linux-stable/arch/x86/mm/init_64.c

1246 lines
31 KiB
C
Raw Normal View History

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>
#include <asm/processor.h>
#include <asm/bios_ebda.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#include <asm/cacheflush.h>
/*
* end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
* The direct mapping extends to max_pfn_mapped, so that we can directly access
* apertures, ACPI and other tables without having to play with fixmaps.
*/
unsigned long max_low_pfn_mapped;
unsigned long max_pfn_mapped;
static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
static int __init parse_direct_gbpages_off(char *arg)
{
direct_gbpages = 0;
return 0;
}
early_param("nogbpages", parse_direct_gbpages_off);
static int __init parse_direct_gbpages_on(char *arg)
{
direct_gbpages = 1;
return 0;
}
early_param("gbpages", parse_direct_gbpages_on);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
int after_bootmem;
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
EXPORT_SYMBOL_GPL(__supported_pte_mask);
static int do_not_nx __cpuinitdata;
/*
* noexec=on|off
* Control non-executable mappings for 64-bit processes.
*
* on Enable (default)
* off Disable
*/
static int __init nonx_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strncmp(str, "on", 2)) {
__supported_pte_mask |= _PAGE_NX;
do_not_nx = 0;
} else if (!strncmp(str, "off", 3)) {
do_not_nx = 1;
__supported_pte_mask &= ~_PAGE_NX;
}
return 0;
}
early_param("noexec", nonx_setup);
void __cpuinit check_efer(void)
{
unsigned long efer;
rdmsrl(MSR_EFER, efer);
if (!(efer & EFER_NX) || do_not_nx)
__supported_pte_mask &= ~_PAGE_NX;
}
int force_personality32;
/*
* noexec32=on|off
* Control non executable heap for 32bit processes.
* To control the stack too use noexec=off
*
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
* off PROT_READ implies PROT_EXEC
*/
static int __init nonx32_setup(char *str)
{
if (!strcmp(str, "on"))
force_personality32 &= ~READ_IMPLIES_EXEC;
else if (!strcmp(str, "off"))
force_personality32 |= READ_IMPLIES_EXEC;
return 1;
}
__setup("noexec32=", nonx32_setup);
/*
* NOTE: This function is marked __ref because it calls __init function
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
*/
static __ref void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
panic("set_pte_phys: cannot allocate page data %s\n",
after_bootmem ? "after bootmem" : "");
}
pr_debug("spp_getpage %p\n", ptr);
return ptr;
}
void
set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = pud_page + pud_index(vaddr);
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
pud_populate(&init_mm, pud, pmd);
if (pmd != pmd_offset(pud, 0)) {
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
pmd, pmd_offset(pud, 0));
return;
}
}
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
pte = (pte_t *) spp_getpage();
pmd_populate_kernel(&init_mm, pmd, pte);
if (pte != pte_offset_kernel(pmd, 0)) {
printk(KERN_ERR "PAGETABLE BUG #02!\n");
return;
}
}
pte = pte_offset_kernel(pmd, vaddr);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
void
set_pte_vaddr(unsigned long vaddr, pte_t pteval)
{
pgd_t *pgd;
pud_t *pud_page;
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk(KERN_ERR
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud_page = (pud_t*)pgd_page_vaddr(*pgd);
set_pte_vaddr_pud(pud_page, vaddr, pteval);
}
/*
* Create large page table mappings for a range of physical addresses.
*/
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
pgd = pgd_offset_k((unsigned long)__va(phys));
if (pgd_none(*pgd)) {
pud = (pud_t *) spp_getpage();
set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
_PAGE_USER));
}
pud = pud_offset(pgd, (unsigned long)__va(phys));
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
_PAGE_USER));
}
pmd = pmd_offset(pud, phys);
BUG_ON(!pmd_none(*pmd));
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
}
}
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
{
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
}
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
{
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
}
/*
* The head.S code sets up the kernel high mapping:
*
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
*
* phys_addr holds the negative offset to the kernel, which is added
* to the compile time generated pmds. This results in invalid pmds up
* to the point where we hit the physaddr 0 mapping.
