Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs

Pull reiserfs and ext3 changes from Jan Kara:
 "Big reiserfs cleanup from Jeff, an ext3 deadlock fix, and some small
  cleanups"

* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: (34 commits)
  reiserfs: Fix compilation breakage with CONFIG_REISERFS_CHECK
  ext3: Fix deadlock in data=journal mode when fs is frozen
  reiserfs: call truncate_setsize under tailpack mutex
  fs/jbd/revoke.c: replace shift loop by ilog2
  reiserfs: remove obsolete __constant_cpu_to_le32
  reiserfs: balance_leaf refactor, split up balance_leaf_when_delete
  reiserfs: balance_leaf refactor, format balance_leaf_finish_node
  reiserfs: balance_leaf refactor, format balance_leaf_new_nodes_paste
  reiserfs: balance_leaf refactor, format balance_leaf_paste_right
  reiserfs: balance_leaf refactor, format balance_leaf_insert_right
  reiserfs: balance_leaf refactor, format balance_leaf_paste_left
  reiserfs: balance_leaf refactor, format balance_leaf_insert_left
  reiserfs: balance_leaf refactor, pull out balance_leaf{left, right, new_nodes, finish_node}
  reiserfs: balance_leaf refactor, pull out balance_leaf_finish_node_paste
  reiserfs: balance_leaf refactor pull out balance_leaf_finish_node_insert
  reiserfs: balance_leaf refactor, pull out balance_leaf_new_nodes_paste
  reiserfs: balance_leaf refactor, pull out balance_leaf_new_nodes_insert
  reiserfs: balance_leaf refactor, pull out balance_leaf_paste_right
  reiserfs: balance_leaf refactor, pull out balance_leaf_insert_right
  reiserfs: balance_leaf refactor, pull out balance_leaf_paste_left
  ...
This commit is contained in:
Linus Torvalds 2014-06-11 10:45:14 -07:00
commit 2840c566e9
25 changed files with 7052 additions and 4916 deletions

View File

@ -1716,17 +1716,17 @@ static int ext3_journalled_writepage(struct page *page,
WARN_ON_ONCE(IS_RDONLY(inode) &&
!(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
trace_ext3_journalled_writepage(page);
if (!page_has_buffers(page) || PageChecked(page)) {
if (ext3_journal_current_handle())
goto no_write;
trace_ext3_journalled_writepage(page);
handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
handle = ext3_journal_start(inode,
ext3_writepage_trans_blocks(inode));
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto no_write;
}
if (!page_has_buffers(page) || PageChecked(page)) {
/*
* It's mmapped pagecache. Add buffers and journal it. There
* doesn't seem much point in redirtying the page here.
@ -1749,17 +1749,18 @@ static int ext3_journalled_writepage(struct page *page,
atomic_set(&EXT3_I(inode)->i_datasync_tid,
handle->h_transaction->t_tid);
unlock_page(page);
} else {
/*
* It may be a page full of checkpoint-mode buffers. We don't
* really know unless we go poke around in the buffer_heads.
* But block_write_full_page will do the right thing.
*/
ret = block_write_full_page(page, ext3_get_block, wbc);
}
err = ext3_journal_stop(handle);
if (!ret)
ret = err;
} else {
/*
* It is a page full of checkpoint-mode buffers. Go and write
* them. They should have been already mapped when they went
* to the journal so provide NULL get_block function to catch
* errors.
*/
ret = block_write_full_page(page, NULL, wbc);
}
out:
return ret;

View File

@ -231,19 +231,15 @@ record_cache_failure:
static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
{
int shift = 0;
int tmp = hash_size;
int i;
struct jbd_revoke_table_s *table;
table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
if (!table)
goto out;
while((tmp >>= 1UL) != 0UL)
shift++;
table->hash_size = hash_size;
table->hash_shift = shift;
table->hash_shift = ilog2(hash_size);
table->hash_table =
kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
if (!table->hash_table) {
@ -252,8 +248,8 @@ static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
goto out;
}
for (tmp = 0; tmp < hash_size; tmp++)
INIT_LIST_HEAD(&table->hash_table[tmp]);
for (i = 0; i < hash_size; i++)
INIT_LIST_HEAD(&table->hash_table[i]);
out:
return table;

