635 lines
18 KiB
C
Raw Normal View History

/* mac89x0.c: A Crystal Semiconductor CS89[02]0 driver for linux. */
/*
Written 1996 by Russell Nelson, with reference to skeleton.c
written 1993-1994 by Donald Becker.
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
The author may be reached at nelson@crynwr.com, Crynwr
Software, 11 Grant St., Potsdam, NY 13676
Changelog:
Mike Cruse : mcruse@cti-ltd.com
: Changes for Linux 2.0 compatibility.
: Added dev_id parameter in net_interrupt(),
: request_irq() and free_irq(). Just NULL for now.
Mike Cruse : Added MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT macros
: in net_open() and net_close() so kerneld would know
: that the module is in use and wouldn't eject the
: driver prematurely.
Mike Cruse : Rewrote init_module() and cleanup_module using 8390.c
: as an example. Disabled autoprobing in init_module(),
: not a good thing to do to other devices while Linux
: is running from all accounts.
Alan Cox : Removed 1.2 support, added 2.1 extra counters.
David Huggins-Daines <dhd@debian.org>
Split this off into mac89x0.c, and gutted it of all parts which are
not relevant to the existing CS8900 cards on the Macintosh
(i.e. basically the Daynaport CS and LC cards). To be precise:
* Removed all the media-detection stuff, because these cards are
TP-only.
* Lobotomized the ISA interrupt bogosity, because these cards use
a hardwired NuBus interrupt and a magic ISAIRQ value in the card.
* Basically eliminated everything not relevant to getting the
cards minimally functioning on the Macintosh.
I might add that these cards are badly designed even from the Mac
standpoint, in that Dayna, in their infinite wisdom, used NuBus slot
I/O space and NuBus interrupts for these cards, but neglected to
provide anything even remotely resembling a NuBus ROM. Therefore we
have to probe for them in a brain-damaged ISA-like fashion.
Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
check kmalloc and release the allocated memory on failure in
mac89x0_probe and in init_module
use local_irq_{save,restore}(flags) in net_get_stat, not just
local_irq_{dis,en}able()
*/
static char *version =
"cs89x0.c:v1.02 11/26/96 Russell Nelson <nelson@crynwr.com>\n";
/* ======================= configure the driver here ======================= */
/* use 0 for production, 1 for verification, >2 for debug */
#ifndef NET_DEBUG
#define NET_DEBUG 0
#endif
/* ======================= end of configuration ======================= */
/* Always include 'config.h' first in case the user wants to turn on
or override something. */
#include <linux/module.h>
/*
Sources:
Crynwr packet driver epktisa.
Crystal Semiconductor data sheets.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/string.h>
#include <linux/nubus.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/bitops.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/gfp.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/hwtest.h>
#include <asm/macints.h>
#include "cs89x0.h"
static unsigned int net_debug = NET_DEBUG;
/* Information that need to be kept for each board. */
struct net_local {
int chip_type; /* one of: CS8900, CS8920, CS8920M */
char chip_revision; /* revision letter of the chip ('A'...) */
int send_cmd; /* the propercommand used to send a packet. */
int rx_mode;
int curr_rx_cfg;
int send_underrun; /* keep track of how many underruns in a row we get */
struct sk_buff *skb;
};
/* Index to functions, as function prototypes. */
#if 0
extern void reset_chip(struct net_device *dev);
#endif
static int net_open(struct net_device *dev);
static int net_send_packet(struct sk_buff *skb, struct net_device *dev);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
static irqreturn_t net_interrupt(int irq, void *dev_id);
static void set_multicast_list(struct net_device *dev);
static void net_rx(struct net_device *dev);
static int net_close(struct net_device *dev);
static struct net_device_stats *net_get_stats(struct net_device *dev);
static int set_mac_address(struct net_device *dev, void *addr);
/* Example routines you must write ;->. */
#define tx_done(dev) 1
/* For reading/writing registers ISA-style */
static inline int
readreg_io(struct net_device *dev, int portno)
{
nubus_writew(swab16(portno), dev->base_addr + ADD_PORT);
return swab16(nubus_readw(dev->base_addr + DATA_PORT));
}
static inline void