*
* We limit the mappings to the region from _text to _end. _end is
* rounded up to the 2MB boundary. This catches the invalid pmds as
* well, as they are located before _text:
*/
void __init cleanup_highmap(void)
{
unsigned long vaddr = __START_KERNEL_map;
unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;
pmd_t *last_pmd = pmd + PTRS_PER_PMD;
for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (pmd_none(*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
}
}
static unsigned long __initdata table_start;
static unsigned long __meminitdata table_end;
static unsigned long __meminitdata table_top;
static __ref void *alloc_low_page(unsigned long *phys)
{
unsigned long pfn = table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
return adr;
}
if (pfn >= table_top)
panic("alloc_low_page: ran out of memory");
adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE);
*phys = pfn * PAGE_SIZE;
return adr;
}
static __ref void unmap_low_page(void *adr)
{
if (after_bootmem)
return;
early_iounmap(adr, PAGE_SIZE);
}
static unsigned long __meminit
phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
pgprot_t prot)
{
unsigned pages = 0;
unsigned long last_map_addr = end;
int i;
pte_t *pte = pte_page + pte_index(addr);
for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
if (addr >= end) {
if (!after_bootmem) {
for(; i < PTRS_PER_PTE; i++, pte++)
set_pte(pte, __pte(0));
}
break;
}
/*
* We will re-use the existing mapping.
* Xen for example has some special requirements, like mapping
* pagetable pages as RO. So assume someone who pre-setup
* these mappings are more intelligent.
*/
if (pte_val(*pte)) {
pages++;
continue;
}
if (0)
printk(" pte=%p addr=%lx pte=%016lx\n",
pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
pages++;
set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
}
update_page_count(PG_LEVEL_4K, pages);
return last_map_addr;
}
static unsigned long __meminit
phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
pgprot_t prot)
{
pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
return phys_pte_init(pte, address, end, prot);
}
static unsigned long __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
unsigned long page_size_mask, pgprot_t prot)
{
unsigned long pages = 0;
unsigned long last_map_addr = end;
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
unsigned long pte_phys;
pmd_t *pmd = pmd_page + pmd_index(address);
pte_t *pte;
pgprot_t new_prot = prot;
if (address >= end) {
if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
}
break;
}
if (pmd_val(*pmd)) {
if (!pmd_large(*pmd)) {
spin_lock(&init_mm.page_table_lock);
last_map_addr = phys_pte_update(pmd, address,
end, prot);
spin_unlock(&init_mm.page_table_lock);
continue;
}
/*
* If we are ok with PG_LEVEL_2M mapping, then we will
* use the existing mapping,
*
* Otherwise, we will split the large page mapping but
* use the same existing protection bits except for
* large page, so that we don't violate Intel's TLB
* Application note (317080) which says, while changing
* the page sizes, new and old translations should
* not differ with respect to page frame and
* attributes.
*/
if (page_size_mask & (1 << PG_LEVEL_2M)) {
pages++;
continue;
}
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
}
if (page_size_mask & (1<<PG_LEVEL_2M)) {
pages++;
spin_lock(&init_mm.page_table_lock);
set_pte((pte_t *)pmd,
pfn_pte(address >> PAGE_SHIFT,
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
spin_unlock(&init_mm.page_table_lock);
last_map_addr = (address & PMD_MASK) + PMD_SIZE;
continue;
}
pte = alloc_low_page(&pte_phys);
last_map_addr = phys_pte_init(pte, address, end, new_prot);
unmap_low_page(pte);
spin_lock(&init_mm.page_table_lock);
pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
spin_unlock(&init_mm.page_table_lock);
}
update_page_count(PG_LEVEL_2M, pages);
return last_map_addr;
}
static unsigned long __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
unsigned long page_size_mask, pgprot_t prot)
{
pmd_t *pmd = pmd_offset(pud, 0);
unsigned long last_map_addr;
last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
__flush_tlb_all();
return last_map_addr;
}
static unsigned long __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
unsigned long page_size_mask)
{
unsigned long pages = 0;
unsigned long last_map_addr = end;
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
pgprot_t prot = PAGE_KERNEL;
if (addr >= end)
break;
if (!after_bootmem &&
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
if (!pud_large(*pud)) {
last_map_addr = phys_pmd_update(pud, addr, end,
page_size_mask, prot);
continue;
}
/*
* If we are ok with PG_LEVEL_1G mapping, then we will
* use the existing mapping.