View File

@ -50,8 +50,10 @@ static inline void get_bit_address(struct super_block *s,
unsigned int *bmap_nr,
unsigned int *offset)
{
/* It is in the bitmap block number equal to the block
* number divided by the number of bits in a block. */
/*
* It is in the bitmap block number equal to the block
* number divided by the number of bits in a block.
*/
*bmap_nr = block >> (s->s_blocksize_bits + 3);
/* Within that bitmap block it is located at bit offset *offset. */
*offset = block & ((s->s_blocksize << 3) - 1);
@ -71,10 +73,12 @@ int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value)
get_bit_address(s, block, &bmap, &offset);
/* Old format filesystem? Unlikely, but the bitmaps are all up front so
* we need to account for it. */
/*
* Old format filesystem? Unlikely, but the bitmaps are all
* up front so we need to account for it.
*/
if (unlikely(test_bit(REISERFS_OLD_FORMAT,
&(REISERFS_SB(s)->s_properties)))) {
&REISERFS_SB(s)->s_properties))) {
b_blocknr_t bmap1 = REISERFS_SB(s)->s_sbh->b_blocknr + 1;
if (block >= bmap1 &&
block <= bmap1 + bmap_count) {
@ -108,8 +112,11 @@ int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value)
return 1;
}
/* searches in journal structures for a given block number (bmap, off). If block
is found in reiserfs journal it suggests next free block candidate to test. */
/*
* Searches in journal structures for a given block number (bmap, off).
* If block is found in reiserfs journal it suggests next free block
* candidate to test.
*/
static inline int is_block_in_journal(struct super_block *s, unsigned int bmap,
int off, int *next)
{
@ -129,8 +136,10 @@ static inline int is_block_in_journal(struct super_block *s, unsigned int bmap,
return 0;
}
/* it searches for a window of zero bits with given minimum and maximum lengths in one bitmap
* block; */
/*
* Searches for a window of zero bits with given minimum and maximum
* lengths in one bitmap block
*/
static int scan_bitmap_block(struct reiserfs_transaction_handle *th,
unsigned int bmap_n, int *beg, int boundary,
int min, int max, int unfm)
@ -145,10 +154,6 @@ static int scan_bitmap_block(struct reiserfs_transaction_handle *th,
RFALSE(bmap_n >= reiserfs_bmap_count(s), "Bitmap %u is out of "
"range (0..%u)", bmap_n, reiserfs_bmap_count(s) - 1);
PROC_INFO_INC(s, scan_bitmap.bmap);
/* this is unclear and lacks comments, explain how journal bitmaps
work here for the reader. Convey a sense of the design here. What
is a window? */
/* - I mean `a window of zero bits' as in description of this function - Zam. */
if (!bi) {
reiserfs_error(s, "jdm-4055", "NULL bitmap info pointer "
@ -161,18 +166,21 @@ static int scan_bitmap_block(struct reiserfs_transaction_handle *th,
return 0;
while (1) {
cont:
cont:
if (bi->free_count < min) {
brelse(bh);
return 0; // No free blocks in this bitmap
return 0; /* No free blocks in this bitmap */
}
/* search for a first zero bit -- beginning of a window */
*beg = reiserfs_find_next_zero_le_bit
((unsigned long *)(bh->b_data), boundary, *beg);
if (*beg + min > boundary) { /* search for a zero bit fails or the rest of bitmap block
* cannot contain a zero window of minimum size */
/*
* search for a zero bit fails or the rest of bitmap block
* cannot contain a zero window of minimum size
*/
if (*beg + min > boundary) {
brelse(bh);
return 0;
}
@ -186,49 +194,75 @@ static int scan_bitmap_block(struct reiserfs_transaction_handle *th,
next = end;
break;
}
/* finding the other end of zero bit window requires looking into journal structures (in
* case of searching for free blocks for unformatted nodes) */
/*
* finding the other end of zero bit window requires
* looking into journal structures (in case of
* searching for free blocks for unformatted nodes)
*/
if (unfm && is_block_in_journal(s, bmap_n, end, &next))
break;
}
/* now (*beg) points to beginning of zero bits window,
* (end) points to one bit after the window end */
if (end - *beg >= min) { /* it seems we have found window of proper size */
/*
* now (*beg) points to beginning of zero bits window,
* (end) points to one bit after the window end
*/
/* found window of proper size */
if (end - *beg >= min) {
int i;
reiserfs_prepare_for_journal(s, bh, 1);
/* try to set all blocks used checking are they still free */
/*
* try to set all blocks used checking are
* they still free
*/
for (i = *beg; i < end; i++) {
/* It seems that we should not check in journal again. */
/* Don't check in journal again. */
if (reiserfs_test_and_set_le_bit
(i, bh->b_data)) {
/* bit was set by another process
* while we slept in prepare_for_journal() */
/*
* bit was set by another process while
* we slept in prepare_for_journal()
*/
PROC_INFO_INC(s, scan_bitmap.stolen);
if (i >= *beg + min) { /* we can continue with smaller set of allocated blocks,
* if length of this set is more or equal to `min' */
/*
* we can continue with smaller set
* of allocated blocks, if length of
* this set is more or equal to `min'
*/
if (i >= *beg + min) {
end = i;
break;
}
/* otherwise we clear all bit were set ... */
/*
* otherwise we clear all bit
* were set ...
*/
while (--i >= *beg)
reiserfs_clear_le_bit
(i, bh->b_data);
reiserfs_restore_prepared_buffer(s, bh);
*beg = org;
/* ... and search again in current block from beginning */
/*
* Search again in current block
* from beginning
*/
goto cont;
}
}
bi->free_count -= (end - *beg);
journal_mark_dirty(th, s, bh);
journal_mark_dirty(th, bh);
brelse(bh);
/* free block count calculation */
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s),
1);
PUT_SB_FREE_BLOCKS(s, SB_FREE_BLOCKS(s) - (end - *beg));
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
return end - (*beg);
} else {
@ -267,11 +301,13 @@ static inline int block_group_used(struct super_block *s, u32 id)
int bm = bmap_hash_id(s, id);
struct reiserfs_bitmap_info *info = &SB_AP_BITMAP(s)[bm];
/* If we don't have cached information on this bitmap block, we're
/*
* If we don't have cached information on this bitmap block, we're
* going to have to load it later anyway. Loading it here allows us
* to make a better decision. This favors long-term performance gain
* with a better on-disk layout vs. a short term gain of skipping the
* read and potentially having a bad placement. */
* read and potentially having a bad placement.
*/
if (info->free_count == UINT_MAX) {
struct buffer_head *bh = reiserfs_read_bitmap_block(s, bm);
brelse(bh);
@ -304,25 +340,26 @@ __le32 reiserfs_choose_packing(struct inode * dir)
return packing;
}
/* Tries to find contiguous zero bit window (given size) in given region of
* bitmap and place new blocks there. Returns number of allocated blocks. */
/*
* Tries to find contiguous zero bit window (given size) in given region of
* bitmap and place new blocks there. Returns number of allocated blocks.
*/
static int scan_bitmap(struct reiserfs_transaction_handle *th,
b_blocknr_t * start, b_blocknr_t finish,
int min, int max, int unfm, sector_t file_block)
{
int nr_allocated = 0;
struct super_block *s = th->t_super;
/* find every bm and bmap and bmap_nr in this file, and change them all to bitmap_blocknr
* - Hans, it is not a block number - Zam. */
unsigned int bm, off;
unsigned int end_bm, end_off;
unsigned int off_max = s->s_blocksize << 3;
BUG_ON(!th->t_trans_id);
PROC_INFO_INC(s, scan_bitmap.call);
/* No point in looking for more free blocks */
if (SB_FREE_BLOCKS(s) <= 0)
return 0; // No point in looking for more free blocks
return 0;
get_bit_address(s, *start, &bm, &off);
get_bit_address(s, finish, &end_bm, &end_off);
@ -331,7 +368,8 @@ static int scan_bitmap(struct reiserfs_transaction_handle *th,
if (end_bm > reiserfs_bmap_count(s))
end_bm = reiserfs_bmap_count(s);
/* When the bitmap is more than 10% free, anyone can allocate.
/*
* When the bitmap is more than 10% free, anyone can allocate.
* When it's less than 10% free, only files that already use the
* bitmap are allowed. Once we pass 80% full, this restriction
* is lifted.
@ -369,7 +407,7 @@ static int scan_bitmap(struct reiserfs_transaction_handle *th,
nr_allocated =
scan_bitmap_block(th, bm, &off, end_off + 1, min, max, unfm);
ret:
ret:
*start = bm * off_max + off;
return nr_allocated;
@ -411,14 +449,14 @@ static void _reiserfs_free_block(struct reiserfs_transaction_handle *th,
"block %lu: bit already cleared", block);
}
apbi[nr].free_count++;
journal_mark_dirty(th, s, bmbh);
journal_mark_dirty(th, bmbh);
brelse(bmbh);
reiserfs_prepare_for_journal(s, sbh, 1);
/* update super block */
set_sb_free_blocks(rs, sb_free_blocks(rs) + 1);
journal_mark_dirty(th, s, sbh);
journal_mark_dirty(th, sbh);
if (for_unformatted) {
int depth = reiserfs_write_unlock_nested(s);
dquot_free_block_nodirty(inode, 1);
@ -483,7 +521,7 @@ static void __discard_prealloc(struct reiserfs_transaction_handle *th,
if (dirty)
reiserfs_update_sd(th, inode);
ei->i_prealloc_block = save;
list_del_init(&(ei->i_prealloc_list));
list_del_init(&ei->i_prealloc_list);
}
/* FIXME: It should be inline function */
@ -529,7 +567,8 @@ int reiserfs_parse_alloc_options(struct super_block *s, char *options)
{
char *this_char, *value;
REISERFS_SB(s)->s_alloc_options.bits = 0; /* clear default settings */
/* clear default settings */
REISERFS_SB(s)->s_alloc_options.bits = 0;
while ((this_char = strsep(&options, ":")) != NULL) {
if ((value = strchr(this_char, '=')) != NULL)
@ -731,7 +770,7 @@ static inline void new_hashed_relocation(reiserfs_blocknr_hint_t * hint)
hash_in = (char *)&hint->key.k_dir_id;
} else {
if (!hint->inode) {
//hint->search_start = hint->beg;
/*hint->search_start = hint->beg;*/
hash_in = (char *)&hint->key.k_dir_id;
} else
if (TEST_OPTION(displace_based_on_dirid, hint->th->t_super))
@ -785,7 +824,8 @@ static void oid_groups(reiserfs_blocknr_hint_t * hint)
dirid = le32_to_cpu(INODE_PKEY(hint->inode)->k_dir_id);
/* keep the root dir and it's first set of subdirs close to
/*
* keep the root dir and it's first set of subdirs close to
* the start of the disk
*/
if (dirid <= 2)
@ -799,7 +839,8 @@ static void oid_groups(reiserfs_blocknr_hint_t * hint)
}
}
/* returns 1 if it finds an indirect item and gets valid hint info
/*
* returns 1 if it finds an indirect item and gets valid hint info
* from it, otherwise 0
*/
static int get_left_neighbor(reiserfs_blocknr_hint_t * hint)
@ -811,25 +852,29 @@ static int get_left_neighbor(reiserfs_blocknr_hint_t * hint)
__le32 *item;
int ret = 0;
if (!hint->path) /* reiserfs code can call this function w/o pointer to path
* structure supplied; then we rely on supplied search_start */
/*
* reiserfs code can call this function w/o pointer to path
* structure supplied; then we rely on supplied search_start
*/
if (!hint->path)
return 0;
path = hint->path;
bh = get_last_bh(path);
RFALSE(!bh, "green-4002: Illegal path specified to get_left_neighbor");
ih = get_ih(path);
ih = tp_item_head(path);
pos_in_item = path->pos_in_item;
item = get_item(path);
item = tp_item_body(path);
hint->search_start = bh->b_blocknr;
/*
* for indirect item: go to left and look for the first non-hole entry
* in the indirect item
*/
if (!hint->formatted_node && is_indirect_le_ih(ih)) {
/* for indirect item: go to left and look for the first non-hole entry
in the indirect item */
if (pos_in_item == I_UNFM_NUM(ih))
pos_in_item--;
// pos_in_item = I_UNFM_NUM (ih) - 1;
while (pos_in_item >= 0) {
int t = get_block_num(item, pos_in_item);
if (t) {
@ -845,10 +890,12 @@ static int get_left_neighbor(reiserfs_blocknr_hint_t * hint)
return ret;
}
/* should be, if formatted node, then try to put on first part of the device
specified as number of percent with mount option device, else try to put
on last of device. This is not to say it is good code to do so,
but the effect should be measured. */
/*
* should be, if formatted node, then try to put on first part of the device
* specified as number of percent with mount option device, else try to put
* on last of device. This is not to say it is good code to do so,
* but the effect should be measured.
*/
static inline void set_border_in_hint(struct super_block *s,
reiserfs_blocknr_hint_t * hint)
{
@ -974,21 +1021,27 @@ static void determine_search_start(reiserfs_blocknr_hint_t * hint,
set_border_in_hint(s, hint);
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
/* whenever we create a new directory, we displace it. At first we will
hash for location, later we might look for a moderately empty place for
it */
/*
* whenever we create a new directory, we displace it. At first
* we will hash for location, later we might look for a moderately
* empty place for it
*/
if (displacing_new_packing_localities(s)
&& hint->th->displace_new_blocks) {
displace_new_packing_locality(hint);
/* we do not continue determine_search_start,
* if new packing locality is being displaced */
/*
* we do not continue determine_search_start,
* if new packing locality is being displaced
*/
return;
}
#endif
/* all persons should feel encouraged to add more special cases here and
* test them */
/*
* all persons should feel encouraged to add more special cases
* here and test them
*/
if (displacing_large_files(s) && !hint->formatted_node
&& this_blocknr_allocation_would_make_it_a_large_file(hint)) {
@ -996,8 +1049,10 @@ static void determine_search_start(reiserfs_blocknr_hint_t * hint,
return;
}
/* if none of our special cases is relevant, use the left neighbor in the
tree order of the new node we are allocating for */
/*
* if none of our special cases is relevant, use the left
* neighbor in the tree order of the new node we are allocating for
*/
if (hint->formatted_node && TEST_OPTION(hashed_formatted_nodes, s)) {
hash_formatted_node(hint);
return;
@ -1005,10 +1060,13 @@ static void determine_search_start(reiserfs_blocknr_hint_t * hint,
unfm_hint = get_left_neighbor(hint);
/* Mimic old block allocator behaviour, that is if VFS allowed for preallocation,
new blocks are displaced based on directory ID. Also, if suggested search_start
is less than last preallocated block, we start searching from it, assuming that
HDD dataflow is faster in forward direction */
/*
* Mimic old block allocator behaviour, that is if VFS allowed for
* preallocation, new blocks are displaced based on directory ID.
* Also, if suggested search_start is less than last preallocated
* block, we start searching from it, assuming that HDD dataflow
* is faster in forward direction
*/
if (TEST_OPTION(old_way, s)) {
if (!hint->formatted_node) {
if (!reiserfs_hashed_relocation(s))
@ -1037,11 +1095,13 @@ static void determine_search_start(reiserfs_blocknr_hint_t * hint,
TEST_OPTION(old_hashed_relocation, s)) {
old_hashed_relocation(hint);
}
/* new_hashed_relocation works with both formatted/unformatted nodes */
if ((!unfm_hint || hint->formatted_node) &&
TEST_OPTION(new_hashed_relocation, s)) {
new_hashed_relocation(hint);
}
/* dirid grouping works only on unformatted nodes */
if (!unfm_hint && !hint->formatted_node && TEST_OPTION(dirid_groups, s)) {
dirid_groups(hint);
@ -1079,8 +1139,6 @@ static int determine_prealloc_size(reiserfs_blocknr_hint_t * hint)
return CARRY_ON;
}
/* XXX I know it could be merged with upper-level function;
but may be result function would be too complex. */
static inline int allocate_without_wrapping_disk(reiserfs_blocknr_hint_t * hint,
b_blocknr_t * new_blocknrs,
b_blocknr_t start,
@ -1108,7 +1166,10 @@ static inline int allocate_without_wrapping_disk(reiserfs_blocknr_hint_t * hint,
/* do we have something to fill prealloc. array also ? */
if (nr_allocated > 0) {
/* it means prealloc_size was greater that 0 and we do preallocation */
/*
* it means prealloc_size was greater that 0 and
* we do preallocation
*/
list_add(&REISERFS_I(hint->inode)->i_prealloc_list,
&SB_JOURNAL(hint->th->t_super)->
j_prealloc_list);
@ -1176,7 +1237,8 @@ static inline int blocknrs_and_prealloc_arrays_from_search_start
start = 0;
finish = hint->beg;
break;
default: /* We've tried searching everywhere, not enough space */
default:
/* We've tried searching everywhere, not enough space */
/* Free the blocks */
if (!hint->formatted_node) {
#ifdef REISERQUOTA_DEBUG
@ -1261,8 +1323,11 @@ static int use_preallocated_list_if_available(reiserfs_blocknr_hint_t * hint,
return amount_needed;
}
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t * hint, b_blocknr_t * new_blocknrs, int amount_needed, int reserved_by_us /* Amount of blocks we have
already reserved */ )
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *hint,
b_blocknr_t *new_blocknrs,
int amount_needed,
/* Amount of blocks we have already reserved */
int reserved_by_us)
{
int initial_amount_needed = amount_needed;
int ret;
@ -1274,15 +1339,21 @@ int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t * hint, b_blocknr_t * new
return NO_DISK_SPACE;
/* should this be if !hint->inode && hint->preallocate? */
/* do you mean hint->formatted_node can be removed ? - Zam */
/* hint->formatted_node cannot be removed because we try to access
inode information here, and there is often no inode assotiated with
metadata allocations - green */
/*
* hint->formatted_node cannot be removed because we try to access
* inode information here, and there is often no inode associated with
* metadata allocations - green
*/
if (!hint->formatted_node && hint->preallocate) {
amount_needed = use_preallocated_list_if_available
(hint, new_blocknrs, amount_needed);
if (amount_needed == 0) /* all blocknrs we need we got from
prealloc. list */
/*
* We have all the block numbers we need from the
* prealloc list
*/
if (amount_needed == 0)
return CARRY_ON;
new_blocknrs += (initial_amount_needed - amount_needed);
}
@ -1296,10 +1367,12 @@ int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t * hint, b_blocknr_t * new
ret = blocknrs_and_prealloc_arrays_from_search_start
(hint, new_blocknrs, amount_needed);
/* we used prealloc. list to fill (partially) new_blocknrs array. If final allocation fails we
* need to return blocks back to prealloc. list or just free them. -- Zam (I chose second
* variant) */
/*
* We used prealloc. list to fill (partially) new_blocknrs array.
* If final allocation fails we need to return blocks back to
* prealloc. list or just free them. -- Zam (I chose second
* variant)
*/
if (ret != CARRY_ON) {
while (amount_needed++ < initial_amount_needed) {
reiserfs_free_block(hint->th, hint->inode,
@ -1338,10 +1411,12 @@ struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb,
struct reiserfs_bitmap_info *info = SB_AP_BITMAP(sb) + bitmap;
struct buffer_head *bh;
/* Way old format filesystems had the bitmaps packed up front.
* I doubt there are any of these left, but just in case... */
/*
* Way old format filesystems had the bitmaps packed up front.
* I doubt there are any of these left, but just in case...
*/
if (unlikely(test_bit(REISERFS_OLD_FORMAT,
&(REISERFS_SB(sb)->s_properties))))
&REISERFS_SB(sb)->s_properties)))
block = REISERFS_SB(sb)->s_sbh->b_blocknr + 1 + bitmap;
else if (bitmap == 0)
block = (REISERFS_DISK_OFFSET_IN_BYTES >> sb->s_blocksize_bits) + 1;

