drm/xe: Introduce GGTT documentation

Document xe_ggtt and ensure it is part of the built kernel docs.

v2: - Accepted all Michal's suggestions
    - Rebased on top of new set_pte per platform/wa function pointer
v3: - Typos and other acronym fixes (Michal)

Cc: Matthew Brost <matthew.brost@intel.com>
Cc: Michal Wajdeczko <michal.wajdeczko@intel.com>
Reviewed-by: Himal Prasad Ghimiray <himal.prasad.ghimiray@intel.com> #v1
Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240821193842.352557-2-rodrigo.vivi@intel.com
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
This commit is contained in:
Rodrigo Vivi 2024-08-21 15:38:32 -04:00
parent 69f0925c67
commit 244fe16663
No known key found for this signature in database
GPG Key ID: FA625F640EEB13CA
3 changed files with 150 additions and 35 deletions

View File

@ -7,6 +7,21 @@ Memory Management
.. kernel-doc:: drivers/gpu/drm/xe/xe_bo_doc.h .. kernel-doc:: drivers/gpu/drm/xe/xe_bo_doc.h
:doc: Buffer Objects (BO) :doc: Buffer Objects (BO)
GGTT
====
.. kernel-doc:: drivers/gpu/drm/xe/xe_ggtt.c
:doc: Global Graphics Translation Table (GGTT)
GGTT Internal API
-----------------
.. kernel-doc:: drivers/gpu/drm/xe/xe_ggtt_types.h
:internal:
.. kernel-doc:: drivers/gpu/drm/xe/xe_ggtt.c
:internal:
Pagetable building Pagetable building
================== ==================