*
* Otherwise, we will split the gbpage mapping but use
* the same existing protection bits except for large
* page, so that we don't violate Intel's TLB
* Application note (317080) which says, while changing
* the page sizes, new and old translations should
* not differ with respect to page frame and
* attributes.
*/
if (page_size_mask & (1 << PG_LEVEL_1G)) {
pages++;
continue;
}
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
}
if (page_size_mask & (1<<PG_LEVEL_1G)) {
pages++;
spin_lock(&init_mm.page_table_lock);
set_pte((pte_t *)pud,
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
spin_unlock(&init_mm.page_table_lock);
last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
continue;
}
pmd = alloc_low_page(&pmd_phys);
last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
prot);
unmap_low_page(pmd);
spin_lock(&init_mm.page_table_lock);
pud_populate(&init_mm, pud, __va(pmd_phys));
spin_unlock(&init_mm.page_table_lock);
}
__flush_tlb_all();
update_page_count(PG_LEVEL_1G, pages);
return last_map_addr;
}
static unsigned long __meminit
phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
unsigned long page_size_mask)
{
pud_t *pud;
pud = (pud_t *)pgd_page_vaddr(*pgd);
return phys_pud_init(pud, addr, end, page_size_mask);
}
static void __init find_early_table_space(unsigned long end, int use_pse,
int use_gbpages)
{
unsigned long puds, pmds, ptes, tables, start;
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
if (use_gbpages) {
unsigned long extra;
extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
} else
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
if (use_pse) {
unsigned long extra;
extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
} else
ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
/*
* RED-PEN putting page tables only on node 0 could
* cause a hotspot and fill up ZONE_DMA. The page tables
* need roughly 0.5KB per GB.
*/
start = 0x8000;
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 17:49:41 +01:00
table_start = find_e820_area(start, end, tables, PAGE_SIZE);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
table_start >>= PAGE_SHIFT;
table_end = table_start;
table_top = table_start + (tables >> PAGE_SHIFT);
printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
}
static void __init init_gbpages(void)
{
if (direct_gbpages && cpu_has_gbpages)
printk(KERN_INFO "Using GB pages for direct mapping\n");
else
direct_gbpages = 0;
}
static unsigned long __init kernel_physical_mapping_init(unsigned long start,
unsigned long end,
unsigned long page_size_mask)
{
unsigned long next, last_map_addr = end;
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
pgd_t *pgd = pgd_offset_k(start);
unsigned long pud_phys;
pud_t *pud;
next = (start + PGDIR_SIZE) & PGDIR_MASK;
if (next > end)
next = end;
if (pgd_val(*pgd)) {
last_map_addr = phys_pud_update(pgd, __pa(start),
__pa(end), page_size_mask);
continue;
}
pud = alloc_low_page(&pud_phys);
last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
page_size_mask);
unmap_low_page(pud);
spin_lock(&init_mm.page_table_lock);
pgd_populate(&init_mm, pgd, __va(pud_phys));
spin_unlock(&init_mm.page_table_lock);
}
__flush_tlb_all();
return last_map_addr;
}
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
#define NR_RANGE_MR 5
static int save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __init_refok init_memory_mapping(unsigned long start,
unsigned long end)
{
unsigned long last_map_addr = 0;
unsigned long page_size_mask = 0;
unsigned long start_pfn, end_pfn;
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
unsigned long pos;
struct map_range mr[NR_RANGE_MR];
int nr_range, i;
int use_pse, use_gbpages;
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
/*
* Find space for the kernel direct mapping tables.