View File

@ -59,7 +59,10 @@ static inline bool is_privroot_deh(struct inode *dir, struct reiserfs_de_head *d
int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
{
struct cpu_key pos_key; /* key of current position in the directory (key of directory entry) */
/* key of current position in the directory (key of directory entry) */
struct cpu_key pos_key;
INITIALIZE_PATH(path_to_entry);
struct buffer_head *bh;
int item_num, entry_num;
@ -77,21 +80,28 @@ int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
reiserfs_check_lock_depth(inode->i_sb, "readdir");
/* form key for search the next directory entry using f_pos field of
file structure */
/*
* form key for search the next directory entry using
* f_pos field of file structure
*/
make_cpu_key(&pos_key, inode, ctx->pos ?: DOT_OFFSET, TYPE_DIRENTRY, 3);
next_pos = cpu_key_k_offset(&pos_key);
path_to_entry.reada = PATH_READA;
while (1) {
research:
/* search the directory item, containing entry with specified key */
research:
/*
* search the directory item, containing entry with
* specified key
*/
search_res =
search_by_entry_key(inode->i_sb, &pos_key, &path_to_entry,
&de);
if (search_res == IO_ERROR) {
// FIXME: we could just skip part of directory which could
// not be read
/*
* FIXME: we could just skip part of directory
* which could not be read
*/
ret = -EIO;
goto out;
}
@ -102,41 +112,49 @@ int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
store_ih(&tmp_ih, ih);
/* we must have found item, that is item of this directory, */
RFALSE(COMP_SHORT_KEYS(&(ih->ih_key), &pos_key),
RFALSE(COMP_SHORT_KEYS(&ih->ih_key, &pos_key),
"vs-9000: found item %h does not match to dir we readdir %K",
ih, &pos_key);
RFALSE(item_num > B_NR_ITEMS(bh) - 1,
"vs-9005 item_num == %d, item amount == %d",
item_num, B_NR_ITEMS(bh));
/* and entry must be not more than number of entries in the item */
RFALSE(I_ENTRY_COUNT(ih) < entry_num,
/*
* and entry must be not more than number of entries
* in the item
*/
RFALSE(ih_entry_count(ih) < entry_num,
"vs-9010: entry number is too big %d (%d)",
entry_num, I_ENTRY_COUNT(ih));
entry_num, ih_entry_count(ih));
/*
* go through all entries in the directory item beginning
* from the entry, that has been found
*/
if (search_res == POSITION_FOUND
|| entry_num < I_ENTRY_COUNT(ih)) {
/* go through all entries in the directory item beginning from the entry, that has been found */
|| entry_num < ih_entry_count(ih)) {
struct reiserfs_de_head *deh =
B_I_DEH(bh, ih) + entry_num;
for (; entry_num < I_ENTRY_COUNT(ih);
for (; entry_num < ih_entry_count(ih);
entry_num++, deh++) {
int d_reclen;
char *d_name;
ino_t d_ino;
loff_t cur_pos = deh_offset(deh);
if (!de_visible(deh))
/* it is hidden entry */
if (!de_visible(deh))
continue;
d_reclen = entry_length(bh, ih, entry_num);
d_name = B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh);
if (d_reclen <= 0 ||
d_name + d_reclen > bh->b_data + bh->b_size) {
/* There is corrupted data in entry,
* We'd better stop here */
/*
* There is corrupted data in entry,
* We'd better stop here
*/
pathrelse(&path_to_entry);
ret = -EIO;
goto out;
@ -145,10 +163,10 @@ int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
if (!d_name[d_reclen - 1])
d_reclen = strlen(d_name);
/* too big to send back to VFS */
if (d_reclen >
REISERFS_MAX_NAME(inode->i_sb->
s_blocksize)) {
/* too big to send back to VFS */
continue;
}
@ -173,10 +191,14 @@ int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
goto research;
}
}
// Note, that we copy name to user space via temporary
// buffer (local_buf) because filldir will block if
// user space buffer is swapped out. At that time
// entry can move to somewhere else
/*
* Note, that we copy name to user space via
* temporary buffer (local_buf) because
* filldir will block if user space buffer is
* swapped out. At that time entry can move to
* somewhere else
*/
memcpy(local_buf, d_name, d_reclen);
/*
@ -209,22 +231,26 @@ int reiserfs_readdir_inode(struct inode *inode, struct dir_context *ctx)
} /* for */
}
/* end of directory has been reached */
if (item_num != B_NR_ITEMS(bh) - 1)
// end of directory has been reached
goto end;
/* item we went through is last item of node. Using right
delimiting key check is it directory end */
/*
* item we went through is last item of node. Using right
* delimiting key check is it directory end
*/
rkey = get_rkey(&path_to_entry, inode->i_sb);
if (!comp_le_keys(rkey, &MIN_KEY)) {
/* set pos_key to key, that is the smallest and greater
that key of the last entry in the item */
/*
* set pos_key to key, that is the smallest and greater
* that key of the last entry in the item
*/
set_cpu_key_k_offset(&pos_key, next_pos);
continue;
}
/* end of directory has been reached */
if (COMP_SHORT_KEYS(rkey, &pos_key)) {
// end of directory has been reached
goto end;
}
@ -248,71 +274,73 @@ static int reiserfs_readdir(struct file *file, struct dir_context *ctx)
return reiserfs_readdir_inode(file_inode(file), ctx);
}
/* compose directory item containing "." and ".." entries (entries are
not aligned to 4 byte boundary) */
/* the last four params are LE */
/*
* compose directory item containing "." and ".." entries (entries are
* not aligned to 4 byte boundary)
*/
void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
__le32 par_dirid, __le32 par_objid)
{
struct reiserfs_de_head *deh;
struct reiserfs_de_head *dot, *dotdot;
memset(body, 0, EMPTY_DIR_SIZE_V1);
deh = (struct reiserfs_de_head *)body;
dot = (struct reiserfs_de_head *)body;
dotdot = dot + 1;
/* direntry header of "." */
put_deh_offset(&(deh[0]), DOT_OFFSET);
put_deh_offset(dot, DOT_OFFSET);
/* these two are from make_le_item_head, and are are LE */
deh[0].deh_dir_id = dirid;
deh[0].deh_objectid = objid;
deh[0].deh_state = 0; /* Endian safe if 0 */
put_deh_location(&(deh[0]), EMPTY_DIR_SIZE_V1 - strlen("."));
mark_de_visible(&(deh[0]));
dot->deh_dir_id = dirid;
dot->deh_objectid = objid;
dot->deh_state = 0; /* Endian safe if 0 */
put_deh_location(dot, EMPTY_DIR_SIZE_V1 - strlen("."));
mark_de_visible(dot);
/* direntry header of ".." */
put_deh_offset(&(deh[1]), DOT_DOT_OFFSET);
put_deh_offset(dotdot, DOT_DOT_OFFSET);
/* key of ".." for the root directory */
/* these two are from the inode, and are are LE */
deh[1].deh_dir_id = par_dirid;
deh[1].deh_objectid = par_objid;
deh[1].deh_state = 0; /* Endian safe if 0 */
put_deh_location(&(deh[1]), deh_location(&(deh[0])) - strlen(".."));
mark_de_visible(&(deh[1]));
dotdot->deh_dir_id = par_dirid;
dotdot->deh_objectid = par_objid;
dotdot->deh_state = 0; /* Endian safe if 0 */
put_deh_location(dotdot, deh_location(dot) - strlen(".."));
mark_de_visible(dotdot);
/* copy ".." and "." */
memcpy(body + deh_location(&(deh[0])), ".", 1);
memcpy(body + deh_location(&(deh[1])), "..", 2);
memcpy(body + deh_location(dot), ".", 1);
memcpy(body + deh_location(dotdot), "..", 2);
}
/* compose directory item containing "." and ".." entries */
void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
__le32 par_dirid, __le32 par_objid)
{
struct reiserfs_de_head *deh;
struct reiserfs_de_head *dot, *dotdot;
memset(body, 0, EMPTY_DIR_SIZE);
deh = (struct reiserfs_de_head *)body;
dot = (struct reiserfs_de_head *)body;
dotdot = dot + 1;
/* direntry header of "." */
put_deh_offset(&(deh[0]), DOT_OFFSET);
put_deh_offset(dot, DOT_OFFSET);
/* these two are from make_le_item_head, and are are LE */
deh[0].deh_dir_id = dirid;
deh[0].deh_objectid = objid;
deh[0].deh_state = 0; /* Endian safe if 0 */
put_deh_location(&(deh[0]), EMPTY_DIR_SIZE - ROUND_UP(strlen(".")));
mark_de_visible(&(deh[0]));
dot->deh_dir_id = dirid;
dot->deh_objectid = objid;
dot->deh_state = 0; /* Endian safe if 0 */
put_deh_location(dot, EMPTY_DIR_SIZE - ROUND_UP(strlen(".")));
mark_de_visible(dot);
/* direntry header of ".." */
put_deh_offset(&(deh[1]), DOT_DOT_OFFSET);
put_deh_offset(dotdot, DOT_DOT_OFFSET);
/* key of ".." for the root directory */
/* these two are from the inode, and are are LE */
deh[1].deh_dir_id = par_dirid;
deh[1].deh_objectid = par_objid;
deh[1].deh_state = 0; /* Endian safe if 0 */
put_deh_location(&(deh[1]),
deh_location(&(deh[0])) - ROUND_UP(strlen("..")));
mark_de_visible(&(deh[1]));
dotdot->deh_dir_id = par_dirid;
dotdot->deh_objectid = par_objid;
dotdot->deh_state = 0; /* Endian safe if 0 */
put_deh_location(dotdot, deh_location(dot) - ROUND_UP(strlen("..")));
mark_de_visible(dotdot);
/* copy ".." and "." */
memcpy(body + deh_location(&(deh[0])), ".", 1);
memcpy(body + deh_location(&(deh[1])), "..", 2);
memcpy(body + deh_location(dot), ".", 1);
memcpy(body + deh_location(dotdot), "..", 2);
}

File diff suppressed because it is too large Load Diff

View File

@ -15,20 +15,20 @@
#include <linux/quotaops.h>
/*
** We pack the tails of files on file close, not at the time they are written.
** This implies an unnecessary copy of the tail and an unnecessary indirect item
** insertion/balancing, for files that are written in one write.
** It avoids unnecessary tail packings (balances) for files that are written in
** multiple writes and are small enough to have tails.
**
** file_release is called by the VFS layer when the file is closed. If
** this is the last open file descriptor, and the file
** small enough to have a tail, and the tail is currently in an
** unformatted node, the tail is converted back into a direct item.
**
** We use reiserfs_truncate_file to pack the tail, since it already has
** all the conditions coded.
*/
* We pack the tails of files on file close, not at the time they are written.
* This implies an unnecessary copy of the tail and an unnecessary indirect item
* insertion/balancing, for files that are written in one write.
* It avoids unnecessary tail packings (balances) for files that are written in
* multiple writes and are small enough to have tails.
*
* file_release is called by the VFS layer when the file is closed. If
* this is the last open file descriptor, and the file
* small enough to have a tail, and the tail is currently in an
* unformatted node, the tail is converted back into a direct item.
*
* We use reiserfs_truncate_file to pack the tail, since it already has
* all the conditions coded.
*/
static int reiserfs_file_release(struct inode *inode, struct file *filp)
{
@ -41,10 +41,10 @@ static int reiserfs_file_release(struct inode *inode, struct file *filp)
if (atomic_add_unless(&REISERFS_I(inode)->openers, -1, 1))
return 0;
mutex_lock(&(REISERFS_I(inode)->tailpack));
mutex_lock(&REISERFS_I(inode)->tailpack);
if (!atomic_dec_and_test(&REISERFS_I(inode)->openers)) {
mutex_unlock(&(REISERFS_I(inode)->tailpack));
mutex_unlock(&REISERFS_I(inode)->tailpack);
return 0;
}
@ -52,31 +52,35 @@ static int reiserfs_file_release(struct inode *inode, struct file *filp)
if ((!(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
!tail_has_to_be_packed(inode)) &&
REISERFS_I(inode)->i_prealloc_count <= 0) {
mutex_unlock(&(REISERFS_I(inode)->tailpack));
mutex_unlock(&REISERFS_I(inode)->tailpack);
return 0;
}
reiserfs_write_lock(inode->i_sb);
/* freeing preallocation only involves relogging blocks that
/*
* freeing preallocation only involves relogging blocks that
* are already in the current transaction. preallocation gets
* freed at the end of each transaction, so it is impossible for
* us to log any additional blocks (including quota blocks)
*/
err = journal_begin(&th, inode->i_sb, 1);
if (err) {
/* uh oh, we can't allow the inode to go away while there
/*
* uh oh, we can't allow the inode to go away while there
* is still preallocation blocks pending. Try to join the
* aborted transaction
*/
jbegin_failure = err;
err = journal_join_abort(&th, inode->i_sb, 1);
err = journal_join_abort(&th, inode->i_sb);
if (err) {
/* hmpf, our choices here aren't good. We can pin the inode
* which will disallow unmount from every happening, we can
* do nothing, which will corrupt random memory on unmount,
* or we can forcibly remove the file from the preallocation
* list, which will leak blocks on disk. Lets pin the inode
/*
* hmpf, our choices here aren't good. We can pin
* the inode which will disallow unmount from ever
* happening, we can do nothing, which will corrupt
* random memory on unmount, or we can forcibly
* remove the file from the preallocation list, which
* will leak blocks on disk. Lets pin the inode
* and let the admin know what is going on.
*/
igrab(inode);
@ -92,7 +96,7 @@ static int reiserfs_file_release(struct inode *inode, struct file *filp)
#ifdef REISERFS_PREALLOCATE
reiserfs_discard_prealloc(&th, inode);
#endif
err = journal_end(&th, inode->i_sb, 1);
err = journal_end(&th);
/* copy back the error code from journal_begin */
if (!err)
@ -102,35 +106,38 @@ static int reiserfs_file_release(struct inode *inode, struct file *filp)
(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
tail_has_to_be_packed(inode)) {
/* if regular file is released by last holder and it has been
appended (we append by unformatted node only) or its direct
item(s) had to be converted, then it may have to be
indirect2direct converted */
/*
* if regular file is released by last holder and it has been
* appended (we append by unformatted node only) or its direct
* item(s) had to be converted, then it may have to be
* indirect2direct converted
*/
err = reiserfs_truncate_file(inode, 0);
}
out:
out:
reiserfs_write_unlock(inode->i_sb);
mutex_unlock(&(REISERFS_I(inode)->tailpack));
mutex_unlock(&REISERFS_I(inode)->tailpack);
return err;
}
static int reiserfs_file_open(struct inode *inode, struct file *file)
{
int err = dquot_file_open(inode, file);
if (!atomic_inc_not_zero(&REISERFS_I(inode)->openers)) {
/* somebody might be tailpacking on final close; wait for it */
mutex_lock(&(REISERFS_I(inode)->tailpack));
if (!atomic_inc_not_zero(&REISERFS_I(inode)->openers)) {
mutex_lock(&REISERFS_I(inode)->tailpack);
atomic_inc(&REISERFS_I(inode)->openers);
mutex_unlock(&(REISERFS_I(inode)->tailpack));
mutex_unlock(&REISERFS_I(inode)->tailpack);
}
return err;
}
void reiserfs_vfs_truncate_file(struct inode *inode)
{
mutex_lock(&(REISERFS_I(inode)->tailpack));
mutex_lock(&REISERFS_I(inode)->tailpack);
reiserfs_truncate_file(inode, 1);
mutex_unlock(&(REISERFS_I(inode)->tailpack));
mutex_unlock(&REISERFS_I(inode)->tailpack);
}
/* Sync a reiserfs file. */
@ -205,10 +212,11 @@ int reiserfs_commit_page(struct inode *inode, struct page *page,
set_buffer_uptodate(bh);
if (logit) {
reiserfs_prepare_for_journal(s, bh, 1);
journal_mark_dirty(&th, s, bh);
journal_mark_dirty(&th, bh);
} else if (!buffer_dirty(bh)) {
mark_buffer_dirty(bh);
/* do data=ordered on any page past the end
/*
* do data=ordered on any page past the end
* of file and any buffer marked BH_New.
*/
if (reiserfs_data_ordered(inode->i_sb) &&
@ -219,8 +227,8 @@ int reiserfs_commit_page(struct inode *inode, struct page *page,
}
}
if (logit) {
ret = journal_end(&th, s, bh_per_page + 1);
drop_write_lock:
ret = journal_end(&th);
drop_write_lock:
reiserfs_write_unlock(s);
}
/*

