans, iter, ctxt, &io->write, ctxt->wp,
io_opts, data_opts, iter->btree_id, k);
if (ret)
goto err_free_pages;
io->write.op.end_io = move_write_done;
if (ctxt->rate)
bch2_ratelimit_increment(ctxt->rate, k.k->size);
if (ctxt->stats) {
atomic64_inc(&ctxt->stats->keys_moved);
atomic64_add(k.k->size, &ctxt->stats->sectors_moved);
}
if (bucket_in_flight) {
io->b = bucket_in_flight;
atomic_inc(&io->b->count);
}
this_cpu_add(c->counters[BCH_COUNTER_io_move], k.k->size);
this_cpu_add(c->counters[BCH_COUNTER_move_extent_read], k.k->size);
trace_move_extent_read2(c, k);
mutex_lock(&ctxt->lock);
atomic_add(io->read_sectors, &ctxt->read_sectors);
atomic_inc(&ctxt->read_ios);
list_add_tail(&io->read_list, &ctxt->reads);
list_add_tail(&io->io_list, &ctxt->ios);
mutex_unlock(&ctxt->lock);
/*
* dropped by move_read_endio() - guards against use after free of
* ctxt when doing wakeup
*/
closure_get(&ctxt->cl);
bch2_read_extent(trans, &io->rbio,
bkey_start_pos(k.k),
iter->btree_id, k, 0,
BCH_READ_NODECODE|
BCH_READ_LAST_FRAGMENT);
return 0;
err_free_pages:
bio_free_pages(&io->write.op.wbio.bio);
err_free:
kfree(io);
err:
if (ret == -BCH_ERR_data_update_done)
return 0;
if (bch2_err_matches(ret, EROFS) ||
bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ret;
count_event(c, move_extent_start_fail);
if (trace_move_extent_start_fail_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
prt_str(&buf, ": ");
prt_str(&buf, bch2_err_str(ret));
trace_move_extent_start_fail(c, buf.buf);
printbuf_exit(&buf);
}
return ret;
}
struct bch_io_opts *bch2_move_get_io_opts(struct btree_trans *trans,
struct per_snapshot_io_opts *io_opts,
struct bkey_s_c extent_k)
{
struct bch_fs *c = trans->c;
u32 restart_count = trans->restart_count;
int ret = 0;
if (io_opts->cur_inum != extent_k.k->p.inode) {
io_opts->d.nr = 0;
ret = for_each_btree_key(trans, iter, BTREE_ID_inodes, POS(0, extent_k.k->p.inode),
BTREE_ITER_ALL_SNAPSHOTS, k, ({
if (k.k->p.offset != extent_k.k->p.inode)
break;
if (!bkey_is_inode(k.k))
continue;
struct bch_inode_unpacked inode;
BUG_ON(bch2_inode_unpack(k, &inode));
struct snapshot_io_opts_entry e = { .snapshot = k.k->p.snapshot };
bch2_inode_opts_get(&e.io_opts, trans->c, &inode);
darray_push(&io_opts->d, e);
}));
io_opts->cur_inum = extent_k.k->p.inode;
}
ret = ret ?: trans_was_restarted(trans, restart_count);
if (ret)
return ERR_PTR(ret);
if (extent_k.k->p.snapshot)
darray_for_each(io_opts->d, i)
if (bch2_snapshot_is_ancestor(c, extent_k.k->p.snapshot, i->snapshot))
return &i->io_opts;
return &io_opts->fs_io_opts;
}
int bch2_move_get_io_opts_one(struct btree_trans *trans,
struct bch_io_opts *io_opts,
struct bkey_s_c extent_k)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret;
/* reflink btree? */
if (!extent_k.k->p.inode) {
*io_opts = bch2_opts_to_inode_opts(trans->c->opts);
return 0;
}
k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
SPOS(0, extent_k.k->p.inode, extent_k.k->p.snapshot),
BTREE_ITER_CACHED);
ret = bkey_err(k);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ret;
if (!ret && bkey_is_inode(k.k)) {
struct bch_inode_unpacked inode;
bch2_inode_unpack(k, &inode);
bch2_inode_opts_get(io_opts, trans->c, &inode);
} else {