*
* Later we should allocate these tables in the local node of the
* memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/
if (!after_bootmem)
init_gbpages();
#ifdef CONFIG_DEBUG_PAGEALLOC
/*
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
use_pse = use_gbpages = 0;
#else
use_pse = cpu_has_pse;
use_gbpages = direct_gbpages;
#endif
if (use_gbpages)
page_size_mask |= 1 << PG_LEVEL_1G;
if (use_pse)
page_size_mask |= 1 << PG_LEVEL_2M;
memset(mr, 0, sizeof(mr));
nr_range = 0;
/* head if not big page alignment ?*/
start_pfn = start >> PAGE_SHIFT;
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
pos = start_pfn << PAGE_SHIFT;
end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pos = end_pfn << PAGE_SHIFT;
}
/* big page (2M) range*/
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
/* big page (1G) range */
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
pos = end_pfn << PAGE_SHIFT;
}
/* tail is not big page (1G) alignment */
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
/* tail is not big page (2M) alignment */
x86: fix init_memory_mapping for [dc000000 - e0000000) - v2 Impact: change over-mapping to precise mapping, fix /proc/meminfo output v2: fix less than 1G ram system handling when gart aperture is 0xdc000000 - 0xe0000000 it return 0xc0000000 - 0xe0000000 that is not right. this patch fix that will get exact mapping on 256g sytem with that aperture after patch LBSuse:~ # cat /proc/meminfo MemTotal: 264742432 kB MemFree: 263920628 kB Buffers: 1416 kB Cached: 24468 kB ... DirectMap4k: 5760 kB DirectMap2M: 3205120 kB DirectMap1G: 265289728 kB it is consistent to LBSuse:~ # cat /sys/kernel/debug/kernel_page_tables .. ---[ Low Kernel Mapping ]--- 0xffff880000000000-0xffff880000200000 2M RW GLB x pte 0xffff880000200000-0xffff880040000000 1022M RW PSE GLB x pmd 0xffff880040000000-0xffff8800c0000000 2G RW PSE GLB NX pud 0xffff8800c0000000-0xffff8800d7e00000 382M RW PSE GLB NX pmd 0xffff8800d7e00000-0xffff8800d7fa0000 1664K RW GLB NX pte 0xffff8800d7fa0000-0xffff8800d8000000 384K pte 0xffff8800d8000000-0xffff8800dc000000 64M pmd 0xffff8800dc000000-0xffff8800e0000000 64M RW PSE GLB NX pmd 0xffff8800e0000000-0xffff880100000000 512M pmd 0xffff880100000000-0xffff880800000000 28G RW PSE GLB NX pud 0xffff880800000000-0xffff880824600000 582M RW PSE GLB NX pmd 0xffff880824600000-0xffff8808247f0000 1984K RW GLB NX pte 0xffff8808247f0000-0xffff880824800000 64K RW PCD GLB NX pte 0xffff880824800000-0xffff880840000000 440M RW PSE GLB NX pmd 0xffff880840000000-0xffff884000000000 223G RW PSE GLB NX pud 0xffff884000000000-0xffff884028000000 640M RW PSE GLB NX pmd 0xffff884028000000-0xffff884040000000 384M pmd 0xffff884040000000-0xffff888000000000 255G pud 0xffff888000000000-0xffffc20000000000 58880G pgd Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-28 12:39:23 -07:00
start_pfn = pos>>PAGE_SHIFT;
end_pfn = end>>PAGE_SHIFT;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof (struct map_range));
mr[i--].start = old_start;
nr_range--;
}
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG " %010lx - %010lx page %s\n",
mr[i].start, mr[i].end,
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
if (!after_bootmem)
find_early_table_space(end, use_pse, use_gbpages);
for (i = 0; i < nr_range; i++)
last_map_addr = kernel_physical_mapping_init(
mr[i].start, mr[i].end,
mr[i].page_size_mask);
if (!after_bootmem)
mmu_cr4_features = read_cr4();
__flush_tlb_all();
if (!after_bootmem && table_end > table_start)
