linux-stable/include/crypto/engine.h

128 lines
4.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Crypto engine API
*
* Copyright (c) 2016 Baolin Wang <baolin.wang@linaro.org>
*/
#ifndef _CRYPTO_ENGINE_H
#define _CRYPTO_ENGINE_H
#include <linux/crypto.h>
#include <linux/list.h>
#include <linux/kthread.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <crypto/algapi.h>
#include <crypto/aead.h>
#include <crypto/akcipher.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <crypto/kpp.h>
struct device;
#define ENGINE_NAME_LEN 30
/*
* struct crypto_engine - crypto hardware engine
* @name: the engine name
* @idling: the engine is entering idle state
* @busy: request pump is busy
* @running: the engine is on working
crypto: engine - support for parallel requests based on retry mechanism Added support for executing multiple requests, in parallel, for crypto engine based on a retry mechanism. If hardware was unable to execute a backlog request, enqueue it back in front of crypto-engine queue, to keep the order of requests. A new variable is added, retry_support (this is to keep the backward compatibility of crypto-engine) , which keeps track whether the hardware has support for retry mechanism and, also, if can run multiple requests. If do_one_request() returns: >= 0: hardware executed the request successfully; < 0: this is the old error path. If hardware has support for retry mechanism, the request is put back in front of crypto-engine queue. For backwards compatibility, if the retry support is not available, the crypto-engine will work as before. If hardware queue is full (-ENOSPC), requeue request regardless of MAY_BACKLOG flag. If hardware throws any other error code (like -EIO, -EINVAL, -ENOMEM, etc.) only MAY_BACKLOG requests are enqueued back into crypto-engine's queue, since the others can be dropped. The new crypto_engine_alloc_init_and_set function, initializes crypto-engine, sets the maximum size for crypto-engine software queue (not hardcoded anymore) and the retry_support variable is set, by default, to false. On crypto_pump_requests(), if do_one_request() returns >= 0, a new request is send to hardware, until there is no space in hardware and do_one_request() returns < 0. By default, retry_support is false and crypto-engine will work as before - will send requests to hardware, one-by-one, on crypto_pump_requests(), and complete it, on crypto_finalize_request(), and so on. To support multiple requests, in each driver, retry_support must be set on true, and if do_one_request() returns an error the request must not be freed, since it will be enqueued back into crypto-engine's queue. When all drivers, that use crypto-engine now, will be updated for retry mechanism, the retry_support variable can be removed. Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-28 15:49:04 +00:00
* @retry_support: indication that the hardware allows re-execution
* of a failed backlog request
* crypto-engine, in head position to keep order
* @list: link with the global crypto engine list
* @queue_lock: spinlock to synchronise access to request queue
* @queue: the crypto queue of the engine
* @rt: whether this queue is set to run as a realtime task
* @prepare_crypt_hardware: a request will soon arrive from the queue
* so the subsystem requests the driver to prepare the hardware
* by issuing this call
* @unprepare_crypt_hardware: there are currently no more requests on the
* queue so the subsystem notifies the driver that it may relax the
* hardware by issuing this call
* @do_batch_requests: execute a batch of requests. Depends on multiple
* requests support.
* @kworker: kthread worker struct for request pump
* @pump_requests: work struct for scheduling work to the request pump
* @priv_data: the engine private data
* @cur_req: the current request which is on processing
*/
struct crypto_engine {
char name[ENGINE_NAME_LEN];
bool idling;
bool busy;
bool running;
crypto: engine - support for parallel requests based on retry mechanism Added support for executing multiple requests, in parallel, for crypto engine based on a retry mechanism. If hardware was unable to execute a backlog request, enqueue it back in front of crypto-engine queue, to keep the order of requests. A new variable is added, retry_support (this is to keep the backward compatibility of crypto-engine) , which keeps track whether the hardware has support for retry mechanism and, also, if can run multiple requests. If do_one_request() returns: >= 0: hardware executed the request successfully; < 0: this is the old error path. If hardware has support for retry mechanism, the request is put back in front of crypto-engine queue. For backwards compatibility, if the retry support is not available, the crypto-engine will work as before. If hardware queue is full (-ENOSPC), requeue request regardless of MAY_BACKLOG flag. If hardware throws any other error code (like -EIO, -EINVAL, -ENOMEM, etc.) only MAY_BACKLOG requests are enqueued back into crypto-engine's queue, since the others can be dropped. The new crypto_engine_alloc_init_and_set function, initializes crypto-engine, sets the maximum size for crypto-engine software queue (not hardcoded anymore) and the retry_support variable is set, by default, to false. On crypto_pump_requests(), if do_one_request() returns >= 0, a new request is send to hardware, until there is no space in hardware and do_one_request() returns < 0. By default, retry_support is false and crypto-engine will work as before - will send requests to hardware, one-by-one, on crypto_pump_requests(), and complete it, on crypto_finalize_request(), and so on. To support multiple requests, in each driver, retry_support must be set on true, and if do_one_request() returns an error the request must not be freed, since it will be enqueued back into crypto-engine's queue. When all drivers, that use crypto-engine now, will be updated for retry mechanism, the retry_support variable can be removed. Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-28 15:49:04 +00:00
bool retry_support;
struct list_head list;
spinlock_t queue_lock;
struct crypto_queue queue;
struct device *dev;
bool rt;
int (*prepare_crypt_hardware)(struct crypto_engine *engine);
int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