writereg_io(struct net_device *dev, int portno, int value)
{
nubus_writew(swab16(portno), dev->base_addr + ADD_PORT);
nubus_writew(swab16(value), dev->base_addr + DATA_PORT);
}
/* These are for reading/writing registers in shared memory */
static inline int
readreg(struct net_device *dev, int portno)
{
return swab16(nubus_readw(dev->mem_start + portno));
}
static inline void
writereg(struct net_device *dev, int portno, int value)
{
nubus_writew(swab16(value), dev->mem_start + portno);
}
static const struct net_device_ops mac89x0_netdev_ops = {
.ndo_open = net_open,
.ndo_stop = net_close,
.ndo_start_xmit = net_send_packet,
.ndo_get_stats = net_get_stats,
.ndo_set_multicast_list = set_multicast_list,
.ndo_set_mac_address = set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
};
/* Probe for the CS8900 card in slot E. We won't bother looking
anywhere else until we have a really good reason to do so. */
struct net_device * __init mac89x0_probe(int unit)
{
struct net_device *dev;
static int once_is_enough;
struct net_local *lp;
static unsigned version_printed;
int i, slot;
unsigned rev_type = 0;
unsigned long ioaddr;
unsigned short sig;
int err = -ENODEV;
if (!MACH_IS_MAC)
return ERR_PTR(-ENODEV);
dev = alloc_etherdev(sizeof(struct net_local));
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0) {
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
}
if (once_is_enough)
goto out;
once_is_enough = 1;
/* We might have to parameterize this later */
slot = 0xE;
/* Get out now if there's a real NuBus card in slot E */
if (nubus_find_slot(slot, NULL) != NULL)
goto out;
/* The pseudo-ISA bits always live at offset 0x300 (gee,
wonder why...) */
ioaddr = (unsigned long)
nubus_slot_addr(slot) | (((slot&0xf) << 20) + DEFAULTIOBASE);
{
unsigned long flags;
int card_present;
local_irq_save(flags);
card_present = (hwreg_present((void*) ioaddr+4) &&
hwreg_present((void*) ioaddr + DATA_PORT));
local_irq_restore(flags);
if (!card_present)
goto out;
}
nubus_writew(0, ioaddr + ADD_PORT);
sig = nubus_readw(ioaddr + DATA_PORT);
if (sig != swab16(CHIP_EISA_ID_SIG))
goto out;
/* Initialize the net_device structure. */
lp = netdev_priv(dev);
/* Fill in the 'dev' fields. */
dev->base_addr = ioaddr;
dev->mem_start = (unsigned long)
nubus_slot_addr(slot) | (((slot&0xf) << 20) + MMIOBASE);
dev->mem_end = dev->mem_start + 0x1000;
/* Turn on shared memory */
writereg_io(dev, PP_BusCTL, MEMORY_ON);
/* get the chip type */
rev_type = readreg(dev, PRODUCT_ID_ADD);
lp->chip_type = rev_type &~ REVISON_BITS;
lp->chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A';
/* Check the chip type and revision in order to set the correct send command
CS8920 revision C and CS8900 revision F can use the faster send. */
lp->send_cmd = TX_AFTER_381;
if (lp->chip_type == CS8900 && lp->chip_revision >= 'F')
lp->send_cmd = TX_NOW;
if (lp->chip_type != CS8900 && lp->chip_revision >= 'C')
lp->send_cmd = TX_NOW;
if (net_debug && version_printed++ == 0)
printk(version);
printk(KERN_INFO "%s: cs89%c0%s rev %c found at %#8lx",
dev->name,
lp->chip_type==CS8900?'0':'2',
lp->chip_type==CS8920M?"M":"",
lp->chip_revision,
dev->base_addr);
/* Try to read the MAC address */
if ((readreg(dev, PP_SelfST) & (EEPROM_PRESENT | EEPROM_OK)) == 0) {
printk("\nmac89x0: No EEPROM, giving up now.\n");
goto out1;
} else {
for (i = 0; i < ETH_ALEN; i += 2) {
/* Big-endian (why??!) */
unsigned short s = readreg(dev, PP_IA + i);
dev->dev_addr[i] = s >> 8;
dev->dev_addr[i+1] = s & 0xff;
}
}
dev->irq = SLOT2IRQ(slot);
/* print the IRQ and ethernet address. */
printk(" IRQ %d ADDR %pM\n", dev->irq, dev->dev_addr);
dev->netdev_ops = &mac89x0_netdev_ops;
err = register_netdev(dev);
if (err)
goto out1;
return NULL;
out1:
nubus_writew(0, dev->base_addr + ADD_PORT);
out:
free_netdev(dev);
return ERR_PTR(err);
}
#if 0
/* This is useful for something, but I don't know what yet. */
void __init reset_chip(struct net_device *dev)
{
int reset_start_time;
writereg(dev, PP_SelfCTL, readreg(dev, PP_SelfCTL) | POWER_ON_RESET);
/* wait 30 ms */
msleep_interruptible(30);
/* Wait until the chip is reset */
reset_start_time = jiffies;
while( (readreg(dev, PP_SelfST) & INIT_DONE) == 0 && jiffies - reset_start_time < 2)
;
}
#endif
/* Open/initialize the board. This is called (in the current kernel)
sometime after booting when the 'ifconfig' program is run.
