linux-stable/mm/Makefile

25 lines
795 B
Makefile
Raw Normal View History

#
# Makefile for the linux memory manager.
#
mmu-y := nommu.o
mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \
mlock.o mmap.o mprotect.o mremap.o msync.o rmap.o \
vmalloc.o
obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
page_alloc.o page-writeback.o pdflush.o \
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:01:45 -08:00
readahead.o swap.o truncate.o vmscan.o \
prio_tree.o util.o $(mmu-y)
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
obj-$(CONFIG_HUGETLBFS) += hugetlb.o
obj-$(CONFIG_NUMA) += mempolicy.o
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 00:07:54 -07:00
obj-$(CONFIG_SPARSEMEM) += sparse.o
obj-$(CONFIG_SHMEM) += shmem.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:01:45 -08:00
obj-$(CONFIG_SLOB) += slob.o
obj-$(CONFIG_SLAB) += slab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o