int (*do_batch_requests)(struct crypto_engine *engine);
struct kthread_worker *kworker;
struct kthread_work pump_requests;
void *priv_data;
struct crypto_async_request *cur_req;
};
/*
* struct crypto_engine_op - crypto hardware engine operations
* @prepare__request: do some prepare if need before handle the current request
* @unprepare_request: undo any work done by prepare_request()
* @do_one_request: do encryption for current request
*/
struct crypto_engine_op {
int (*prepare_request)(struct crypto_engine *engine,
void *areq);
int (*unprepare_request)(struct crypto_engine *engine,
void *areq);
int (*do_one_request)(struct crypto_engine *engine,
void *areq);
};
struct crypto_engine_ctx {
struct crypto_engine_op op;
};
int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
struct aead_request *req);
int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
struct akcipher_request *req);
int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
struct ahash_request *req);
int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
struct kpp_request *req);
int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
struct skcipher_request *req);
void crypto_finalize_aead_request(struct crypto_engine *engine,
struct aead_request *req, int err);
void crypto_finalize_akcipher_request(struct crypto_engine *engine,
struct akcipher_request *req, int err);
void crypto_finalize_hash_request(struct crypto_engine *engine,
struct ahash_request *req, int err);
void crypto_finalize_kpp_request(struct crypto_engine *engine,
struct kpp_request *req, int err);
void crypto_finalize_skcipher_request(struct crypto_engine *engine,
struct skcipher_request *req, int err);
int crypto_engine_start(struct crypto_engine *engine);
int crypto_engine_stop(struct crypto_engine *engine);
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
crypto: engine - support for parallel requests based on retry mechanism Added support for executing multiple requests, in parallel, for crypto engine based on a retry mechanism. If hardware was unable to execute a backlog request, enqueue it back in front of crypto-engine queue, to keep the order of requests. A new variable is added, retry_support (this is to keep the backward compatibility of crypto-engine) , which keeps track whether the hardware has support for retry mechanism and, also, if can run multiple requests. If do_one_request() returns: >= 0: hardware executed the request successfully; < 0: this is the old error path. If hardware has support for retry mechanism, the request is put back in front of crypto-engine queue. For backwards compatibility, if the retry support is not available, the crypto-engine will work as before. If hardware queue is full (-ENOSPC), requeue request regardless of MAY_BACKLOG flag. If hardware throws any other error code (like -EIO, -EINVAL, -ENOMEM, etc.) only MAY_BACKLOG requests are enqueued back into crypto-engine's queue, since the others can be dropped. The new crypto_engine_alloc_init_and_set function, initializes crypto-engine, sets the maximum size for crypto-engine software queue (not hardcoded anymore) and the retry_support variable is set, by default, to false. On crypto_pump_requests(), if do_one_request() returns >= 0, a new request is send to hardware, until there is no space in hardware and do_one_request() returns < 0. By default, retry_support is false and crypto-engine will work as before - will send requests to hardware, one-by-one, on crypto_pump_requests(), and complete it, on crypto_finalize_request(), and so on. To support multiple requests, in each driver, retry_support must be set on true, and if do_one_request() returns an error the request must not be freed, since it will be enqueued back into crypto-engine's queue. When all drivers, that use crypto-engine now, will be updated for retry mechanism, the retry_support variable can be removed. Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-28 15:49:04 +00:00
struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
bool retry_support,
int (*cbk_do_batch)(struct crypto_engine *engine),
crypto: engine - support for parallel requests based on retry mechanism Added support for executing multiple requests, in parallel, for crypto engine based on a retry mechanism. If hardware was unable to execute a backlog request, enqueue it back in front of crypto-engine queue, to keep the order of requests. A new variable is added, retry_support (this is to keep the backward compatibility of crypto-engine) , which keeps track whether the hardware has support for retry mechanism and, also, if can run multiple requests. If do_one_request() returns: >= 0: hardware executed the request successfully; < 0: this is the old error path. If hardware has support for retry mechanism, the request is put back in front of crypto-engine queue. For backwards compatibility, if the retry support is not available, the crypto-engine will work as before. If hardware queue is full (-ENOSPC), requeue request regardless of MAY_BACKLOG flag. If hardware throws any other error code (like -EIO, -EINVAL, -ENOMEM, etc.) only MAY_BACKLOG requests are enqueued back into crypto-engine's queue, since the others can be dropped. The new crypto_engine_alloc_init_and_set function, initializes crypto-engine, sets the maximum size for crypto-engine software queue (not hardcoded anymore) and the retry_support variable is set, by default, to false. On crypto_pump_requests(), if do_one_request() returns >= 0, a new request is send to hardware, until there is no space in hardware and do_one_request() returns < 0. By default, retry_support is false and crypto-engine will work as before - will send requests to hardware, one-by-one, on crypto_pump_requests(), and complete it, on crypto_finalize_request(), and so on. To support multiple requests, in each driver, retry_support must be set on true, and if do_one_request() returns an error the request must not be freed, since it will be enqueued back into crypto-engine's queue. When all drivers, that use crypto-engine now, will be updated for retry mechanism, the retry_support variable can be removed. Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-28 15:49:04 +00:00
bool rt, int qlen);
int crypto_engine_exit(struct crypto_engine *engine);
#endif /* _CRYPTO_ENGINE_H */