This routine should set everything up anew at each open, even
registers that "should" only need to be set once at boot, so that
there is non-reboot way to recover if something goes wrong.
*/
static int
net_open(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
int i;
/* Disable the interrupt for now */
writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) & ~ENABLE_IRQ);
/* Grab the interrupt */
if (request_irq(dev->irq, net_interrupt, 0, "cs89x0", dev))
return -EAGAIN;
/* Set up the IRQ - Apparently magic */
if (lp->chip_type == CS8900)
writereg(dev, PP_CS8900_ISAINT, 0);
else
writereg(dev, PP_CS8920_ISAINT, 0);
/* set the Ethernet address */
for (i=0; i < ETH_ALEN/2; i++)
writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8));
/* Turn on both receive and transmit operations */
writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);
/* Receive only error free packets addressed to this card */
lp->rx_mode = 0;
writereg(dev, PP_RxCTL, DEF_RX_ACCEPT);
lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL;
writereg(dev, PP_RxCFG, lp->curr_rx_cfg);
writereg(dev, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL |
TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL);
writereg(dev, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL |
TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL);
/* now that we've got our act together, enable everything */
writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) | ENABLE_IRQ);
netif_start_queue(dev);
return 0;
}
static int
net_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
if (net_debug > 3)
printk("%s: sent %d byte packet of type %x\n",
dev->name, skb->len,
(skb->data[ETH_ALEN+ETH_ALEN] << 8)
| skb->data[ETH_ALEN+ETH_ALEN+1]);
/* keep the upload from being interrupted, since we
ask the chip to start transmitting before the
whole packet has been completely uploaded. */
local_irq_save(flags);
netif_stop_queue(dev);
/* initiate a transmit sequence */
writereg(dev, PP_TxCMD, lp->send_cmd);
writereg(dev, PP_TxLength, skb->len);
/* Test to see if the chip has allocated memory for the packet */
if ((readreg(dev, PP_BusST) & READY_FOR_TX_NOW) == 0) {
/* Gasp! It hasn't. But that shouldn't happen since
we're waiting for TxOk, so return 1 and requeue this packet. */
local_irq_restore(flags);
return NETDEV_TX_BUSY;
}
/* Write the contents of the packet */
skb_copy_from_linear_data(skb, (void *)(dev->mem_start + PP_TxFrame),
skb->len+1);
local_irq_restore(flags);
dev_kfree_skb (skb);
return NETDEV_TX_OK;
}
/* The typical workload of the driver:
Handle the network interface interrupts. */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
static irqreturn_t net_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct net_local *lp;
int ioaddr, status;
if (dev == NULL) {
printk ("net_interrupt(): irq %d for unknown device.\n", irq);
return IRQ_NONE;
}
ioaddr = dev->base_addr;
lp = netdev_priv(dev);
/* we MUST read all the events out of the ISQ, otherwise we'll never
get interrupted again. As a consequence, we can't have any limit
on the number of times we loop in the interrupt handler. The
hardware guarantees that eventually we'll run out of events. Of
course, if you're on a slow machine, and packets are arriving
faster than you can read them off, you're screwed. Hasta la
vista, baby! */
while ((status = swab16(nubus_readw(dev->base_addr + ISQ_PORT)))) {
if (net_debug > 4)printk("%s: event=%04x\n", dev->name, status);
switch(status & ISQ_EVENT_MASK) {
case ISQ_RECEIVER_EVENT:
/* Got a packet(s). */
net_rx(dev);
break;
case ISQ_TRANSMITTER_EVENT:
dev->stats.tx_packets++;
netif_wake_queue(dev);
if ((status & TX_OK) == 0)
dev->stats.tx_errors++;
if (status & TX_LOST_CRS)
dev->stats.tx_carrier_errors++;
if (status & TX_SQE_ERROR)
dev->stats.tx_heartbeat_errors++;
if (status & TX_LATE_COL)
dev->stats.tx_window_errors++;
if (status & TX_16_COL)
dev->stats.tx_aborted_errors++;
break;
case ISQ_BUFFER_EVENT:
if (status & READY_FOR_TX) {
/* we tried to transmit a packet earlier,
but inexplicably ran out of buffers.