x86_64: make bootmap_start page align v6 boot oopses when a system has 64 or 128 GB of RAM installed: Calling initcall 0xffffffff80bc33b6: sctp_init+0x0/0x711() BUG: unable to handle kernel NULL pointer dereference at 000000000000005f IP: [<ffffffff802bfe55>] proc_register+0xe7/0x10f PGD 0 Oops: 0000 [1] SMP CPU 0 Modules linked in: Pid: 1, comm: swapper Not tainted 2.6.24-smp-g5a514e21-dirty #6 RIP: 0010:[<ffffffff802bfe55>] [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP: 0000:ffff810824c57e60 EFLAGS: 00010246 RAX: 000000000000d7d7 RBX: ffff811024c5fa80 RCX: ffff810824c57e08 RDX: 0000000000000000 RSI: 0000000000000195 RDI: ffffffff80cc2460 RBP: ffffffffffffffff R08: 0000000000000000 R09: ffff811024c5fa80 R10: 0000000000000000 R11: 0000000000000002 R12: ffff810824c57e6c R13: 0000000000000000 R14: ffff810824c57ee0 R15: 00000006abd25bee FS: 0000000000000000(0000) GS:ffffffff80b4d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000005f CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 1, threadinfo ffff810824c56000, task ffff812024c52000) Stack: ffffffff80a57348 0000019500000000 ffff811024c5fa80 0000000000000000 00000000ffffff97 ffffffff802bfef0 0000000000000000 ffffffffffffffff 0000000000000000 ffffffff80bc3b4b ffff810824c57ee0 ffffffff80bc34a5 Call Trace: [<ffffffff802bfef0>] ? create_proc_entry+0x73/0x8a [<ffffffff80bc3b4b>] ? sctp_snmp_proc_init+0x1c/0x34 [<ffffffff80bc34a5>] ? sctp_init+0xef/0x711 [<ffffffff80b976e3>] ? kernel_init+0x175/0x2e1 [<ffffffff8020ccf8>] ? child_rip+0xa/0x12 [<ffffffff80b9756e>] ? kernel_init+0x0/0x2e1 [<ffffffff8020ccee>] ? child_rip+0x0/0x12 Code: 1e 48 83 7b 38 00 75 08 48 c7 43 38 f0 e8 82 80 48 83 7b 30 00 75 08 48 c7 43 30 d0 e9 82 80 48 c7 c7 60 24 cc 80 e8 bd 5a 54 00 <48> 8b 45 60 48 89 6b 58 48 89 5d 60 48 89 43 50 fe 05 f5 25 a0 RIP [<ffffffff802bfe55>] proc_register+0xe7/0x10f RSP <ffff810824c57e60> CR2: 000000000000005f ---[ end trace 02c2d78def82877a ]--- Kernel panic - not syncing: Attempted to kill init! it turns out some variables near end of bss are corrupted already. in System.map we have ffffffff80d40420 b rsi_table ffffffff80d40620 B krb5_seq_lock ffffffff80d40628 b i.20437 ffffffff80d40630 b xprt_rdma_inline_write_padding ffffffff80d40638 b sunrpc_table_header ffffffff80d40640 b zero ffffffff80d40644 b min_memreg ffffffff80d40648 b rpcrdma_tk_lock_g ffffffff80d40650 B sctp_assocs_id_lock ffffffff80d40658 B proc_net_sctp ffffffff80d40660 B sctp_assocs_id ffffffff80d40680 B sysctl_sctp_mem ffffffff80d40690 B sysctl_sctp_rmem ffffffff80d406a0 B sysctl_sctp_wmem ffffffff80d406b0 b sctp_ctl_socket ffffffff80d406b8 b sctp_pf_inet6_specific ffffffff80d406c0 b sctp_pf_inet_specific ffffffff80d406c8 b sctp_af_v4_specific ffffffff80d406d0 b sctp_af_v6_specific ffffffff80d406d8 b sctp_rand.33270 ffffffff80d406dc b sctp_memory_pressure ffffffff80d406e0 b sctp_sockets_allocated ffffffff80d406e4 b sctp_memory_allocated ffffffff80d406e8 b sctp_sysctl_header ffffffff80d406f0 b zero ffffffff80d406f4 A __bss_stop ffffffff80d406f4 A _end and setup_node_bootmem() will use that page 0xd40000 for bootmap Bootmem setup node 0 0000000000000000-0000000828000000 NODE_DATA [000000000008a485 - 0000000000091484] bootmap [0000000000d406f4 - 0000000000e456f3] pages 105 Bootmem setup node 1 0000000828000000-0000001028000000 NODE_DATA [0000000828000000 - 0000000828006fff] bootmap [0000000828007000 - 0000000828106fff] pages 100 Bootmem setup node 2 0000001028000000-0000001828000000 NODE_DATA [0000001028000000 - 0000001028006fff] bootmap [0000001028007000 - 0000001028106fff] pages 100 Bootmem setup node 3 0000001828000000-0000002028000000 NODE_DATA [0000001828000000 - 0000001828006fff] bootmap [0000001828007000 - 0000001828106fff] pages 100 setup_node_bootmem() makes NODE_DATA cacheline aligned, and bootmap is page-aligned. the patch updates find_e820_area() to make sure we can meet the alignment constraints. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-01 17:49:41 +01:00