*io_opts = bch2_opts_to_inode_opts(trans->c->opts);
}
bch2_trans_iter_exit(trans, &iter);
return 0;
}
int bch2_move_ratelimit(struct moving_context *ctxt)
{
struct bch_fs *c = ctxt->trans->c;
bool is_kthread = current->flags & PF_KTHREAD;
u64 delay;
if (ctxt->wait_on_copygc && c->copygc_running) {
bch2_moving_ctxt_flush_all(ctxt);
wait_event_killable(c->copygc_running_wq,
!c->copygc_running ||
(is_kthread && kthread_should_stop()));
}
do {
delay = ctxt->rate ? bch2_ratelimit_delay(ctxt->rate) : 0;
if (is_kthread && kthread_should_stop())
return 1;
if (delay)
move_ctxt_wait_event_timeout(ctxt,
freezing(current) ||
(is_kthread && kthread_should_stop()),
delay);
if (unlikely(freezing(current))) {
bch2_moving_ctxt_flush_all(ctxt);
try_to_freeze();
}
} while (delay);
/*
* XXX: these limits really ought to be per device, SSDs and hard drives
* will want different limits
*/
move_ctxt_wait_event(ctxt,
atomic_read(&ctxt->write_sectors) < c->opts.move_bytes_in_flight >> 9 &&
atomic_read(&ctxt->read_sectors) < c->opts.move_bytes_in_flight >> 9 &&
atomic_read(&ctxt->write_ios) < c->opts.move_ios_in_flight &&
atomic_read(&ctxt->read_ios) < c->opts.move_ios_in_flight);
return 0;
}
static int bch2_move_data_btree(struct moving_context *ctxt,
struct bpos start,
struct bpos end,
move_pred_fn pred, void *arg,
enum btree_id btree_id)
{
struct btree_trans *trans = ctxt->trans;
struct bch_fs *c = trans->c;
struct per_snapshot_io_opts snapshot_io_opts;
struct bch_io_opts *io_opts;
struct bkey_buf sk;
struct btree_iter iter;
struct bkey_s_c k;
struct data_update_opts data_opts;
int ret = 0, ret2;
per_snapshot_io_opts_init(&snapshot_io_opts, c);
bch2_bkey_buf_init(&sk);
if (ctxt->stats) {
ctxt->stats->data_type = BCH_DATA_user;
ctxt->stats->pos = BBPOS(btree_id, start);
}
bch2_trans_iter_init(trans, &iter, btree_id, start,
BTREE_ITER_PREFETCH|
BTREE_ITER_ALL_SNAPSHOTS);
if (ctxt->rate)
bch2_ratelimit_reset(ctxt->rate);
while (!bch2_move_ratelimit(ctxt)) {
bch2_trans_begin(trans);
k = bch2_btree_iter_peek(&iter);
if (!k.k)
break;
ret = bkey_err(k);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
if (bkey_ge(bkey_start_pos(k.k), end))
break;
if (ctxt->stats)
ctxt->stats->pos = BBPOS(iter.btree_id, iter.pos);
if (!bkey_extent_is_direct_data(k.k))
goto next_nondata;
io_opts = bch2_move_get_io_opts(trans, &snapshot_io_opts, k);
ret = PTR_ERR_OR_ZERO(io_opts);
if (ret)
continue;
memset(&data_opts, 0, sizeof(data_opts));
if (!pred(c, arg, k, io_opts, &data_opts))
goto next;
/*
* The iterator gets unlocked by __bch2_read_extent - need to
* save a copy of @k elsewhere:
*/
bch2_bkey_buf_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
ret2 = bch2_move_extent(ctxt, NULL, &iter, k, *io_opts, data_opts);
if (ret2) {
if (bch2_err_matches(ret2, BCH_ERR_transaction_restart))
continue;
if (ret2 == -ENOMEM) {
/* memory allocation failure, wait for some IO to finish */
bch2_move_ctxt_wait_for_io(ctxt);
continue;
}
/* XXX signal failure */
goto next;
}
next:
if (ctxt->stats)
atomic64_add(k.k->size, &ctxt->stats->sectors_seen);
next_nondata:
bch2_btree_iter_advance(&iter);
}
bch2_trans_iter_exit(trans, &iter);
bch2_bkey_buf_exit(&sk, c);
per_snapshot_io_opts_exit(&snapshot_io_opts);