View File

@ -30,6 +30,39 @@
#include "xe_wa.h" #include "xe_wa.h"
#include "xe_wopcm.h" #include "xe_wopcm.h"
/**
* DOC: Global Graphics Translation Table (GGTT)
*
* Xe GGTT implements the support for a Global Virtual Address space that is used
* for resources that are accessible to privileged (i.e. kernel-mode) processes,
* and not tied to a specific user-level process. For example, the Graphics
* micro-Controller (GuC) and Display Engine (if present) utilize this Global
* address space.
*
* The Global GTT (GGTT) translates from the Global virtual address to a physical
* address that can be accessed by HW. The GGTT is a flat, single-level table.
*
* Xe implements a simplified version of the GGTT specifically managing only a
* certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
* Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
* the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
* is limited on both ends of the GGTT, because the GuC shim HW redirects
* accesses to those addresses to other HW areas instead of going through the
* GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
* while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
* simple, instead of checking each object to see if they are accessed by GuC or
* not, we just exclude those areas from the allocator. Additionally, to simplify
* the driver load, we use the maximum WOPCM size in this logic instead of the
* programmed one, so we don't need to wait until the actual size to be
* programmed is determined (which requires FW fetch) before initializing the
* GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
* depending on the platform) but we can live with this. Another benefit of this
* is the GuC bootrom can't access anything below the WOPCM max size so anything
* the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
* above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
* give us the correct placement for free.
*/
static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
u16 pat_index) u16 pat_index)
{ {
@ -164,12 +197,16 @@ static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
.ggtt_set_pte = xe_ggtt_set_pte_and_flush, .ggtt_set_pte = xe_ggtt_set_pte_and_flush,
}; };
/* /**
* Early GGTT initialization, which allows to create new mappings usable by the * xe_ggtt_init_early - Early GGTT initialization
* GuC. * @ggtt: the &xe_ggtt to be initialized
* Mappings are not usable by the HW engines, as it doesn't have scratch / *
* It allows to create new mappings usable by the GuC.
* Mappings are not usable by the HW engines, as it doesn't have scratch nor
* initial clear done to it yet. That will happen in the regular, non-early * initial clear done to it yet. That will happen in the regular, non-early
* GGTT init. * GGTT initialization.
*
* Return: 0 on success or a negative error code on failure.
*/ */
int xe_ggtt_init_early(struct xe_ggtt *ggtt) int xe_ggtt_init_early(struct xe_ggtt *ggtt)
{ {
@ -194,29 +231,6 @@ int xe_ggtt_init_early(struct xe_ggtt *ggtt)
if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
ggtt->flags |= XE_GGTT_FLAGS_64K; ggtt->flags |= XE_GGTT_FLAGS_64K;
/*
* 8B per entry, each points to a 4KB page.
*
* The GuC address space is limited on both ends of the GGTT, because
* the GuC shim HW redirects accesses to those addresses to other HW
* areas instead of going through the GGTT. On the bottom end, the GuC
* can't access offsets below the WOPCM size, while on the top side the
* limit is fixed at GUC_GGTT_TOP. To keep things simple, instead of
* checking each object to see if they are accessed by GuC or not, we
* just exclude those areas from the allocator. Additionally, to
* simplify the driver load, we use the maximum WOPCM size in this logic
* instead of the programmed one, so we don't need to wait until the
* actual size to be programmed is determined (which requires FW fetch)
* before initializing the GGTT. These simplifications might waste space
* in the GGTT (about 20-25 MBs depending on the platform) but we can
* live with this.
*
* Another benifit of this is the GuC bootrom can't access anything
* below the WOPCM max size so anything the bootom needs to access (e.g.
* a RSA key) needs to be placed in the GGTT above the WOPCM max size.
* Starting the GGTT allocations above the WOPCM max give us the correct
* placement for free.
*/
if (ggtt->size > GUC_GGTT_TOP) if (ggtt->size > GUC_GGTT_TOP)
ggtt->size = GUC_GGTT_TOP; ggtt->size = GUC_GGTT_TOP;
@ -262,6 +276,12 @@ static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
mutex_unlock(&ggtt->lock); mutex_unlock(&ggtt->lock);
} }
/**
* xe_ggtt_init - Regular non-early GGTT initialization
* @ggtt: the &xe_ggtt to be initialized
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_init(struct xe_ggtt *ggtt) int xe_ggtt_init(struct xe_ggtt *ggtt)
{ {
struct xe_device *xe = tile_to_xe(ggtt->tile); struct xe_device *xe = tile_to_xe(ggtt->tile);
@ -382,6 +402,18 @@ void xe_ggtt_deballoon(struct xe_ggtt *ggtt, struct drm_mm_node *node)
mutex_unlock(&ggtt->lock); mutex_unlock(&ggtt->lock);
} }
/**
* xe_ggtt_insert_special_node_locked - Locked version to insert a &drm_mm_node into the GGTT
* @ggtt: the &xe_ggtt where node will be inserted
* @node: the &drm_mm_node to be inserted
* @size: size of the node
* @align: alignment constrain of the node
* @mm_flags: flags to control the node behavior
*
* To be used in cases where ggtt->lock is already taken.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node *node, int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node *node,
u32 size, u32 align, u32 mm_flags) u32 size, u32 align, u32 mm_flags)
{ {
@ -389,6 +421,15 @@ int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node
mm_flags); mm_flags);
} }
/**
* xe_ggtt_insert_special_node - Insert a &drm_mm_node into the GGTT
* @ggtt: the &xe_ggtt where node will be inserted
* @node: the &drm_mm_node to be inserted
* @size: size of the node
* @align: alignment constrain of the node
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node,
u32 size, u32 align) u32 size, u32 align)
{ {
@ -402,6 +443,11 @@ int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node,
return ret; return ret;
} }
/**
* xe_ggtt_map_bo - Map the BO into GGTT
* @ggtt: the &xe_ggtt where node will be mapped
* @bo: the &xe_bo to be mapped
*/
void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{ {
u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
@ -449,17 +495,39 @@ static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
return err; return err;
} }
/**
* xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
* @ggtt: the &xe_ggtt where bo will be inserted
* @bo: the &xe_bo to be inserted
* @start: address where it will be inserted
* @end: end of the range where it will be inserted
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
u64 start, u64 end) u64 start, u64 end)
{ {
return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); return __xe_ggtt_insert_bo_at(ggtt, bo, start, end);
} }
/**
* xe_ggtt_insert_bo - Insert BO into GGTT
* @ggtt: the &xe_ggtt where bo will be inserted
* @bo: the &xe_bo to be inserted
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{ {
return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX);
} }
/**
* xe_ggtt_remove_node - Remove a &drm_mm_node from the GGTT
* @ggtt: the &xe_ggtt where node will be removed
* @node: the &drm_mm_node to be removed
* @invalidate: if node needs invalidation upon removal
*/
void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node,
bool invalidate) bool invalidate)
{ {
@ -488,6 +556,11 @@ void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node,
drm_dev_exit(idx); drm_dev_exit(idx);
} }
/**
* xe_ggtt_remove_bo - Remove a BO from the GGTT
* @ggtt: the &xe_ggtt where node will be removed
* @bo: the &xe_bo to be removed
*/
void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{ {
if (XE_WARN_ON(!bo->ggtt_node.size)) if (XE_WARN_ON(!bo->ggtt_node.size))
@ -544,6 +617,13 @@ void xe_ggtt_assign(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vf
} }
#endif #endif
/**
* xe_ggtt_dump - Dump GGTT for debug
* @ggtt: the &xe_ggtt to be dumped
* @p: the &drm_mm_printer helper handle to be used to dump the information
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
{ {
int err; int err;