reserve_early(table_start << PAGE_SHIFT,
table_end << PAGE_SHIFT, "PGTABLE");
printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
last_map_addr, end);
if (!after_bootmem)
early_memtest(start, end);
return last_map_addr >> PAGE_SHIFT;
}
#ifndef CONFIG_NUMA
void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long bootmap_size, bootmap;
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
PAGE_SIZE);
if (bootmap == -1L)
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
/* don't touch min_low_pfn */
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
0, end_pfn);
e820_register_active_regions(0, start_pfn, end_pfn);
free_bootmem_with_active_regions(0, end_pfn);
early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
}
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = max_pfn;
memory_present(0, 0, max_pfn);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
#endif
/*
* Memory hotplug specific functions
*/
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
[PATCH] reduce MAX_NR_ZONES: remove two strange uses of MAX_NR_ZONES I keep seeing zones on various platforms that are never used and wonder why we compile support for them into the kernel. Counters show up for HIGHMEM and DMA32 that are alway zero. This patch allows the removal of ZONE_DMA32 for non x86_64 architectures and it will get rid of ZONE_HIGHMEM for arches not using highmem (like 64 bit architectures). If an arch does not define CONFIG_HIGHMEM then ZONE_HIGHMEM will not be defined. Similarly if an arch does not define CONFIG_ZONE_DMA32 then ZONE_DMA32 will not be defined. No current architecture uses all the 4 zones (DMA,DMA32,NORMAL,HIGH) that we have now. The patchset will reduce the number of zones for all platforms. On many platforms that do not have DMA32 or HIGHMEM this will reduce the number of zones by 50%. F.e. ia64 only uses DMA and NORMAL. Large amounts of memory can be saved for larger systemss that may have a few hundred NUMA nodes. With ZONE_DMA32 and ZONE_HIGHMEM support optional MAX_NR_ZONES will be 2 for many non i386 platforms and even for i386 without CONFIG_HIGHMEM set. Tested on ia64, x86_64 and on i386 with and without highmem. The patchset consists of 11 patches that are following this message. One could go even further than this patchset and also make ZONE_DMA optional because some platforms do not need a separate DMA zone and can do DMA to all of memory. This could reduce MAX_NR_ZONES to 1. Such a patchset will hopefully follow soon. This patch: Fix strange uses of MAX_NR_ZONES Sometimes we use MAX_NR_ZONES - x to refer to a zone. Make that explicit. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-25 23:31:09 -07:00
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
last_mapped_pfn = init_memory_mapping(start, start + size);
if (last_mapped_pfn > max_pfn_mapped)
max_pfn_mapped = last_mapped_pfn;
ret = __add_pages(zone, start_pfn, nr_pages);
WARN_ON_ONCE(ret);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains bios code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr <= 256)
return 1;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
kcore_modules, kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
unsigned long absent_pages;
pci_iommu_alloc();
/* clear_bss() already clear the empty_zero_page */
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
absent_pages = absent_pages_in_range(0, max_pfn);
reservedpages = max_pfn - totalram_pages - absent_pages;
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
"%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