return ret;
}
int __bch2_move_data(struct moving_context *ctxt,
struct bbpos start,
struct bbpos end,
move_pred_fn pred, void *arg)
{
struct bch_fs *c = ctxt->trans->c;
enum btree_id id;
int ret = 0;
for (id = start.btree;
id <= min_t(unsigned, end.btree, btree_id_nr_alive(c) - 1);
id++) {
ctxt->stats->pos = BBPOS(id, POS_MIN);
if (!btree_type_has_ptrs(id) ||
!bch2_btree_id_root(c, id)->b)
continue;
ret = bch2_move_data_btree(ctxt,
id == start.btree ? start.pos : POS_MIN,
id == end.btree ? end.pos : POS_MAX,
pred, arg, id);
if (ret)
break;
}
return ret;
}
int bch2_move_data(struct bch_fs *c,
struct bbpos start,
struct bbpos end,
struct bch_ratelimit *rate,
struct bch_move_stats *stats,
struct write_point_specifier wp,
bool wait_on_copygc,
move_pred_fn pred, void *arg)
{
struct moving_context ctxt;
int ret;
bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc);
ret = __bch2_move_data(&ctxt, start, end, pred, arg);
bch2_moving_ctxt_exit(&ctxt);
return ret;
}
int bch2_evacuate_bucket(struct moving_context *ctxt,
struct move_bucket_in_flight *bucket_in_flight,
struct bpos bucket, int gen,
struct data_update_opts _data_opts)
{
struct btree_trans *trans = ctxt->trans;
struct bch_fs *c = trans->c;
bool is_kthread = current->flags & PF_KTHREAD;
struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts);
struct btree_iter iter;
struct bkey_buf sk;
struct bch_backpointer bp;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
struct bkey_s_c k;
struct data_update_opts data_opts;
unsigned dirty_sectors, bucket_size;
u64 fragmentation;
struct bpos bp_pos = POS_MIN;
int ret = 0;
trace_bucket_evacuate(c, &bucket);
bch2_bkey_buf_init(&sk);
/*
* We're not run in a context that handles transaction restarts:
*/
bch2_trans_begin(trans);
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc,
bucket, BTREE_ITER_CACHED);
ret = lockrestart_do(trans,
bkey_err(k = bch2_btree_iter_peek_slot(&iter)));
bch2_trans_iter_exit(trans, &iter);
bch_err_msg(c, ret, "looking up alloc key");
if (ret)
goto err;
a = bch2_alloc_to_v4(k, &a_convert);
dirty_sectors = bch2_bucket_sectors_dirty(*a);
bucket_size = bch_dev_bkey_exists(c, bucket.inode)->mi.bucket_size;
fragmentation = a->fragmentation_lru;
ret = bch2_btree_write_buffer_tryflush(trans);
bch_err_msg(c, ret, "flushing btree write buffer");
if (ret)
goto err;
while (!(ret = bch2_move_ratelimit(ctxt))) {
if (is_kthread && kthread_should_stop())
break;
bch2_trans_begin(trans);
ret = bch2_get_next_backpointer(trans, bucket, gen,
&bp_pos, &bp,
BTREE_ITER_CACHED);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (bkey_eq(bp_pos, POS_MAX))
break;
if (!bp.level) {
k = bch2_backpointer_get_key(trans, &iter, bp_pos, bp, 0);
ret = bkey_err(k);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (!k.k)
goto next;
bch2_bkey_buf_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
ret = bch2_move_get_io_opts_one(trans, &io_opts, k);
if (ret) {
bch2_trans_iter_exit(trans, &iter);
continue;
}
data_opts = _data_opts;
data_opts.target = io_opts.background_target;
data_opts.rewrite_ptrs = 0;
unsigned i = 0;
bkey_for_each_ptr(bch2_bkey_ptrs_c(k), ptr) {
if (ptr->dev == bucket.inode) {
data_opts.rewrite_ptrs |= 1U << i;
