mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-03 19:55:31 +00:00
bpf: introduce bounded loops
Allow the verifier to validate the loops by simulating their execution. Exisiting programs have used '#pragma unroll' to unroll the loops by the compiler. Instead let the verifier simulate all iterations of the loop. In order to do that introduce parentage chain of bpf_verifier_state and 'branches' counter for the number of branches left to explore. See more detailed algorithm description in bpf_verifier.h This algorithm borrows the key idea from Edward Cree approach: https://patchwork.ozlabs.org/patch/877222/ Additional state pruning heuristics make such brute force loop walk practical even for large loops. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This commit is contained in:
parent
fb8d251ee2
commit
2589726d12
@ -194,6 +194,53 @@ struct bpf_func_state {
|
||||
struct bpf_verifier_state {
|
||||
/* call stack tracking */
|
||||
struct bpf_func_state *frame[MAX_CALL_FRAMES];
|
||||
struct bpf_verifier_state *parent;
|
||||
/*
|
||||
* 'branches' field is the number of branches left to explore:
|
||||
* 0 - all possible paths from this state reached bpf_exit or
|
||||
* were safely pruned
|
||||
* 1 - at least one path is being explored.
|
||||
* This state hasn't reached bpf_exit
|
||||
* 2 - at least two paths are being explored.
|
||||
* This state is an immediate parent of two children.
|
||||
* One is fallthrough branch with branches==1 and another
|
||||
* state is pushed into stack (to be explored later) also with
|
||||
* branches==1. The parent of this state has branches==1.
|
||||
* The verifier state tree connected via 'parent' pointer looks like:
|
||||
* 1
|
||||
* 1
|
||||
* 2 -> 1 (first 'if' pushed into stack)
|
||||
* 1
|
||||
* 2 -> 1 (second 'if' pushed into stack)
|
||||
* 1
|
||||
* 1
|
||||
* 1 bpf_exit.
|
||||
*
|
||||
* Once do_check() reaches bpf_exit, it calls update_branch_counts()
|
||||
* and the verifier state tree will look:
|
||||
* 1
|
||||
* 1
|
||||
* 2 -> 1 (first 'if' pushed into stack)
|
||||
* 1
|
||||
* 1 -> 1 (second 'if' pushed into stack)
|
||||
* 0
|
||||
* 0
|
||||
* 0 bpf_exit.
|
||||
* After pop_stack() the do_check() will resume at second 'if'.
|
||||
*
|
||||
* If is_state_visited() sees a state with branches > 0 it means
|
||||
* there is a loop. If such state is exactly equal to the current state
|
||||
* it's an infinite loop. Note states_equal() checks for states
|
||||
* equvalency, so two states being 'states_equal' does not mean
|
||||
* infinite loop. The exact comparison is provided by
|
||||
* states_maybe_looping() function. It's a stronger pre-check and
|
||||
* much faster than states_equal().
|
||||
*
|
||||
* This algorithm may not find all possible infinite loops or
|
||||
* loop iteration count may be too high.