View File

@ -13,30 +13,50 @@
struct xe_bo; struct xe_bo;
struct xe_gt; struct xe_gt;
/**
* struct xe_ggtt - Main GGTT struct
*
* In general, each tile can contains its own Global Graphics Translation Table
* (GGTT) instance.
*/
struct xe_ggtt { struct xe_ggtt {
/** @tile: Back pointer to tile where this GGTT belongs */
struct xe_tile *tile; struct xe_tile *tile;
/** @size: Total size of this GGTT */
u64 size; u64 size;
#define XE_GGTT_FLAGS_64K BIT(0) #define XE_GGTT_FLAGS_64K BIT(0)
/**
* @flags: Flags for this GGTT
* Acceptable flags:
* - %XE_GGTT_FLAGS_64K - if PTE size is 64K. Otherwise, regular is 4K.
*/
unsigned int flags; unsigned int flags;
/** @scratch: Internal object allocation used as a scratch page */
struct xe_bo *scratch; struct xe_bo *scratch;
/** @lock: Mutex lock to protect GGTT data */
struct mutex lock; struct mutex lock;
/**
* @gsm: The iomem pointer to the actual location of the translation
* table located in the GSM for easy PTE manipulation
*/
u64 __iomem *gsm; u64 __iomem *gsm;
/** @pt_ops: Page Table operations per platform */
const struct xe_ggtt_pt_ops *pt_ops; const struct xe_ggtt_pt_ops *pt_ops;
/** @mm: The memory manager used to manage individual GGTT allocations */
struct drm_mm mm; struct drm_mm mm;
/** @access_count: counts GGTT writes */ /** @access_count: counts GGTT writes */
unsigned int access_count; unsigned int access_count;
}; };
/**
* struct xe_ggtt_pt_ops - GGTT Page table operations
* Which can vary from platform to platform.
*/
struct xe_ggtt_pt_ops { struct xe_ggtt_pt_ops {
/** @pte_encode_bo: Encode PTE address for a given BO */
u64 (*pte_encode_bo)(struct xe_bo *bo, u64 bo_offset, u16 pat_index); u64 (*pte_encode_bo)(struct xe_bo *bo, u64 bo_offset, u16 pat_index);
/** @ggtt_set_pte: Directly write into GGTT's PTE */
void (*ggtt_set_pte)(struct xe_ggtt *ggtt, u64 addr, u64 pte); void (*ggtt_set_pte)(struct xe_ggtt *ggtt, u64 addr, u64 pte);
}; };