if (ptr->cached) {
bch2_trans_iter_exit(trans, &iter);
goto next;
}
}
i++;
}
ret = bch2_move_extent(ctxt, bucket_in_flight,
&iter, k, io_opts, data_opts);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret == -ENOMEM) {
/* memory allocation failure, wait for some IO to finish */
bch2_move_ctxt_wait_for_io(ctxt);
continue;
}
if (ret)
goto err;
if (ctxt->stats)
atomic64_add(k.k->size, &ctxt->stats->sectors_seen);
} else {
struct btree *b;
b = bch2_backpointer_get_node(trans, &iter, bp_pos, bp);
ret = PTR_ERR_OR_ZERO(b);
if (ret == -BCH_ERR_backpointer_to_overwritten_btree_node)
continue;
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (!b)
goto next;
unsigned sectors = btree_ptr_sectors_written(&b->key);
ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (ctxt->rate)
bch2_ratelimit_increment(ctxt->rate, sectors);
if (ctxt->stats) {
atomic64_add(sectors, &ctxt->stats->sectors_seen);
atomic64_add(sectors, &ctxt->stats->sectors_moved);
}
}
next:
bp_pos = bpos_nosnap_successor(bp_pos);
}
trace_evacuate_bucket(c, &bucket, dirty_sectors, bucket_size, fragmentation, ret);
err:
bch2_bkey_buf_exit(&sk, c);
return ret;
}
typedef bool (*move_btree_pred)(struct bch_fs *, void *,
struct btree *, struct bch_io_opts *,
struct data_update_opts *);
static int bch2_move_btree(struct bch_fs *c,
struct bbpos start,
struct bbpos end,
move_btree_pred pred, void *arg,
struct bch_move_stats *stats)
{
bool kthread = (current->flags & PF_KTHREAD) != 0;
struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts);
struct moving_context ctxt;
struct btree_trans *trans;
struct btree_iter iter;
struct btree *b;
enum btree_id btree;
struct data_update_opts data_opts;
int ret = 0;
bch2_moving_ctxt_init(&ctxt, c, NULL, stats,
writepoint_ptr(&c->btree_write_point),
true);
trans = ctxt.trans;
stats->data_type = BCH_DATA_btree;
for (btree = start.btree;
btree <= min_t(unsigned, end.btree, btree_id_nr_alive(c) - 1);
btree ++) {
stats->pos = BBPOS(btree, POS_MIN);
if (!bch2_btree_id_root(c, btree)->b)
continue;
bch2_trans_node_iter_init(trans, &iter, btree, POS_MIN, 0, 0,
BTREE_ITER_PREFETCH);
retry:
ret = 0;
while (bch2_trans_begin(trans),
(b = bch2_btree_iter_peek_node(&iter)) &&
!(ret = PTR_ERR_OR_ZERO(b))) {
if (kthread && kthread_should_stop())
break;
if ((cmp_int(btree, end.btree) ?:
bpos_cmp(b->key.k.p, end.pos)) > 0)
break;
stats->pos = BBPOS(iter.btree_id, iter.pos);
if (!pred(c, arg, b, &io_opts, &data_opts))
goto next;
ret = bch2_btree_node_rewrite(trans, &iter, b, 0) ?: ret;
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
next:
bch2_btree_iter_next_node(&iter);
}
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_iter_exit(trans, &iter);
if (kthread && kthread_should_stop())
break;
}
bch_err_fn(c, ret);
bch2_moving_ctxt_exit(&ctxt);
bch2_btree_interior_updates_flush(c);
return ret;
}
static bool rereplicate_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
unsigned nr_good = bch2_bkey_durability(c, k);
unsigned replicas = bkey_is_btree_ptr(k.k)
? c->opts.metadata_replicas
: io_opts->data_replicas;
if (!nr_good || nr_good >= replicas)
return false;
data_opts->target = 0;
data_opts->extra_replicas = replicas - nr_good;
data_opts->btree_insert_flags = 0;