|
||||
* In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
|
||||
*/
|
||||
u32 branches;
|
||||
u32 insn_idx;
|
||||
u32 curframe;
|
||||
u32 active_spin_lock;
|
||||
@ -312,7 +359,9 @@ struct bpf_verifier_env {
|
||||
} cfg;
|
||||
u32 subprog_cnt;
|
||||
/* number of instructions analyzed by the verifier */
|
||||
u32 insn_processed;
|
||||
u32 prev_insn_processed, insn_processed;
|
||||
/* number of jmps, calls, exits analyzed so far */
|
||||
u32 prev_jmps_processed, jmps_processed;
|
||||
/* total verification time */
|
||||
u64 verification_time;
|
||||
/* maximum number of verifier states kept in 'branching' instructions */
|
||||
|
@ -721,6 +721,8 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
|
||||
dst_state->speculative = src->speculative;
|
||||
dst_state->curframe = src->curframe;
|
||||
dst_state->active_spin_lock = src->active_spin_lock;
|
||||
dst_state->branches = src->branches;
|
||||
dst_state->parent = src->parent;
|
||||
for (i = 0; i <= src->curframe; i++) {
|
||||
dst = dst_state->frame[i];
|
||||
if (!dst) {
|
||||
@ -736,6 +738,23 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
|
||||
{
|
||||
while (st) {
|
||||
u32 br = --st->branches;
|
||||
|
||||
/* WARN_ON(br > 1) technically makes sense here,
|
||||
* but see comment in push_stack(), hence:
|
||||
*/
|
||||
WARN_ONCE((int)br < 0,
|
||||
"BUG update_branch_counts:branches_to_explore=%d\n",
|
||||
br);
|
||||
if (br)
|
||||
break;
|
||||
st = st->parent;
|
||||
}
|
||||
}
|
||||
|
||||
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
|
||||
int *insn_idx)
|
||||
{
|
||||
@ -789,6 +808,18 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
|
||||
env->stack_size);
|
||||
goto err;
|
||||
}
|
||||
if (elem->st.parent) {
|
||||
++elem->st.parent->branches;
|
||||
/* WARN_ON(branches > 2) technically makes sense here,
|
||||
* but
|
||||
* 1. speculative states will bump 'branches' for non-branch
|
||||
* instructions
|
||||
* 2. is_state_visited() heuristics may decide not to create
|
||||
* a new state for a sequence of branches and all such current
|
||||
* and cloned states will be pointing to a single parent state
|
||||
* which might have large 'branches' count.
|
||||
*/
|
||||
}
|
||||
return &elem->st;
|
||||
err:
|
||||
free_verifier_state(env->cur_state, true);
|
||||
@ -5682,7 +5713,8 @@ static void init_explored_state(struct bpf_verifier_env *env, int idx)
|
||||
* w - next instruction
|
||||
* e - edge
|
||||
*/
|
||||
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
|
||||
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
|
||||
bool loop_ok)
|
||||
{
|
||||
int *insn_stack = env->cfg.insn_stack;
|
||||
int *insn_state = env->cfg.insn_state;
|
||||
@ -5712,6 +5744,8 @@ static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
|
||||
insn_stack[env->cfg.cur_stack++] = w;
|
||||
return 1;
|
||||
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
|
||||
if (loop_ok && env->allow_ptr_leaks)
|
||||
return 0;
|
||||
verbose_linfo(env, t, "%d: ", t);
|
||||
verbose_linfo(env, w, "%d: ", w);
|
||||
verbose(env, "back-edge from insn %d to %d\n", t, w);
|
||||
@ -5763,7 +5797,7 @@ static int check_cfg(struct bpf_verifier_env *env)
|
||||
if (opcode == BPF_EXIT) {
|
||||
goto mark_explored;
|
||||
} else if (opcode == BPF_CALL) {
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
@ -5772,7 +5806,8 @@ static int check_cfg(struct bpf_verifier_env *env)
|
||||
init_explored_state(env, t + 1);
|
||||
if (insns[t].src_reg == BPF_PSEUDO_CALL) {
|
||||
init_explored_state(env, t);
|
||||
ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
|
||||
ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
|
||||
env, false);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
@ -5785,7 +5820,7 @@ static int check_cfg(struct bpf_verifier_env *env)
|
||||
}
|
||||
/* unconditional jump with single edge */
|
||||
ret = push_insn(t, t + insns[t].off + 1,
|
||||
FALLTHROUGH, env);
|
||||
FALLTHROUGH, env, true);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
@ -5798,13 +5833,13 @@ static int check_cfg(struct bpf_verifier_env *env)
|
||||
} else {
|
||||
/* conditional jump with two edges */
|
||||
init_explored_state(env, t);