File diff suppressed because it is too large Load Diff

View File

@ -12,12 +12,6 @@
* Yura's function is added (04/07/2000)
*/
//
// keyed_hash
// yura_hash
// r5_hash
//
#include <linux/kernel.h>
#include "reiserfs.h"
#include <asm/types.h>
@ -56,7 +50,7 @@ u32 keyed_hash(const signed char *msg, int len)
u32 pad;
int i;
// assert(len >= 0 && len < 256);
/* assert(len >= 0 && len < 256); */
pad = (u32) len | ((u32) len << 8);
pad |= pad << 16;
@ -127,9 +121,10 @@ u32 keyed_hash(const signed char *msg, int len)
return h0 ^ h1;
}
/* What follows in this file is copyright 2000 by Hans Reiser, and the
* licensing of what follows is governed by reiserfs/README */
/*
* What follows in this file is copyright 2000 by Hans Reiser, and the
* licensing of what follows is governed by reiserfs/README
*/
u32 yura_hash(const signed char *msg, int len)
{
int j, pow;

View File

@ -12,7 +12,10 @@
int balance_internal(struct tree_balance *,
int, int, struct item_head *, struct buffer_head **);
/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
/*
* modes of internal_shift_left, internal_shift_right and
* internal_insert_childs
*/
#define INTERNAL_SHIFT_FROM_S_TO_L 0
#define INTERNAL_SHIFT_FROM_R_TO_S 1
#define INTERNAL_SHIFT_FROM_L_TO_S 2
@ -32,7 +35,9 @@ static void internal_define_dest_src_infos(int shift_mode,
memset(src_bi, 0, sizeof(struct buffer_info));
/* define dest, src, dest parent, dest position */
switch (shift_mode) {
case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */
/* used in internal_shift_left */
case INTERNAL_SHIFT_FROM_S_TO_L:
src_bi->tb = tb;
src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
@ -52,12 +57,14 @@ static void internal_define_dest_src_infos(int shift_mode,
dest_bi->tb = tb;
dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
/* dest position is analog of dest->b_item_order */
dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
*d_key = tb->lkey[h];
*cf = tb->CFL[h];
break;
case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */
/* used in internal_shift_left */
case INTERNAL_SHIFT_FROM_R_TO_S:
src_bi->tb = tb;
src_bi->bi_bh = tb->R[h];
src_bi->bi_parent = tb->FR[h];
@ -111,7 +118,8 @@ static void internal_define_dest_src_infos(int shift_mode,
}
}
/* Insert count node pointers into buffer cur before position to + 1.
/*
* Insert count node pointers into buffer cur before position to + 1.
* Insert count items into buffer cur before position to.
* Items and node pointers are specified by inserted and bh respectively.
*/
@ -146,14 +154,14 @@ static void internal_insert_childs(struct buffer_info *cur_bi,
/* copy to_be_insert disk children */
for (i = 0; i < count; i++) {
put_dc_size(&(new_dc[i]),
put_dc_size(&new_dc[i],
MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
put_dc_block_number(&new_dc[i], bh[i]->b_blocknr);
}
memcpy(dc, new_dc, DC_SIZE * count);
/* prepare space for count items */
ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
ih = internal_key(cur, ((to == -1) ? 0 : to));
memmove(ih + count, ih,
(nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
@ -190,8 +198,10 @@ static void internal_insert_childs(struct buffer_info *cur_bi,
}
/* Delete del_num items and node pointers from buffer cur starting from *
* the first_i'th item and first_p'th pointers respectively. */
/*
* Delete del_num items and node pointers from buffer cur starting from
* the first_i'th item and first_p'th pointers respectively.
*/
static void internal_delete_pointers_items(struct buffer_info *cur_bi,
int first_p,
int first_i, int del_num)
@ -233,7 +243,7 @@ static void internal_delete_pointers_items(struct buffer_info *cur_bi,
dc = B_N_CHILD(cur, first_p);
memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
key = B_N_PDELIM_KEY(cur, first_i);
key = internal_key(cur, first_i);
memmove(key, key + del_num,
(nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
del_num) * DC_SIZE);
@ -270,22 +280,30 @@ static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
i_from = (from == 0) ? from : from - 1;
/* delete n pointers starting from `from' position in CUR;
delete n keys starting from 'i_from' position in CUR;
/*
* delete n pointers starting from `from' position in CUR;
* delete n keys starting from 'i_from' position in CUR;
*/
internal_delete_pointers_items(cur_bi, from, i_from, n);
}
/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
* last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
/*
* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer
* dest
* last_first == FIRST_TO_LAST means that we copy first items
* from src to tail of dest
* last_first == LAST_TO_FIRST means that we copy last items
* from src to head of dest
*/
static void internal_copy_pointers_items(struct buffer_info *dest_bi,
struct buffer_head *src,
int last_first, int cpy_num)
{
/* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
* as delimiting key have already inserted to buffer dest.*/
/*
* ATTENTION! Number of node pointers in DEST is equal to number
* of items in DEST as delimiting key have already inserted to
* buffer dest.
*/
struct buffer_head *dest = dest_bi->bi_bh;
int nr_dest, nr_src;
int dest_order, src_order;
@ -330,13 +348,13 @@ static void internal_copy_pointers_items(struct buffer_info *dest_bi,
memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
/* prepare space for cpy_num - 1 item headers */
key = B_N_PDELIM_KEY(dest, dest_order);
key = internal_key(dest, dest_order);
memmove(key + cpy_num - 1, key,
KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
cpy_num));
/* insert headers */
memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1));
/* sizes, item number */
set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
@ -366,7 +384,9 @@ static void internal_copy_pointers_items(struct buffer_info *dest_bi,
}
/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
/*
* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to
* buffer dest.
* Delete cpy_num - del_par items and node pointers from buffer src.
* last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
* last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
@ -385,8 +405,10 @@ static void internal_move_pointers_items(struct buffer_info *dest_bi,
if (last_first == FIRST_TO_LAST) { /* shift_left occurs */
first_pointer = 0;
first_item = 0;
/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
for key - with first_item */
/*
* delete cpy_num - del_par pointers and keys starting for
* pointers with first_pointer, for key - with first_item
*/
internal_delete_pointers_items(src_bi, first_pointer,
first_item, cpy_num - del_par);
} else { /* shift_right occurs */
@ -404,7 +426,9 @@ static void internal_move_pointers_items(struct buffer_info *dest_bi,
}
/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before, /* insert key before key with n_dest number */
static void internal_insert_key(struct buffer_info *dest_bi,
/* insert key before key with n_dest number */
int dest_position_before,
struct buffer_head *src, int src_position)
{
struct buffer_head *dest = dest_bi->bi_bh;
@ -429,12 +453,12 @@ static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_b
nr = blkh_nr_item(blkh);
/* prepare space for inserting key */
key = B_N_PDELIM_KEY(dest, dest_position_before);
key = internal_key(dest, dest_position_before);
memmove(key + 1, key,
(nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
/* insert key */
memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
memcpy(key, internal_key(src, src_position), KEY_SIZE);
/* Change dirt, free space, item number fields. */
@ -453,13 +477,19 @@ static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_b
}
}
/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
* Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
/*
* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
* Copy pointer_amount node pointers and pointer_amount - 1 items from
* buffer src to buffer dest.
* Replace d_key'th key in buffer cfl.
* Delete pointer_amount items and node pointers from buffer src.
*/
/* this can be invoked both to shift from S to L and from R to S */
static void internal_shift_left(int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
static void internal_shift_left(
/*
* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S
*/
int mode,
struct tree_balance *tb,
int h, int pointer_amount)
{
@ -473,7 +503,10 @@ static void internal_shift_left(int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FRO
/*printk("pointer_amount = %d\n",pointer_amount); */
if (pointer_amount) {
/* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
/*
* insert delimiting key from common father of dest and
* src to node dest into position B_NR_ITEM(dest)
*/
internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
d_key_position);
@ -492,7 +525,8 @@ static void internal_shift_left(int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FRO
}
/* Insert delimiting key to L[h].
/*
* Insert delimiting key to L[h].
* Copy n node pointers and n - 1 items from buffer S[h] to L[h].
* Delete n - 1 items and node pointers from buffer S[h].
*/
@ -507,23 +541,27 @@ static void internal_shift1_left(struct tree_balance *tb,
internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
&dest_bi, &src_bi, &d_key_position, &cf);
if (pointer_amount > 0) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
/* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
if (pointer_amount > 0)
internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
d_key_position);
/* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
/* last parameter is del_parameter */
internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
pointer_amount, 1);
/* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
}
/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
/*
* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
* Copy n node pointers and n - 1 items from buffer src to buffer dest.
* Replace d_key'th key in buffer cfr.
* Delete n items and node pointers from buffer src.
*/
static void internal_shift_right(int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
static void internal_shift_right(
/*
* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S
*/
int mode,
struct tree_balance *tb,
int h, int pointer_amount)
{
@ -538,7 +576,10 @@ static void internal_shift_right(int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FR
nr = B_NR_ITEMS(src_bi.bi_bh);
if (pointer_amount > 0) {
/* insert delimiting key from common father of dest and src to dest node into position 0 */
/*
* insert delimiting key from common father of dest
* and src to dest node into position 0
*/
internal_insert_key(&dest_bi, 0, cf, d_key_position);
if (nr == pointer_amount - 1) {
RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
@ -559,7 +600,8 @@ static void internal_shift_right(int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FR
pointer_amount, 0);
}
/* Insert delimiting key to R[h].
/*
* Insert delimiting key to R[h].
* Copy n node pointers and n - 1 items from buffer S[h] to R[h].
* Delete n - 1 items and node pointers from buffer S[h].
*/
@ -574,18 +616,19 @@ static void internal_shift1_right(struct tree_balance *tb,
internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
&dest_bi, &src_bi, &d_key_position, &cf);
if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
/* insert rkey from CFR[h] to right neighbor R[h] */
if (pointer_amount > 0)
internal_insert_key(&dest_bi, 0, cf, d_key_position);
/* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
/* last parameter is del_parameter */
internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
pointer_amount, 1);
/* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
}
/* Delete insert_num node pointers together with their left items
* and balance current node.*/
/*
* Delete insert_num node pointers together with their left items
* and balance current node.
*/
static void balance_internal_when_delete(struct tree_balance *tb,
int h, int child_pos)
{
@ -626,9 +669,11 @@ static void balance_internal_when_delete(struct tree_balance *tb,
new_root = tb->R[h - 1];
else
new_root = tb->L[h - 1];
/* switch super block's tree root block number to the new value */
/*
* switch super block's tree root block
* number to the new value */
PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
//REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
/*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */
PUT_SB_TREE_HEIGHT(tb->tb_sb,
SB_TREE_HEIGHT(tb->tb_sb) - 1);
@ -636,8 +681,8 @@ static void balance_internal_when_delete(struct tree_balance *tb,
REISERFS_SB(tb->tb_sb)->s_sbh,
1);
/*&&&&&&&&&&&&&&&&&&&&&& */
if (h > 1)
/* use check_internal if new root is an internal node */
if (h > 1)
check_internal(new_root);
/*&&&&&&&&&&&&&&&&&&&&&& */
@ -648,7 +693,8 @@ static void balance_internal_when_delete(struct tree_balance *tb,
return;
}
if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) { /* join S[h] with L[h] */
/* join S[h] with L[h] */
if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {
RFALSE(tb->rnum[h] != 0,
"invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
@ -660,7 +706,8 @@ static void balance_internal_when_delete(struct tree_balance *tb,
return;
}
if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) { /* join S[h] with R[h] */
/* join S[h] with R[h] */
if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {
RFALSE(tb->lnum[h] != 0,
"invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
h, tb->lnum[h]);
@ -671,17 +718,18 @@ static void balance_internal_when_delete(struct tree_balance *tb,
return;
}
if (tb->lnum[h] < 0) { /* borrow from left neighbor L[h] */
/* borrow from left neighbor L[h] */
if (tb->lnum[h] < 0) {
RFALSE(tb->rnum[h] != 0,
"wrong tb->rnum[%d]==%d when borrow from L[h]", h,
tb->rnum[h]);
/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
-tb->lnum[h]);
return;
}
if (tb->rnum[h] < 0) { /* borrow from right neighbor R[h] */
/* borrow from right neighbor R[h] */
if (tb->rnum[h] < 0) {
RFALSE(tb->lnum[h] != 0,
"invalid tb->lnum[%d]==%d when borrow from R[h]",
h, tb->lnum[h]);
@ -689,7 +737,8 @@ static void balance_internal_when_delete(struct tree_balance *tb,
return;
}
if (tb->lnum[h] > 0) { /* split S[h] into two parts and put them into neighbors */
/* split S[h] into two parts and put them into neighbors */
if (tb->lnum[h] > 0) {
RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
"invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
h, tb->lnum[h], h, tb->rnum[h], n);
@ -717,7 +766,7 @@ static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
return;
memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
}
@ -732,34 +781,41 @@ static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
"R[h] can not be empty if it exists (item number=%d)",
B_NR_ITEMS(tb->R[h]));
memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
}
int balance_internal(struct tree_balance *tb, /* tree_balance structure */
int h, /* level of the tree */
int child_pos, struct item_head *insert_key, /* key for insertion on higher level */
struct buffer_head **insert_ptr /* node for insertion on higher level */
)
/* if inserting/pasting
{
child_pos is the position of the node-pointer in S[h] that *
pointed to S[h-1] before balancing of the h-1 level; *
this means that new pointers and items must be inserted AFTER *
child_pos
}
else
{
it is the position of the leftmost pointer that must be deleted (together with
its corresponding key to the left of the pointer)
as a result of the previous level's balancing.
}
/*
* if inserting/pasting {
* child_pos is the position of the node-pointer in S[h] that
* pointed to S[h-1] before balancing of the h-1 level;
* this means that new pointers and items must be inserted AFTER
* child_pos
* } else {
* it is the position of the leftmost pointer that must be deleted
* (together with its corresponding key to the left of the pointer)
* as a result of the previous level's balancing.
* }
*/
int balance_internal(struct tree_balance *tb,
int h, /* level of the tree */
int child_pos,
/* key for insertion on higher level */
struct item_head *insert_key,
/* node for insertion on higher level */
struct buffer_head **insert_ptr)
{
struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
struct buffer_info bi;
int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
/*
* we return this: it is 0 if there is no S[h],
* else it is tb->S[h]->b_item_order
*/
int order;
int insert_num, n, k;
struct buffer_head *S_new;
struct item_head new_insert_key;
@ -774,8 +830,10 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
(tbSh) ? PATH_H_POSITION(tb->tb_path,
h + 1) /*tb->S[h]->b_item_order */ : 0;
/* Using insert_size[h] calculate the number insert_num of items
that must be inserted to or deleted from S[h]. */
/*
* Using insert_size[h] calculate the number insert_num of items
* that must be inserted to or deleted from S[h].
*/
insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
/* Check whether insert_num is proper * */
@ -794,23 +852,21 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
k = 0;
if (tb->lnum[h] > 0) {
/* shift lnum[h] items from S[h] to the left neighbor L[h].
check how many of new items fall into L[h] or CFL[h] after
shifting */
/*
* shift lnum[h] items from S[h] to the left neighbor L[h].
* check how many of new items fall into L[h] or CFL[h] after
* shifting
*/
n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */
if (tb->lnum[h] <= child_pos) {
/* new items don't fall into L[h] or CFL[h] */
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
tb->lnum[h]);
/*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
child_pos -= tb->lnum[h];
} else if (tb->lnum[h] > child_pos + insert_num) {
/* all new items fall into L[h] */
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
tb->lnum[h] - insert_num);
/* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
tb->lnum[h]-insert_num);
*/
/* insert insert_num keys and node-pointers into L[h] */
bi.tb = tb;
bi.bi_bh = tb->L[h];
@ -826,7 +882,10 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
} else {
struct disk_child *dc;
/* some items fall into L[h] or CFL[h], but some don't fall */
/*
* some items fall into L[h] or CFL[h],
* but some don't fall
*/
internal_shift1_left(tb, h, child_pos + 1);
/* calculate number of new items that fall into L[h] */
k = tb->lnum[h] - child_pos - 1;
@ -841,7 +900,10 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
replace_lkey(tb, h, insert_key + k);
/* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
/*
* replace the first node-ptr in S[h] by
* node-ptr to insert_ptr[k]
*/
dc = B_N_CHILD(tbSh, 0);
put_dc_size(dc,
MAX_CHILD_SIZE(insert_ptr[k]) -
@ -860,17 +922,17 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
/* tb->lnum[h] > 0 */
if (tb->rnum[h] > 0) {
/*shift rnum[h] items from S[h] to the right neighbor R[h] */
/* check how many of new items fall into R or CFR after shifting */
/*
* check how many of new items fall into R or CFR
* after shifting
*/
n = B_NR_ITEMS(tbSh); /* number of items in S[h] */
if (n - tb->rnum[h] >= child_pos)
/* new items fall into S[h] */
/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
tb->rnum[h]);
else if (n + insert_num - tb->rnum[h] < child_pos) {
/* all new items fall into R[h] */
/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
tb->rnum[h] - insert_num); */
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
tb->rnum[h] - insert_num);
@ -904,7 +966,10 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
replace_rkey(tb, h, insert_key + insert_num - k - 1);
/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
/*
* replace the first node-ptr in R[h] by
* node-ptr insert_ptr[insert_num-k-1]
*/
dc = B_N_CHILD(tb->R[h], 0);
put_dc_size(dc,
MAX_CHILD_SIZE(insert_ptr
@ -997,26 +1062,30 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
/* new items don't fall into S_new */
/* store the delimiting key for the next level */
/* new_insert_key = (n - snum)'th key in S[h] */
memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
memcpy(&new_insert_key, internal_key(tbSh, n - snum),
KEY_SIZE);
/* last parameter is del_par */
internal_move_pointers_items(&dest_bi, &src_bi,
LAST_TO_FIRST, snum, 0);
/* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
} else if (n + insert_num - snum < child_pos) {
/* all new items fall into S_new */
/* store the delimiting key for the next level */
/* new_insert_key = (n + insert_item - snum)'th key in S[h] */
/*
* new_insert_key = (n + insert_item - snum)'th
* key in S[h]
*/
memcpy(&new_insert_key,
B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
internal_key(tbSh, n + insert_num - snum),
KEY_SIZE);
/* last parameter is del_par */
internal_move_pointers_items(&dest_bi, &src_bi,
LAST_TO_FIRST,
snum - insert_num, 0);
/* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
/* insert insert_num keys and node-pointers into S_new */
/*
* insert insert_num keys and node-pointers
* into S_new
*/
internal_insert_childs(&dest_bi,
/*S_new,tb->S[h-1]->b_next, */
child_pos - n - insert_num +
@ -1033,7 +1102,6 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
internal_move_pointers_items(&dest_bi, &src_bi,
LAST_TO_FIRST,
n - child_pos + 1, 1);
/* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
/* calculate number of new items that fall into S_new */
k = snum - n + child_pos - 1;
@ -1043,7 +1111,10 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
/* new_insert_key = insert_key[insert_num - k - 1] */
memcpy(&new_insert_key, insert_key + insert_num - k - 1,
KEY_SIZE);
/* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
/*
* replace first node-ptr in S_new by node-ptr
* to insert_ptr[insert_num-k-1]
*/
dc = B_N_CHILD(S_new, 0);
put_dc_size(dc,
@ -1066,7 +1137,7 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
|| buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
S_new);
// S_new is released in unfix_nodes
/* S_new is released in unfix_nodes */
}
n = B_NR_ITEMS(tbSh); /*number of items in S[h] */