return true;
}
static bool migrate_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
struct bch_ioctl_data *op = arg;
unsigned i = 0;
data_opts->rewrite_ptrs = 0;
data_opts->target = 0;
data_opts->extra_replicas = 0;
data_opts->btree_insert_flags = 0;
bkey_for_each_ptr(ptrs, ptr) {
if (ptr->dev == op->migrate.dev)
data_opts->rewrite_ptrs |= 1U << i;
i++;
}
return data_opts->rewrite_ptrs != 0;
}
static bool rereplicate_btree_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
return rereplicate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts);
}
static bool migrate_btree_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
return migrate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts);
}
static bool bformat_needs_redo(struct bkey_format *f)
{
unsigned i;
for (i = 0; i < f->nr_fields; i++) {
unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i];
u64 unpacked_mask = ~((~0ULL << 1) << (unpacked_bits - 1));
u64 field_offset = le64_to_cpu(f->field_offset[i]);
if (f->bits_per_field[i] > unpacked_bits)
return true;
if ((f->bits_per_field[i] == unpacked_bits) && field_offset)
return true;
if (((field_offset + ((1ULL << f->bits_per_field[i]) - 1)) &
unpacked_mask) <
field_offset)
return true;
}
return false;
}
static bool rewrite_old_nodes_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
if (b->version_ondisk != c->sb.version ||
btree_node_need_rewrite(b) ||
bformat_needs_redo(&b->format)) {
data_opts->target = 0;
data_opts->extra_replicas = 0;
data_opts->btree_insert_flags = 0;
return true;
}
return false;
}
int bch2_scan_old_btree_nodes(struct bch_fs *c, struct bch_move_stats *stats)
{
int ret;
ret = bch2_move_btree(c,
BBPOS_MIN,
BBPOS_MAX,
rewrite_old_nodes_pred, c, stats);
if (!ret) {
mutex_lock(&c->sb_lock);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
c->disk_sb.sb->version_min = c->disk_sb.sb->version;
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
bch_err_fn(c, ret);
return ret;
}
static bool drop_extra_replicas_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
unsigned durability = bch2_bkey_durability(c, k);
unsigned replicas = bkey_is_btree_ptr(k.k)
? c->opts.metadata_replicas
: io_opts->data_replicas;
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
unsigned i = 0;
bkey_for_each_ptr_decode(k.k, bch2_bkey_ptrs_c(k), p, entry) {
unsigned d = bch2_extent_ptr_durability(c, &p);
if (d && durability - d >= replicas) {
data_opts->kill_ptrs |= BIT(i);
durability -= d;
}
i++;
}
return data_opts->kill_ptrs != 0;
}
static bool drop_extra_replicas_btree_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
return drop_extra_replicas_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts);
}
int bch2_data_job(struct bch_fs *c,
struct bch_move_stats *stats,
struct bch_ioctl_data op)
{
struct bbpos start = BBPOS(op.start_btree, op.start_pos);
struct bbpos end = BBPOS(op.end_btree, op.end_pos);
int ret = 0;
if (op.op >= BCH_DATA_OP_NR)
return -EINVAL;
bch2_move_stats_init(stats, bch2_data_ops_strs[op.op]);
switch (op.op) {
case BCH_DATA_OP_rereplicate:
stats->data_type = BCH_DATA_journal;
ret = bch2_journal_flush_device_pins(&c->journal, -1);
ret = bch2_move_btree(c, start, end,