max_pfn << (PAGE_SHIFT-10),
codesize >> 10,
absent_pages << (PAGE_SHIFT-10),
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr = begin;
if (addr >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
begin, PAGE_ALIGN(end));
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)(addr & ~(PAGE_SIZE-1)),
POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_DEBUG_RODATA
const int rodata_test_data = 0xC3;
EXPORT_SYMBOL_GPL(rodata_test_data);
void mark_rodata_ro(void)
{
unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
unsigned long rodata_start =
((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
#ifdef CONFIG_DYNAMIC_FTRACE
/* Dynamic tracing modifies the kernel text section */
start = rodata_start;
#endif
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
/*
* The rodata section (but not the kernel text!) should also be
* not-executable.
*/
set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
rodata_test();
#ifdef CONFIG_CPA_DEBUG
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
printk(KERN_INFO "Testing CPA: again\n");
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
#endif
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif
int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
int flags)
{
#ifdef CONFIG_NUMA
int nid, next_nid;
int ret;
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= max_pfn) {
/*
* This can happen with kdump kernels when accessing
* firmware tables:
*/
if (pfn < max_pfn_mapped)
return -EFAULT;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
phys, len);
return -EFAULT;
}
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
nid = phys_to_nid(phys);
next_nid = phys_to_nid(phys + len - 1);
if (nid == next_nid)
ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
else
ret = reserve_bootmem(phys, len, flags);
if (ret != 0)
return ret;
#else
reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
set_dma_reserve(dma_reserve);
}
return 0;
}
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
/*
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
* not need special handling anymore:
*/
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/*
* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives:
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}
const char *arch_vma_name(struct vm_area_struct *vma)
{
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
return "[vdso]";
if (vma == &gate_vma)
return "[vsyscall]";
return NULL;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 01:19:24 -07:00
static long __meminitdata addr_start, addr_end;
static void __meminitdata *p_start, *p_end;
static int __meminitdata node_start;
int __meminit
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
for (; addr < end; addr = next) {
void *p = NULL;
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
if (!cpu_has_pse) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return -ENOMEM;
p = vmemmap_pte_populate(pmd, addr, node);
if (!p)
return -ENOMEM;
addr_end = addr + PAGE_SIZE;
p_end = p + PAGE_SIZE;
} else {
next = pmd_addr_end(addr, end);
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
/* check to see if we have contiguous blocks */
if (p_end != p || node_start != node) {
if (p_start)
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
addr_start = addr;
node_start = node;
p_start = p;
}
addr_end = addr + PMD_SIZE;
p_end = p + PMD_SIZE;
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
}
}
return 0;
}
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 01:19:24 -07:00
void __meminit vmemmap_populate_print_last(void)
{
if (p_start) {
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
p_start = NULL;
p_end = NULL;
node_start = 0;
}
}
#endif