File diff suppressed because it is too large Load Diff

View File

@ -15,7 +15,8 @@
* reiserfs_ioctl - handler for ioctl for inode
* supported commands:
* 1) REISERFS_IOC_UNPACK - try to unpack tail from direct item into indirect
* and prevent packing file (argument arg has to be non-zero)
* and prevent packing file (argument arg has t
* be non-zero)
* 2) REISERFS_IOC_[GS]ETFLAGS, REISERFS_IOC_[GS]ETVERSION
* 3) That's all for a while ...
*/
@ -132,7 +133,10 @@ setversion_out:
long reiserfs_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
/* These are just misnamed, they actually get/put from/to user an int */
/*
* These are just misnamed, they actually
* get/put from/to user an int
*/
switch (cmd) {
case REISERFS_IOC32_UNPACK:
cmd = REISERFS_IOC_UNPACK;
@ -160,10 +164,10 @@ long reiserfs_compat_ioctl(struct file *file, unsigned int cmd,
int reiserfs_commit_write(struct file *f, struct page *page,
unsigned from, unsigned to);
/*
** reiserfs_unpack
** Function try to convert tail from direct item into indirect.
** It set up nopack attribute in the REISERFS_I(inode)->nopack
*/
* reiserfs_unpack
* Function try to convert tail from direct item into indirect.
* It set up nopack attribute in the REISERFS_I(inode)->nopack
*/
int reiserfs_unpack(struct inode *inode, struct file *filp)
{
int retval = 0;
@ -194,9 +198,10 @@ int reiserfs_unpack(struct inode *inode, struct file *filp)
goto out;
}
/* we unpack by finding the page with the tail, and calling
** __reiserfs_write_begin on that page. This will force a
** reiserfs_get_block to unpack the tail for us.
/*
* we unpack by finding the page with the tail, and calling
* __reiserfs_write_begin on that page. This will force a
* reiserfs_get_block to unpack the tail for us.
*/
index = inode->i_size >> PAGE_CACHE_SHIFT;
mapping = inode->i_mapping;
@ -214,11 +219,11 @@ int reiserfs_unpack(struct inode *inode, struct file *filp)
retval = reiserfs_commit_write(NULL, page, write_from, write_from);
REISERFS_I(inode)->i_flags |= i_nopack_mask;
out_unlock:
out_unlock:
unlock_page(page);
page_cache_release(page);
out:
out:
mutex_unlock(&inode->i_mutex);
reiserfs_write_unlock(inode->i_sb);
return retval;