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
goto err_free;
|
||||
|
||||
ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
|
||||
ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
@ -5814,7 +5849,7 @@ static int check_cfg(struct bpf_verifier_env *env)
|
||||
/* all other non-branch instructions with single
|
||||
* fall-through edge
|
||||
*/
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
||||
ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
|
||||
if (ret == 1)
|
||||
goto peek_stack;
|
||||
else if (ret < 0)
|
||||
@ -6247,6 +6282,8 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn,
|
||||
|
||||
sl = *explored_state(env, insn);
|
||||
while (sl) {
|
||||
if (sl->state.branches)
|
||||
goto next;
|
||||
if (sl->state.insn_idx != insn ||
|
||||
sl->state.curframe != cur->curframe)
|
||||
goto next;
|
||||
@ -6611,12 +6648,32 @@ static int propagate_liveness(struct bpf_verifier_env *env,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool states_maybe_looping(struct bpf_verifier_state *old,
|
||||
struct bpf_verifier_state *cur)
|
||||
{
|
||||
struct bpf_func_state *fold, *fcur;
|
||||
int i, fr = cur->curframe;
|
||||
|
||||
if (old->curframe != fr)
|
||||
return false;
|
||||
|
||||
fold = old->frame[fr];
|
||||
fcur = cur->frame[fr];
|
||||
for (i = 0; i < MAX_BPF_REG; i++)
|
||||
if (memcmp(&fold->regs[i], &fcur->regs[i],
|
||||
offsetof(struct bpf_reg_state, parent)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
{
|
||||
struct bpf_verifier_state_list *new_sl;
|
||||
struct bpf_verifier_state_list *sl, **pprev;
|
||||
struct bpf_verifier_state *cur = env->cur_state, *new;
|
||||
int i, j, err, states_cnt = 0;
|
||||
bool add_new_state = false;
|
||||
|
||||
if (!env->insn_aux_data[insn_idx].prune_point)
|
||||
/* this 'insn_idx' instruction wasn't marked, so we will not
|
||||
@ -6624,6 +6681,18 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
*/
|
||||
return 0;
|
||||
|
||||
/* bpf progs typically have pruning point every 4 instructions
|
||||
* http://vger.kernel.org/bpfconf2019.html#session-1
|
||||
* Do not add new state for future pruning if the verifier hasn't seen
|
||||
* at least 2 jumps and at least 8 instructions.
|
||||
* This heuristics helps decrease 'total_states' and 'peak_states' metric.
|
||||
* In tests that amounts to up to 50% reduction into total verifier
|
||||
* memory consumption and 20% verifier time speedup.
|
||||
*/
|
||||
if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
|
||||
env->insn_processed - env->prev_insn_processed >= 8)
|
||||
add_new_state = true;
|
||||
|
||||
pprev = explored_state(env, insn_idx);
|
||||
sl = *pprev;
|
||||
|
||||
@ -6633,6 +6702,30 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
states_cnt++;
|
||||
if (sl->state.insn_idx != insn_idx)
|
||||
goto next;
|
||||
if (sl->state.branches) {
|
||||
if (states_maybe_looping(&sl->state, cur) &&
|
||||
states_equal(env, &sl->state, cur)) {
|
||||
verbose_linfo(env, insn_idx, "; ");
|
||||
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
|
||||
return -EINVAL;
|
||||
}
|
||||
/* if the verifier is processing a loop, avoid adding new state
|
||||
* too often, since different loop iterations have distinct
|
||||
* states and may not help future pruning.
|
||||
* This threshold shouldn't be too low to make sure that
|
||||
* a loop with large bound will be rejected quickly.
|
||||
* The most abusive loop will be:
|
||||
* r1 += 1
|
||||
* if r1 < 1000000 goto pc-2
|
||||
* 1M insn_procssed limit / 100 == 10k peak states.
|
||||
* This threshold shouldn't be too high either, since states
|
||||
* at the end of the loop are likely to be useful in pruning.
|
||||
*/
|
||||
if (env->jmps_processed - env->prev_jmps_processed < 20 &&
|
||||
env->insn_processed - env->prev_insn_processed < 100)
|
||||
add_new_state = false;
|
||||
goto miss;
|
||||
}
|
||||
if (states_equal(env, &sl->state, cur)) {
|
||||
sl->hit_cnt++;
|
||||
/* reached equivalent register/stack state,
|
||||
@ -6650,7 +6743,15 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
return err;
|
||||
return 1;
|
||||
}
|
||||
sl->miss_cnt++;
|
||||
miss:
|
||||
/* when new state is not going to be added do not increase miss count.