That shouldn't happen since we only ever
load one packet. Shrug. Do the right
thing anyway. */
netif_wake_queue(dev);
}
if (status & TX_UNDERRUN) {
if (net_debug > 0) printk("%s: transmit underrun\n", dev->name);
lp->send_underrun++;
if (lp->send_underrun == 3) lp->send_cmd = TX_AFTER_381;
else if (lp->send_underrun == 6) lp->send_cmd = TX_AFTER_ALL;
}
break;
case ISQ_RX_MISS_EVENT:
dev->stats.rx_missed_errors += (status >> 6);
break;
case ISQ_TX_COL_EVENT:
dev->stats.collisions += (status >> 6);
break;
}
}
return IRQ_HANDLED;
}
/* We have a good packet(s), get it/them out of the buffers. */
static void
net_rx(struct net_device *dev)
{
struct sk_buff *skb;
int status, length;
status = readreg(dev, PP_RxStatus);
if ((status & RX_OK) == 0) {
dev->stats.rx_errors++;
if (status & RX_RUNT)
dev->stats.rx_length_errors++;
if (status & RX_EXTRA_DATA)
dev->stats.rx_length_errors++;
if ((status & RX_CRC_ERROR) &&
!(status & (RX_EXTRA_DATA|RX_RUNT)))
/* per str 172 */
dev->stats.rx_crc_errors++;
if (status & RX_DRIBBLE)
dev->stats.rx_frame_errors++;
return;
}
length = readreg(dev, PP_RxLength);
/* Malloc up new buffer. */
skb = alloc_skb(length, GFP_ATOMIC);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
dev->stats.rx_dropped++;
return;
}
skb_put(skb, length);
skb_copy_to_linear_data(skb, (void *)(dev->mem_start + PP_RxFrame),
length);
if (net_debug > 3)printk("%s: received %d byte packet of type %x\n",
dev->name, length,
(skb->data[ETH_ALEN+ETH_ALEN] << 8)
| skb->data[ETH_ALEN+ETH_ALEN+1]);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += length;
}
/* The inverse routine to net_open(). */
static int
net_close(struct net_device *dev)
{
writereg(dev, PP_RxCFG, 0);
writereg(dev, PP_TxCFG, 0);
writereg(dev, PP_BufCFG, 0);
writereg(dev, PP_BusCTL, 0);
netif_stop_queue(dev);
free_irq(dev->irq, dev);
/* Update the statistics here. */
return 0;
}
/* Get the current statistics. This may be called with the card open or
closed. */
static struct net_device_stats *
net_get_stats(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
/* Update the statistics from the device registers. */
dev->stats.rx_missed_errors += (readreg(dev, PP_RxMiss) >> 6);
dev->stats.collisions += (readreg(dev, PP_TxCol) >> 6);
local_irq_restore(flags);
return &dev->stats;
}
static void set_multicast_list(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
if(dev->flags&IFF_PROMISC)
{
lp->rx_mode = RX_ALL_ACCEPT;
} else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
/* The multicast-accept list is initialized to accept-all, and we
rely on higher-level filtering for now. */
lp->rx_mode = RX_MULTCAST_ACCEPT;
}
else
lp->rx_mode = 0;
writereg(dev, PP_RxCTL, DEF_RX_ACCEPT | lp->rx_mode);
/* in promiscuous mode, we accept errored packets, so we have to enable interrupts on them also */
writereg(dev, PP_RxCFG, lp->curr_rx_cfg |
(lp->rx_mode == RX_ALL_ACCEPT? (RX_CRC_ERROR_ENBL|RX_RUNT_ENBL|RX_EXTRA_DATA_ENBL) : 0));
}
static int set_mac_address(struct net_device *dev, void *addr)
{
int i;
printk("%s: Setting MAC address to ", dev->name);
for (i = 0; i < 6; i++)
printk(" %2.2x", dev->dev_addr[i] = ((unsigned char *)addr)[i]);
printk(".\n");
/* set the Ethernet address */
for (i=0; i < ETH_ALEN/2; i++)
writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8));
return 0;
}
#ifdef MODULE
static struct net_device *dev_cs89x0;
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "CS89[02]0 debug level (0-5)");
MODULE_LICENSE("GPL");
int __init
init_module(void)
{
net_debug = debug;
dev_cs89x0 = mac89x0_probe(-1);
if (IS_ERR(dev_cs89x0)) {
printk(KERN_WARNING "mac89x0.c: No card found\n");
return PTR_ERR(dev_cs89x0);
}
return 0;
}
void
cleanup_module(void)
{
unregister_netdev(dev_cs89x0);
nubus_writew(0, dev_cs89x0->base_addr + ADD_PORT);
free_netdev(dev_cs89x0);
}
#endif /* MODULE */