View File

@ -5,15 +5,17 @@
#include <linux/time.h>
#include "reiserfs.h"
// this contains item handlers for old item types: sd, direct,
// indirect, directory
/*
* this contains item handlers for old item types: sd, direct,
* indirect, directory
*/
/* and where are the comments? how about saying where we can find an
explanation of each item handler method? -Hans */
/*
* and where are the comments? how about saying where we can find an
* explanation of each item handler method? -Hans
*/
//////////////////////////////////////////////////////////////////////////////
// stat data functions
//
/* stat data functions */
static int sd_bytes_number(struct item_head *ih, int block_size)
{
return 0;
@ -60,7 +62,7 @@ static void sd_print_item(struct item_head *ih, char *item)
static void sd_check_item(struct item_head *ih, char *item)
{
// FIXME: type something here!
/* unused */
}
static int sd_create_vi(struct virtual_node *vn,
@ -68,7 +70,6 @@ static int sd_create_vi(struct virtual_node *vn,
int is_affected, int insert_size)
{
vi->vi_index = TYPE_STAT_DATA;
//vi->vi_type |= VI_TYPE_STAT_DATA;// not needed?
return 0;
}
@ -117,15 +118,13 @@ static struct item_operations stat_data_ops = {
.print_vi = sd_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// direct item functions
//
/* direct item functions */
static int direct_bytes_number(struct item_head *ih, int block_size)
{
return ih_item_len(ih);
}
// FIXME: this should probably switch to indirect as well
/* FIXME: this should probably switch to indirect as well */
static void direct_decrement_key(struct cpu_key *key)
{
cpu_key_k_offset_dec(key);
@ -144,7 +143,7 @@ static void direct_print_item(struct item_head *ih, char *item)
{
int j = 0;
// return;
/* return; */
printk("\"");
while (j < ih_item_len(ih))
printk("%c", item[j++]);
@ -153,7 +152,7 @@ static void direct_print_item(struct item_head *ih, char *item)
static void direct_check_item(struct item_head *ih, char *item)
{
// FIXME: type something here!
/* unused */
}
static int direct_create_vi(struct virtual_node *vn,
@ -161,7 +160,6 @@ static int direct_create_vi(struct virtual_node *vn,
int is_affected, int insert_size)
{
vi->vi_index = TYPE_DIRECT;
//vi->vi_type |= VI_TYPE_DIRECT;
return 0;
}
@ -211,16 +209,13 @@ static struct item_operations direct_ops = {
.print_vi = direct_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// indirect item functions
//
/* indirect item functions */
static int indirect_bytes_number(struct item_head *ih, int block_size)
{
return ih_item_len(ih) / UNFM_P_SIZE * block_size; //- get_ih_free_space (ih);
return ih_item_len(ih) / UNFM_P_SIZE * block_size;
}
// decrease offset, if it becomes 0, change type to stat data
/* decrease offset, if it becomes 0, change type to stat data */
static void indirect_decrement_key(struct cpu_key *key)
{
cpu_key_k_offset_dec(key);
@ -228,7 +223,7 @@ static void indirect_decrement_key(struct cpu_key *key)
set_cpu_key_k_type(key, TYPE_STAT_DATA);
}
// if it is not first item of the body, then it is mergeable
/* if it is not first item of the body, then it is mergeable */
static int indirect_is_left_mergeable(struct reiserfs_key *key,
unsigned long bsize)
{
@ -236,7 +231,7 @@ static int indirect_is_left_mergeable(struct reiserfs_key *key,
return (le_key_k_offset(version, key) != 1);
}
// printing of indirect item
/* printing of indirect item */
static void start_new_sequence(__u32 * start, int *len, __u32 new)
{
*start = new;
@ -295,7 +290,7 @@ static void indirect_print_item(struct item_head *ih, char *item)
static void indirect_check_item(struct item_head *ih, char *item)
{
// FIXME: type something here!
/* unused */
}
static int indirect_create_vi(struct virtual_node *vn,
@ -303,7 +298,6 @@ static int indirect_create_vi(struct virtual_node *vn,
int is_affected, int insert_size)
{
vi->vi_index = TYPE_INDIRECT;
//vi->vi_type |= VI_TYPE_INDIRECT;
return 0;
}
@ -321,16 +315,19 @@ static int indirect_check_right(struct virtual_item *vi, int free)
return indirect_check_left(vi, free, 0, 0);
}
// return size in bytes of 'units' units. If first == 0 - calculate from the head (left), otherwise - from tail (right)
/*
* return size in bytes of 'units' units. If first == 0 - calculate
* from the head (left), otherwise - from tail (right)
*/
static int indirect_part_size(struct virtual_item *vi, int first, int units)
{
// unit of indirect item is byte (yet)
/* unit of indirect item is byte (yet) */
return units;
}
static int indirect_unit_num(struct virtual_item *vi)
{
// unit of indirect item is byte (yet)
/* unit of indirect item is byte (yet) */
return vi->vi_item_len - IH_SIZE;
}
@ -356,10 +353,7 @@ static struct item_operations indirect_ops = {
.print_vi = indirect_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// direntry functions
//
/* direntry functions */
static int direntry_bytes_number(struct item_head *ih, int block_size)
{
reiserfs_warning(NULL, "vs-16090",
@ -396,7 +390,7 @@ static void direntry_print_item(struct item_head *ih, char *item)
deh = (struct reiserfs_de_head *)item;
for (i = 0; i < I_ENTRY_COUNT(ih); i++, deh++) {
for (i = 0; i < ih_entry_count(ih); i++, deh++) {
namelen =
(i ? (deh_location(deh - 1)) : ih_item_len(ih)) -
deh_location(deh);
@ -428,9 +422,9 @@ static void direntry_check_item(struct item_head *ih, char *item)
int i;
struct reiserfs_de_head *deh;
// FIXME: type something here!
/* unused */
deh = (struct reiserfs_de_head *)item;
for (i = 0; i < I_ENTRY_COUNT(ih); i++, deh++) {
for (i = 0; i < ih_entry_count(ih); i++, deh++) {
;
}
}
@ -439,7 +433,8 @@ static void direntry_check_item(struct item_head *ih, char *item)
/*
* function returns old entry number in directory item in real node
* using new entry number in virtual item in virtual node */
* using new entry number in virtual item in virtual node
*/
static inline int old_entry_num(int is_affected, int virtual_entry_num,
int pos_in_item, int mode)
{
@ -463,9 +458,11 @@ static inline int old_entry_num(int is_affected, int virtual_entry_num,
return virtual_entry_num - 1;
}
/* Create an array of sizes of directory entries for virtual
item. Return space used by an item. FIXME: no control over
consuming of space used by this item handler */
/*
* Create an array of sizes of directory entries for virtual
* item. Return space used by an item. FIXME: no control over
* consuming of space used by this item handler
*/
static int direntry_create_vi(struct virtual_node *vn,
struct virtual_item *vi,
int is_affected, int insert_size)
@ -494,8 +491,8 @@ static int direntry_create_vi(struct virtual_node *vn,
j = old_entry_num(is_affected, i, vn->vn_pos_in_item,
vn->vn_mode);
dir_u->entry_sizes[i] =
(j ? deh_location(&(deh[j - 1])) : ih_item_len(vi->vi_ih)) -
deh_location(&(deh[j])) + DEH_SIZE;
(j ? deh_location(&deh[j - 1]) : ih_item_len(vi->vi_ih)) -
deh_location(&deh[j]) + DEH_SIZE;
}
size += (dir_u->entry_count * sizeof(short));
@ -529,10 +526,10 @@ static int direntry_create_vi(struct virtual_node *vn,
}
//
// return number of entries which may fit into specified amount of
// free space, or -1 if free space is not enough even for 1 entry
//
/*
* return number of entries which may fit into specified amount of
* free space, or -1 if free space is not enough even for 1 entry
*/
static int direntry_check_left(struct virtual_item *vi, int free,
int start_skip, int end_skip)
{
@ -541,8 +538,8 @@ static int direntry_check_left(struct virtual_item *vi, int free,
struct direntry_uarea *dir_u = vi->vi_uarea;
for (i = start_skip; i < dir_u->entry_count - end_skip; i++) {
if (dir_u->entry_sizes[i] > free)
/* i-th entry doesn't fit into the remaining free space */
if (dir_u->entry_sizes[i] > free)
break;
free -= dir_u->entry_sizes[i];
@ -570,8 +567,8 @@ static int direntry_check_right(struct virtual_item *vi, int free)
struct direntry_uarea *dir_u = vi->vi_uarea;
for (i = dir_u->entry_count - 1; i >= 0; i--) {
if (dir_u->entry_sizes[i] > free)
/* i-th entry doesn't fit into the remaining free space */
if (dir_u->entry_sizes[i] > free)
break;
free -= dir_u->entry_sizes[i];
@ -643,9 +640,7 @@ static struct item_operations direntry_ops = {
.print_vi = direntry_print_vi
};
//////////////////////////////////////////////////////////////////////////////
// Error catching functions to catch errors caused by incorrect item types.
//
/* Error catching functions to catch errors caused by incorrect item types. */
static int errcatch_bytes_number(struct item_head *ih, int block_size)
{
reiserfs_warning(NULL, "green-16001",
@ -685,8 +680,12 @@ static int errcatch_create_vi(struct virtual_node *vn,
{
reiserfs_warning(NULL, "green-16006",
"Invalid item type observed, run fsck ASAP");
return 0; // We might return -1 here as well, but it won't help as create_virtual_node() from where
// this operation is called from is of return type void.
/*
* We might return -1 here as well, but it won't help as
* create_virtual_node() from where this operation is called
* from is of return type void.
*/
return 0;
}
static int errcatch_check_left(struct virtual_item *vi, int free,
@ -739,9 +738,6 @@ static struct item_operations errcatch_ops = {
errcatch_print_vi
};
//////////////////////////////////////////////////////////////////////////////
//
//
#if ! (TYPE_STAT_DATA == 0 && TYPE_INDIRECT == 1 && TYPE_DIRECT == 2 && TYPE_DIRENTRY == 3)
#error Item types must use disk-format assigned values.
#endif