|
||||
* Otherwise several loop iterations will remove the state
|
||||
* recorded earlier. The goal of these heuristics is to have
|
||||
* states from some iterations of the loop (some in the beginning
|
||||
* and some at the end) to help pruning.
|
||||
*/
|
||||
if (add_new_state)
|
||||
sl->miss_cnt++;
|
||||
/* heuristic to determine whether this state is beneficial
|
||||
* to keep checking from state equivalence point of view.
|
||||
* Higher numbers increase max_states_per_insn and verification time,
|
||||
@ -6662,6 +6763,11 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
*/
|
||||
*pprev = sl->next;
|
||||
if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
|
||||
u32 br = sl->state.branches;
|
||||
|
||||
WARN_ONCE(br,
|
||||
"BUG live_done but branches_to_explore %d\n",
|
||||
br);
|
||||
free_verifier_state(&sl->state, false);
|
||||
kfree(sl);
|
||||
env->peak_states--;
|
||||
@ -6687,18 +6793,25 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
|
||||
return 0;
|
||||
|
||||
/* there were no equivalent states, remember current one.
|
||||
* technically the current state is not proven to be safe yet,
|
||||
if (!add_new_state)
|
||||
return 0;
|
||||
|
||||
/* There were no equivalent states, remember the current one.
|
||||
* Technically the current state is not proven to be safe yet,
|
||||
* but it will either reach outer most bpf_exit (which means it's safe)
|
||||
* or it will be rejected. Since there are no loops, we won't be
|
||||
* or it will be rejected. When there are no loops the verifier won't be
|
||||
* seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
|
||||
* again on the way to bpf_exit
|
||||
* again on the way to bpf_exit.
|
||||
* When looping the sl->state.branches will be > 0 and this state
|
||||
* will not be considered for equivalence until branches == 0.
|
||||
*/
|
||||
new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
|
||||
if (!new_sl)
|
||||
return -ENOMEM;
|
||||
env->total_states++;
|
||||
env->peak_states++;
|
||||
env->prev_jmps_processed = env->jmps_processed;
|
||||
env->prev_insn_processed = env->insn_processed;
|
||||
|
||||
/* add new state to the head of linked list */
|
||||
new = &new_sl->state;
|
||||
@ -6709,6 +6822,9 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
return err;
|
||||
}
|
||||
new->insn_idx = insn_idx;
|
||||
WARN_ONCE(new->branches != 1,
|
||||
"BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
|
||||
cur->parent = new;
|
||||
new_sl->next = *explored_state(env, insn_idx);
|
||||
*explored_state(env, insn_idx) = new_sl;
|
||||
/* connect new state to parentage chain. Current frame needs all
|
||||
@ -6795,6 +6911,7 @@ static int do_check(struct bpf_verifier_env *env)
|
||||
return -ENOMEM;
|
||||
state->curframe = 0;
|
||||
state->speculative = false;
|
||||
state->branches = 1;
|
||||
state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
|
||||
if (!state->frame[0]) {
|
||||
kfree(state);
|
||||
@ -7001,6 +7118,7 @@ static int do_check(struct bpf_verifier_env *env)
|
||||
} else if (class == BPF_JMP || class == BPF_JMP32) {
|
||||
u8 opcode = BPF_OP(insn->code);
|
||||
|
||||
env->jmps_processed++;
|
||||
if (opcode == BPF_CALL) {
|
||||
if (BPF_SRC(insn->code) != BPF_K ||
|
||||
insn->off != 0 ||
|
||||
@ -7086,6 +7204,7 @@ static int do_check(struct bpf_verifier_env *env)
|
||||
if (err)
|
||||
return err;
|
||||
process_bpf_exit:
|
||||
update_branch_counts(env, env->cur_state);
|
||||
err = pop_stack(env, &env->prev_insn_idx,
|
||||
&env->insn_idx);
|
||||
if (err < 0) {
|
||||
|
Loading…
Reference in New Issue
Block a user