rereplicate_btree_pred, c, stats) ?: ret;
ret = bch2_move_data(c, start, end,
NULL,
stats,
writepoint_hashed((unsigned long) current),
true,
rereplicate_pred, c) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
break;
case BCH_DATA_OP_migrate:
if (op.migrate.dev >= c->sb.nr_devices)
return -EINVAL;
stats->data_type = BCH_DATA_journal;
ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev);
ret = bch2_move_btree(c, start, end,
migrate_btree_pred, &op, stats) ?: ret;
ret = bch2_move_data(c, start, end,
NULL,
stats,
writepoint_hashed((unsigned long) current),
true,
migrate_pred, &op) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
break;
case BCH_DATA_OP_rewrite_old_nodes:
ret = bch2_scan_old_btree_nodes(c, stats);
break;
case BCH_DATA_OP_drop_extra_replicas:
ret = bch2_move_btree(c, start, end,
drop_extra_replicas_btree_pred, c, stats) ?: ret;
ret = bch2_move_data(c, start, end, NULL, stats,
writepoint_hashed((unsigned long) current),
true,
drop_extra_replicas_pred, c) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
break;
default:
ret = -EINVAL;
}
bch2_move_stats_exit(stats, c);
return ret;
}
void bch2_move_stats_to_text(struct printbuf *out, struct bch_move_stats *stats)
{
prt_printf(out, "%s: data type==", stats->name);
bch2_prt_data_type(out, stats->data_type);
prt_str(out, " pos=");
bch2_bbpos_to_text(out, stats->pos);
prt_newline(out);
printbuf_indent_add(out, 2);
prt_str(out, "keys moved: ");
prt_u64(out, atomic64_read(&stats->keys_moved));
prt_newline(out);
prt_str(out, "keys raced: ");
prt_u64(out, atomic64_read(&stats->keys_raced));
prt_newline(out);
prt_str(out, "bytes seen: ");
prt_human_readable_u64(out, atomic64_read(&stats->sectors_seen) << 9);
prt_newline(out);
prt_str(out, "bytes moved: ");
prt_human_readable_u64(out, atomic64_read(&stats->sectors_moved) << 9);
prt_newline(out);
prt_str(out, "bytes raced: ");
prt_human_readable_u64(out, atomic64_read(&stats->sectors_raced) << 9);
prt_newline(out);
printbuf_indent_sub(out, 2);
}
static void bch2_moving_ctxt_to_text(struct printbuf *out, struct bch_fs *c, struct moving_context *ctxt)
{
struct moving_io *io;
bch2_move_stats_to_text(out, ctxt->stats);
printbuf_indent_add(out, 2);
prt_printf(out, "reads: ios %u/%u sectors %u/%u",
atomic_read(&ctxt->read_ios),
c->opts.move_ios_in_flight,
atomic_read(&ctxt->read_sectors),
c->opts.move_bytes_in_flight >> 9);
prt_newline(out);
prt_printf(out, "writes: ios %u/%u sectors %u/%u",
atomic_read(&ctxt->write_ios),
c->opts.move_ios_in_flight,
atomic_read(&ctxt->write_sectors),
c->opts.move_bytes_in_flight >> 9);
prt_newline(out);
printbuf_indent_add(out, 2);
mutex_lock(&ctxt->lock);
list_for_each_entry(io, &ctxt->ios, io_list)
bch2_write_op_to_text(out, &io->write.op);
mutex_unlock(&ctxt->lock);
printbuf_indent_sub(out, 4);
}
void bch2_fs_moving_ctxts_to_text(struct printbuf *out, struct bch_fs *c)
{
struct moving_context *ctxt;
mutex_lock(&c->moving_context_lock);
list_for_each_entry(ctxt, &c->moving_context_list, list)
bch2_moving_ctxt_to_text(out, c, ctxt);
mutex_unlock(&c->moving_context_lock);
}
void bch2_fs_move_init(struct bch_fs *c)
{
INIT_LIST_HEAD(&c->moving_context_list);
mutex_init(&c->moving_context_lock);
}