File diff suppressed because it is too large Load Diff

View File

@ -8,46 +8,42 @@
#include "reiserfs.h"
#include <linux/buffer_head.h>
/* these are used in do_balance.c */
/* leaf_move_items
leaf_shift_left
leaf_shift_right
leaf_delete_items
leaf_insert_into_buf
leaf_paste_in_buffer
leaf_cut_from_buffer
leaf_paste_entries
/*
* copy copy_count entries from source directory item to dest buffer
* (creating new item if needed)
*/
/* copy copy_count entries from source directory item to dest buffer (creating new item if needed) */
static void leaf_copy_dir_entries(struct buffer_info *dest_bi,
struct buffer_head *source, int last_first,
int item_num, int from, int copy_count)
{
struct buffer_head *dest = dest_bi->bi_bh;
int item_num_in_dest; /* either the number of target item,
or if we must create a new item,
the number of the item we will
create it next to */
/*
* either the number of target item, or if we must create a
* new item, the number of the item we will create it next to
*/
int item_num_in_dest;
struct item_head *ih;
struct reiserfs_de_head *deh;
int copy_records_len; /* length of all records in item to be copied */
char *records;
ih = B_N_PITEM_HEAD(source, item_num);
ih = item_head(source, item_num);
RFALSE(!is_direntry_le_ih(ih), "vs-10000: item must be directory item");
/* length of all record to be copied and first byte of the last of them */
/*
* length of all record to be copied and first byte of
* the last of them
*/
deh = B_I_DEH(source, ih);
if (copy_count) {
copy_records_len = (from ? deh_location(&(deh[from - 1])) :
copy_records_len = (from ? deh_location(&deh[from - 1]) :
ih_item_len(ih)) -
deh_location(&(deh[from + copy_count - 1]));
deh_location(&deh[from + copy_count - 1]);
records =
source->b_data + ih_location(ih) +
deh_location(&(deh[from + copy_count - 1]));
deh_location(&deh[from + copy_count - 1]);
} else {
copy_records_len = 0;
records = NULL;
@ -59,12 +55,15 @@ static void leaf_copy_dir_entries(struct buffer_info *dest_bi,
LAST_TO_FIRST) ? ((B_NR_ITEMS(dest)) ? 0 : -1) : (B_NR_ITEMS(dest)
- 1);
/* if there are no items in dest or the first/last item in dest is not item of the same directory */
/*
* if there are no items in dest or the first/last item in
* dest is not item of the same directory
*/
if ((item_num_in_dest == -1) ||
(last_first == FIRST_TO_LAST && le_ih_k_offset(ih) == DOT_OFFSET) ||
(last_first == LAST_TO_FIRST
&& comp_short_le_keys /*COMP_SHORT_KEYS */ (&ih->ih_key,
B_N_PKEY(dest,
leaf_key(dest,
item_num_in_dest))))
{
/* create new item in dest */
@ -80,16 +79,22 @@ static void leaf_copy_dir_entries(struct buffer_info *dest_bi,
if (last_first == LAST_TO_FIRST) {
/* form key by the following way */
if (from < I_ENTRY_COUNT(ih)) {
if (from < ih_entry_count(ih)) {
set_le_ih_k_offset(&new_ih,
deh_offset(&(deh[from])));
/*memcpy (&new_ih.ih_key.k_offset, &deh[from].deh_offset, SHORT_KEY_SIZE); */
deh_offset(&deh[from]));
} else {
/* no entries will be copied to this item in this function */
/*
* no entries will be copied to this
* item in this function
*/
set_le_ih_k_offset(&new_ih, U32_MAX);
/* this item is not yet valid, but we want I_IS_DIRECTORY_ITEM to return 1 for it, so we -1 */
/*
* this item is not yet valid, but we
* want I_IS_DIRECTORY_ITEM to return 1
* for it, so we -1
*/
}
set_le_key_k_type(KEY_FORMAT_3_5, &(new_ih.ih_key),
set_le_key_k_type(KEY_FORMAT_3_5, &new_ih.ih_key,
TYPE_DIRENTRY);
}
@ -113,36 +118,44 @@ static void leaf_copy_dir_entries(struct buffer_info *dest_bi,
leaf_paste_entries(dest_bi, item_num_in_dest,
(last_first ==
FIRST_TO_LAST) ? I_ENTRY_COUNT(B_N_PITEM_HEAD(dest,
FIRST_TO_LAST) ? ih_entry_count(item_head(dest,
item_num_in_dest))
: 0, copy_count, deh + from, records,
DEH_SIZE * copy_count + copy_records_len);
}
/* Copy the first (if last_first == FIRST_TO_LAST) or last (last_first == LAST_TO_FIRST) item or
part of it or nothing (see the return 0 below) from SOURCE to the end
(if last_first) or beginning (!last_first) of the DEST */
/*
* Copy the first (if last_first == FIRST_TO_LAST) or last
* (last_first == LAST_TO_FIRST) item or part of it or nothing
* (see the return 0 below) from SOURCE to the end (if last_first)
* or beginning (!last_first) of the DEST
*/
/* returns 1 if anything was copied, else 0 */
static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
struct buffer_head *src, int last_first,
int bytes_or_entries)
{
struct buffer_head *dest = dest_bi->bi_bh;
int dest_nr_item, src_nr_item; /* number of items in the source and destination buffers */
/* number of items in the source and destination buffers */
int dest_nr_item, src_nr_item;
struct item_head *ih;
struct item_head *dih;
dest_nr_item = B_NR_ITEMS(dest);
/*
* if ( DEST is empty or first item of SOURCE and last item of
* DEST are the items of different objects or of different types )
* then there is no need to treat this item differently from the
* other items that we copy, so we return
*/
if (last_first == FIRST_TO_LAST) {
/* if ( DEST is empty or first item of SOURCE and last item of DEST are the items of different objects
or of different types ) then there is no need to treat this item differently from the other items
that we copy, so we return */
ih = B_N_PITEM_HEAD(src, 0);
dih = B_N_PITEM_HEAD(dest, dest_nr_item - 1);
if (!dest_nr_item
|| (!op_is_left_mergeable(&(ih->ih_key), src->b_size)))
ih = item_head(src, 0);
dih = item_head(dest, dest_nr_item - 1);
/* there is nothing to merge */
if (!dest_nr_item
|| (!op_is_left_mergeable(&ih->ih_key, src->b_size)))
return 0;
RFALSE(!ih_item_len(ih),
@ -157,8 +170,11 @@ static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
return 1;
}
/* copy part of the body of the first item of SOURCE to the end of the body of the last item of the DEST
part defined by 'bytes_or_entries'; if bytes_or_entries == -1 copy whole body; don't create new item header
/*
* copy part of the body of the first item of SOURCE
* to the end of the body of the last item of the DEST
* part defined by 'bytes_or_entries'; if bytes_or_entries
* == -1 copy whole body; don't create new item header
*/
if (bytes_or_entries == -1)
bytes_or_entries = ih_item_len(ih);
@ -176,11 +192,13 @@ static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
}
#endif
/* merge first item (or its part) of src buffer with the last
item of dest buffer. Both are of the same file */
/*
* merge first item (or its part) of src buffer with the last
* item of dest buffer. Both are of the same file
*/
leaf_paste_in_buffer(dest_bi,
dest_nr_item - 1, ih_item_len(dih),
bytes_or_entries, B_I_PITEM(src, ih), 0);
bytes_or_entries, ih_item_body(src, ih), 0);
if (is_indirect_le_ih(dih)) {
RFALSE(get_ih_free_space(dih),
@ -195,19 +213,23 @@ static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
/* copy boundary item to right (last_first == LAST_TO_FIRST) */
/* ( DEST is empty or last item of SOURCE and first item of DEST
are the items of different object or of different types )
/*
* (DEST is empty or last item of SOURCE and first item of DEST
* are the items of different object or of different types)
*/
src_nr_item = B_NR_ITEMS(src);
ih = B_N_PITEM_HEAD(src, src_nr_item - 1);
dih = B_N_PITEM_HEAD(dest, 0);
ih = item_head(src, src_nr_item - 1);
dih = item_head(dest, 0);
if (!dest_nr_item || !op_is_left_mergeable(&(dih->ih_key), src->b_size))
if (!dest_nr_item || !op_is_left_mergeable(&dih->ih_key, src->b_size))
return 0;
if (is_direntry_le_ih(ih)) {
/*
* bytes_or_entries = entries number in last
* item body of SOURCE
*/
if (bytes_or_entries == -1)
/* bytes_or_entries = entries number in last item body of SOURCE */
bytes_or_entries = ih_entry_count(ih);
leaf_copy_dir_entries(dest_bi, src, LAST_TO_FIRST,
@ -217,9 +239,11 @@ static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
return 1;
}
/* copy part of the body of the last item of SOURCE to the begin of the body of the first item of the DEST;
part defined by 'bytes_or_entries'; if byte_or_entriess == -1 copy whole body; change first item key of the DEST;
don't create new item header
/*
* copy part of the body of the last item of SOURCE to the
* begin of the body of the first item of the DEST; part defined
* by 'bytes_or_entries'; if byte_or_entriess == -1 copy whole body;
* change first item key of the DEST; don't create new item header
*/
RFALSE(is_indirect_le_ih(ih) && get_ih_free_space(ih),
@ -270,15 +294,18 @@ static int leaf_copy_boundary_item(struct buffer_info *dest_bi,
}
leaf_paste_in_buffer(dest_bi, 0, 0, bytes_or_entries,
B_I_PITEM(src,
ih_item_body(src,
ih) + ih_item_len(ih) - bytes_or_entries,
0);
return 1;
}
/* copy cpy_mun items from buffer src to buffer dest
* last_first == FIRST_TO_LAST means, that we copy cpy_num items beginning from first-th item in src to tail of dest
* last_first == LAST_TO_FIRST means, that we copy cpy_num items beginning from first-th item in src to head of dest
/*
* copy cpy_mun items from buffer src to buffer dest
* last_first == FIRST_TO_LAST means, that we copy cpy_num items beginning
* from first-th item in src to tail of dest
* last_first == LAST_TO_FIRST means, that we copy cpy_num items beginning
* from first-th item in src to head of dest
*/
static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
struct buffer_head *src, int last_first,
@ -311,11 +338,14 @@ static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
nr = blkh_nr_item(blkh);
free_space = blkh_free_space(blkh);
/* we will insert items before 0-th or nr-th item in dest buffer. It depends of last_first parameter */
/*
* we will insert items before 0-th or nr-th item in dest buffer.
* It depends of last_first parameter
*/
dest_before = (last_first == LAST_TO_FIRST) ? 0 : nr;
/* location of head of first new item */
ih = B_N_PITEM_HEAD(dest, dest_before);
ih = item_head(dest, dest_before);
RFALSE(blkh_free_space(blkh) < cpy_num * IH_SIZE,
"vs-10140: not enough free space for headers %d (needed %d)",
@ -325,7 +355,7 @@ static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
memmove(ih + cpy_num, ih, (nr - dest_before) * IH_SIZE);
/* copy item headers */
memcpy(ih, B_N_PITEM_HEAD(src, first), cpy_num * IH_SIZE);
memcpy(ih, item_head(src, first), cpy_num * IH_SIZE);
free_space -= (IH_SIZE * cpy_num);
set_blkh_free_space(blkh, free_space);
@ -338,8 +368,8 @@ static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
}
/* prepare space for items */
last_loc = ih_location(&(ih[nr + cpy_num - 1 - dest_before]));
last_inserted_loc = ih_location(&(ih[cpy_num - 1]));
last_loc = ih_location(&ih[nr + cpy_num - 1 - dest_before]);
last_inserted_loc = ih_location(&ih[cpy_num - 1]);
/* check free space */
RFALSE(free_space < j - last_inserted_loc,
@ -352,7 +382,8 @@ static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
/* copy items */
memcpy(dest->b_data + last_inserted_loc,
B_N_PITEM(src, (first + cpy_num - 1)), j - last_inserted_loc);
item_body(src, (first + cpy_num - 1)),
j - last_inserted_loc);
/* sizes, item number */
set_blkh_nr_item(blkh, nr + cpy_num);
@ -376,8 +407,10 @@ static void leaf_copy_items_entirely(struct buffer_info *dest_bi,
}
}
/* This function splits the (liquid) item into two items (useful when
shifting part of an item into another node.) */
/*
* This function splits the (liquid) item into two items (useful when
* shifting part of an item into another node.)
*/
static void leaf_item_bottle(struct buffer_info *dest_bi,
struct buffer_head *src, int last_first,
int item_num, int cpy_bytes)
@ -389,17 +422,22 @@ static void leaf_item_bottle(struct buffer_info *dest_bi,
"vs-10170: bytes == - 1 means: do not split item");
if (last_first == FIRST_TO_LAST) {
/* if ( if item in position item_num in buffer SOURCE is directory item ) */
ih = B_N_PITEM_HEAD(src, item_num);
/*
* if ( if item in position item_num in buffer SOURCE
* is directory item )
*/
ih = item_head(src, item_num);
if (is_direntry_le_ih(ih))
leaf_copy_dir_entries(dest_bi, src, FIRST_TO_LAST,
item_num, 0, cpy_bytes);
else {
struct item_head n_ih;
/* copy part of the body of the item number 'item_num' of SOURCE to the end of the DEST
part defined by 'cpy_bytes'; create new item header; change old item_header (????);
n_ih = new item_header;
/*
* copy part of the body of the item number 'item_num'
* of SOURCE to the end of the DEST part defined by
* 'cpy_bytes'; create new item header; change old
* item_header (????); n_ih = new item_header;
*/
memcpy(&n_ih, ih, IH_SIZE);
put_ih_item_len(&n_ih, cpy_bytes);
@ -411,30 +449,36 @@ static void leaf_item_bottle(struct buffer_info *dest_bi,
set_ih_free_space(&n_ih, 0);
}
RFALSE(op_is_left_mergeable(&(ih->ih_key), src->b_size),
RFALSE(op_is_left_mergeable(&ih->ih_key, src->b_size),
"vs-10190: bad mergeability of item %h", ih);
n_ih.ih_version = ih->ih_version; /* JDM Endian safe, both le */
leaf_insert_into_buf(dest_bi, B_NR_ITEMS(dest), &n_ih,
B_N_PITEM(src, item_num), 0);
item_body(src, item_num), 0);
}
} else {
/* if ( if item in position item_num in buffer SOURCE is directory item ) */
ih = B_N_PITEM_HEAD(src, item_num);
/*
* if ( if item in position item_num in buffer
* SOURCE is directory item )
*/
ih = item_head(src, item_num);
if (is_direntry_le_ih(ih))
leaf_copy_dir_entries(dest_bi, src, LAST_TO_FIRST,
item_num,
I_ENTRY_COUNT(ih) - cpy_bytes,
ih_entry_count(ih) - cpy_bytes,
cpy_bytes);
else {
struct item_head n_ih;
/* copy part of the body of the item number 'item_num' of SOURCE to the begin of the DEST
part defined by 'cpy_bytes'; create new item header;
n_ih = new item_header;
/*
* copy part of the body of the item number 'item_num'
* of SOURCE to the begin of the DEST part defined by
* 'cpy_bytes'; create new item header;
* n_ih = new item_header;
*/
memcpy(&n_ih, ih, SHORT_KEY_SIZE);
n_ih.ih_version = ih->ih_version; /* JDM Endian safe, both le */
/* Endian safe, both le */
n_ih.ih_version = ih->ih_version;
if (is_direct_le_ih(ih)) {
set_le_ih_k_offset(&n_ih,
@ -458,20 +502,22 @@ static void leaf_item_bottle(struct buffer_info *dest_bi,
/* set item length */
put_ih_item_len(&n_ih, cpy_bytes);
n_ih.ih_version = ih->ih_version; /* JDM Endian safe, both le */
/* Endian safe, both le */
n_ih.ih_version = ih->ih_version;
leaf_insert_into_buf(dest_bi, 0, &n_ih,
B_N_PITEM(src,
item_num) +
item_body(src, item_num) +
ih_item_len(ih) - cpy_bytes, 0);
}
}
}
/* If cpy_bytes equals minus one than copy cpy_num whole items from SOURCE to DEST.
If cpy_bytes not equal to minus one than copy cpy_num-1 whole items from SOURCE to DEST.
From last item copy cpy_num bytes for regular item and cpy_num directory entries for
directory item. */
/*
* If cpy_bytes equals minus one than copy cpy_num whole items from SOURCE
* to DEST. If cpy_bytes not equal to minus one than copy cpy_num-1 whole
* items from SOURCE to DEST. From last item copy cpy_num bytes for regular
* item and cpy_num directory entries for directory item.
*/
static int leaf_copy_items(struct buffer_info *dest_bi, struct buffer_head *src,
int last_first, int cpy_num, int cpy_bytes)
{
@ -498,22 +544,34 @@ static int leaf_copy_items(struct buffer_info *dest_bi, struct buffer_head *src,
else
bytes = -1;
/* copy the first item or it part or nothing to the end of the DEST (i = leaf_copy_boundary_item(DEST,SOURCE,0,bytes)) */
/*
* copy the first item or it part or nothing to the end of
* the DEST (i = leaf_copy_boundary_item(DEST,SOURCE,0,bytes))
*/
i = leaf_copy_boundary_item(dest_bi, src, FIRST_TO_LAST, bytes);
cpy_num -= i;
if (cpy_num == 0)
return i;
pos += i;
if (cpy_bytes == -1)
/* copy first cpy_num items starting from position 'pos' of SOURCE to end of DEST */
/*
* copy first cpy_num items starting from position
* 'pos' of SOURCE to end of DEST
*/
leaf_copy_items_entirely(dest_bi, src, FIRST_TO_LAST,
pos, cpy_num);
else {
/* copy first cpy_num-1 items starting from position 'pos-1' of the SOURCE to the end of the DEST */
/*
* copy first cpy_num-1 items starting from position
* 'pos-1' of the SOURCE to the end of the DEST
*/
leaf_copy_items_entirely(dest_bi, src, FIRST_TO_LAST,
pos, cpy_num - 1);
/* copy part of the item which number is cpy_num+pos-1 to the end of the DEST */
/*
* copy part of the item which number is
* cpy_num+pos-1 to the end of the DEST
*/
leaf_item_bottle(dest_bi, src, FIRST_TO_LAST,
cpy_num + pos - 1, cpy_bytes);
}
@ -525,7 +583,11 @@ static int leaf_copy_items(struct buffer_info *dest_bi, struct buffer_head *src,
else
bytes = -1;
/* copy the last item or it part or nothing to the begin of the DEST (i = leaf_copy_boundary_item(DEST,SOURCE,1,bytes)); */
/*
* copy the last item or it part or nothing to the
* begin of the DEST
* (i = leaf_copy_boundary_item(DEST,SOURCE,1,bytes));
*/
i = leaf_copy_boundary_item(dest_bi, src, LAST_TO_FIRST, bytes);
cpy_num -= i;
@ -534,15 +596,24 @@ static int leaf_copy_items(struct buffer_info *dest_bi, struct buffer_head *src,
pos = src_nr_item - cpy_num - i;
if (cpy_bytes == -1) {
/* starting from position 'pos' copy last cpy_num items of SOURCE to begin of DEST */
/*
* starting from position 'pos' copy last cpy_num
* items of SOURCE to begin of DEST
*/
leaf_copy_items_entirely(dest_bi, src, LAST_TO_FIRST,
pos, cpy_num);
} else {
/* copy last cpy_num-1 items starting from position 'pos+1' of the SOURCE to the begin of the DEST; */
/*
* copy last cpy_num-1 items starting from position
* 'pos+1' of the SOURCE to the begin of the DEST;
*/
leaf_copy_items_entirely(dest_bi, src, LAST_TO_FIRST,
pos + 1, cpy_num - 1);
/* copy part of the item which number is pos to the begin of the DEST */
/*
* copy part of the item which number is pos to
* the begin of the DEST
*/
leaf_item_bottle(dest_bi, src, LAST_TO_FIRST, pos,
cpy_bytes);
}
@ -550,9 +621,11 @@ static int leaf_copy_items(struct buffer_info *dest_bi, struct buffer_head *src,
return i;
}
/* there are types of coping: from S[0] to L[0], from S[0] to R[0],
from R[0] to L[0]. for each of these we have to define parent and
positions of destination and source buffers */
/*
* there are types of coping: from S[0] to L[0], from S[0] to R[0],
* from R[0] to L[0]. for each of these we have to define parent and
* positions of destination and source buffers
*/
static void leaf_define_dest_src_infos(int shift_mode, struct tree_balance *tb,
struct buffer_info *dest_bi,
struct buffer_info *src_bi,
@ -568,7 +641,9 @@ static void leaf_define_dest_src_infos(int shift_mode, struct tree_balance *tb,
src_bi->tb = tb;
src_bi->bi_bh = PATH_PLAST_BUFFER(tb->tb_path);
src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, 0);
src_bi->bi_position = PATH_H_B_ITEM_ORDER(tb->tb_path, 0); /* src->b_item_order */
/* src->b_item_order */
src_bi->bi_position = PATH_H_B_ITEM_ORDER(tb->tb_path, 0);
dest_bi->tb = tb;
dest_bi->bi_bh = tb->L[0];
dest_bi->bi_parent = tb->FL[0];
@ -633,8 +708,10 @@ static void leaf_define_dest_src_infos(int shift_mode, struct tree_balance *tb,
shift_mode, src_bi->bi_bh, dest_bi->bi_bh);
}
/* copy mov_num items and mov_bytes of the (mov_num-1)th item to
neighbor. Delete them from source */
/*
* copy mov_num items and mov_bytes of the (mov_num-1)th item to
* neighbor. Delete them from source
*/
int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
int mov_bytes, struct buffer_head *Snew)
{
@ -657,18 +734,24 @@ int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
return ret_value;
}
/* Shift shift_num items (and shift_bytes of last shifted item if shift_bytes != -1)
from S[0] to L[0] and replace the delimiting key */
/*
* Shift shift_num items (and shift_bytes of last shifted item if
* shift_bytes != -1) from S[0] to L[0] and replace the delimiting key
*/
int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes)
{
struct buffer_head *S0 = PATH_PLAST_BUFFER(tb->tb_path);
int i;
/* move shift_num (and shift_bytes bytes) items from S[0] to left neighbor L[0] */
/*
* move shift_num (and shift_bytes bytes) items from S[0]
* to left neighbor L[0]
*/
i = leaf_move_items(LEAF_FROM_S_TO_L, tb, shift_num, shift_bytes, NULL);
if (shift_num) {
if (B_NR_ITEMS(S0) == 0) { /* number of items in S[0] == 0 */
/* number of items in S[0] == 0 */
if (B_NR_ITEMS(S0) == 0) {
RFALSE(shift_bytes != -1,
"vs-10270: S0 is empty now, but shift_bytes != -1 (%d)",
@ -691,10 +774,10 @@ int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes)
replace_key(tb, tb->CFL[0], tb->lkey[0], S0, 0);
RFALSE((shift_bytes != -1 &&
!(is_direntry_le_ih(B_N_PITEM_HEAD(S0, 0))
&& !I_ENTRY_COUNT(B_N_PITEM_HEAD(S0, 0)))) &&
!(is_direntry_le_ih(item_head(S0, 0))
&& !ih_entry_count(item_head(S0, 0)))) &&
(!op_is_left_mergeable
(B_N_PKEY(S0, 0), S0->b_size)),
(leaf_key(S0, 0), S0->b_size)),
"vs-10280: item must be mergeable");
}
}
@ -704,13 +787,18 @@ int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes)
/* CLEANING STOPPED HERE */
/* Shift shift_num (shift_bytes) items from S[0] to the right neighbor, and replace the delimiting key */
/*
* Shift shift_num (shift_bytes) items from S[0] to the right neighbor,
* and replace the delimiting key
*/
int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes)
{
// struct buffer_head * S0 = PATH_PLAST_BUFFER (tb->tb_path);
int ret_value;
/* move shift_num (and shift_bytes) items from S[0] to right neighbor R[0] */
/*
* move shift_num (and shift_bytes) items from S[0] to
* right neighbor R[0]
*/
ret_value =
leaf_move_items(LEAF_FROM_S_TO_R, tb, shift_num, shift_bytes, NULL);
@ -725,12 +813,16 @@ int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes)
static void leaf_delete_items_entirely(struct buffer_info *bi,
int first, int del_num);
/* If del_bytes == -1, starting from position 'first' delete del_num items in whole in buffer CUR.
If not.
If last_first == 0. Starting from position 'first' delete del_num-1 items in whole. Delete part of body of
the first item. Part defined by del_bytes. Don't delete first item header
If last_first == 1. Starting from position 'first+1' delete del_num-1 items in whole. Delete part of body of
the last item . Part defined by del_bytes. Don't delete last item header.
/*
* If del_bytes == -1, starting from position 'first' delete del_num
* items in whole in buffer CUR.
* If not.
* If last_first == 0. Starting from position 'first' delete del_num-1
* items in whole. Delete part of body of the first item. Part defined by
* del_bytes. Don't delete first item header
* If last_first == 1. Starting from position 'first+1' delete del_num-1
* items in whole. Delete part of body of the last item . Part defined by
* del_bytes. Don't delete last item header.
*/
void leaf_delete_items(struct buffer_info *cur_bi, int last_first,
int first, int del_num, int del_bytes)
@ -761,32 +853,43 @@ void leaf_delete_items(struct buffer_info *cur_bi, int last_first,
leaf_delete_items_entirely(cur_bi, first, del_num);
else {
if (last_first == FIRST_TO_LAST) {
/* delete del_num-1 items beginning from item in position first */
/*
* delete del_num-1 items beginning from
* item in position first
*/
leaf_delete_items_entirely(cur_bi, first, del_num - 1);
/* delete the part of the first item of the bh
do not delete item header
/*
* delete the part of the first item of the bh
* do not delete item header
*/
leaf_cut_from_buffer(cur_bi, 0, 0, del_bytes);
} else {
struct item_head *ih;
int len;
/* delete del_num-1 items beginning from item in position first+1 */
/*
* delete del_num-1 items beginning from
* item in position first+1
*/
leaf_delete_items_entirely(cur_bi, first + 1,
del_num - 1);
ih = B_N_PITEM_HEAD(bh, B_NR_ITEMS(bh) - 1);
ih = item_head(bh, B_NR_ITEMS(bh) - 1);
if (is_direntry_le_ih(ih))
/* the last item is directory */
/* len = numbers of directory entries in this item */
/*
* len = numbers of directory entries
* in this item
*/
len = ih_entry_count(ih);
else
/* len = body len of item */
len = ih_item_len(ih);
/* delete the part of the last item of the bh
do not delete item header
/*
* delete the part of the last item of the bh
* do not delete item header
*/
leaf_cut_from_buffer(cur_bi, B_NR_ITEMS(bh) - 1,
len - del_bytes, del_bytes);
@ -820,10 +923,10 @@ void leaf_insert_into_buf(struct buffer_info *bi, int before,
zeros_number, ih_item_len(inserted_item_ih));
/* get item new item must be inserted before */
ih = B_N_PITEM_HEAD(bh, before);
ih = item_head(bh, before);
/* prepare space for the body of new item */
last_loc = nr ? ih_location(&(ih[nr - before - 1])) : bh->b_size;
last_loc = nr ? ih_location(&ih[nr - before - 1]) : bh->b_size;
unmoved_loc = before ? ih_location(ih - 1) : bh->b_size;
memmove(bh->b_data + last_loc - ih_item_len(inserted_item_ih),
@ -846,8 +949,8 @@ void leaf_insert_into_buf(struct buffer_info *bi, int before,
/* change locations */
for (i = before; i < nr + 1; i++) {
unmoved_loc -= ih_item_len(&(ih[i - before]));
put_ih_location(&(ih[i - before]), unmoved_loc);
unmoved_loc -= ih_item_len(&ih[i - before]);
put_ih_location(&ih[i - before], unmoved_loc);
}
/* sizes, free space, item number */
@ -867,8 +970,10 @@ void leaf_insert_into_buf(struct buffer_info *bi, int before,
}
}
/* paste paste_size bytes to affected_item_num-th item.
When item is a directory, this only prepare space for new entries */
/*
* paste paste_size bytes to affected_item_num-th item.
* When item is a directory, this only prepare space for new entries
*/
void leaf_paste_in_buffer(struct buffer_info *bi, int affected_item_num,
int pos_in_item, int paste_size,
const char *body, int zeros_number)
@ -902,9 +1007,9 @@ void leaf_paste_in_buffer(struct buffer_info *bi, int affected_item_num,
#endif /* CONFIG_REISERFS_CHECK */
/* item to be appended */
ih = B_N_PITEM_HEAD(bh, affected_item_num);
ih = item_head(bh, affected_item_num);
last_loc = ih_location(&(ih[nr - affected_item_num - 1]));
last_loc = ih_location(&ih[nr - affected_item_num - 1]);
unmoved_loc = affected_item_num ? ih_location(ih - 1) : bh->b_size;
/* prepare space */
@ -913,8 +1018,8 @@ void leaf_paste_in_buffer(struct buffer_info *bi, int affected_item_num,
/* change locations */
for (i = affected_item_num; i < nr; i++)
put_ih_location(&(ih[i - affected_item_num]),
ih_location(&(ih[i - affected_item_num])) -
put_ih_location(&ih[i - affected_item_num],
ih_location(&ih[i - affected_item_num]) -
paste_size);
if (body) {
@ -957,10 +1062,12 @@ void leaf_paste_in_buffer(struct buffer_info *bi, int affected_item_num,
}
}
/* cuts DEL_COUNT entries beginning from FROM-th entry. Directory item
does not have free space, so it moves DEHs and remaining records as
necessary. Return value is size of removed part of directory item
in bytes. */
/*
* cuts DEL_COUNT entries beginning from FROM-th entry. Directory item
* does not have free space, so it moves DEHs and remaining records as
* necessary. Return value is size of removed part of directory item
* in bytes.
*/
static int leaf_cut_entries(struct buffer_head *bh,
struct item_head *ih, int from, int del_count)
{
@ -971,12 +1078,14 @@ static int leaf_cut_entries(struct buffer_head *bh,
int cut_records_len; /* length of all removed records */
int i;
/* make sure, that item is directory and there are enough entries to
remove */
/*
* make sure that item is directory and there are enough entries to
* remove
*/
RFALSE(!is_direntry_le_ih(ih), "10180: item is not directory item");
RFALSE(I_ENTRY_COUNT(ih) < from + del_count,
RFALSE(ih_entry_count(ih) < from + del_count,
"10185: item contains not enough entries: entry_count = %d, from = %d, to delete = %d",
I_ENTRY_COUNT(ih), from, del_count);
ih_entry_count(ih), from, del_count);
if (del_count == 0)
return 0;
@ -987,22 +1096,24 @@ static int leaf_cut_entries(struct buffer_head *bh,
/* entry head array */
deh = B_I_DEH(bh, ih);
/* first byte of remaining entries, those are BEFORE cut entries
(prev_record) and length of all removed records (cut_records_len) */
/*
* first byte of remaining entries, those are BEFORE cut entries
* (prev_record) and length of all removed records (cut_records_len)
*/
prev_record_offset =
(from ? deh_location(&(deh[from - 1])) : ih_item_len(ih));
(from ? deh_location(&deh[from - 1]) : ih_item_len(ih));
cut_records_len = prev_record_offset /*from_record */ -
deh_location(&(deh[from + del_count - 1]));
deh_location(&deh[from + del_count - 1]);
prev_record = item + prev_record_offset;
/* adjust locations of remaining entries */
for (i = I_ENTRY_COUNT(ih) - 1; i > from + del_count - 1; i--)
put_deh_location(&(deh[i]),
for (i = ih_entry_count(ih) - 1; i > from + del_count - 1; i--)
put_deh_location(&deh[i],
deh_location(&deh[i]) -
(DEH_SIZE * del_count));
for (i = 0; i < from; i++)
put_deh_location(&(deh[i]),
put_deh_location(&deh[i],
deh_location(&deh[i]) - (DEH_SIZE * del_count +
cut_records_len));
@ -1021,13 +1132,14 @@ static int leaf_cut_entries(struct buffer_head *bh,
return DEH_SIZE * del_count + cut_records_len;
}
/* when cut item is part of regular file
pos_in_item - first byte that must be cut
cut_size - number of bytes to be cut beginning from pos_in_item
when cut item is part of directory
pos_in_item - number of first deleted entry
cut_size - count of deleted entries
/*
* when cut item is part of regular file
* pos_in_item - first byte that must be cut
* cut_size - number of bytes to be cut beginning from pos_in_item
*
* when cut item is part of directory
* pos_in_item - number of first deleted entry
* cut_size - count of deleted entries
*/
void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
int pos_in_item, int cut_size)
@ -1043,7 +1155,7 @@ void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
nr = blkh_nr_item(blkh);
/* item head of truncated item */
ih = B_N_PITEM_HEAD(bh, cut_item_num);
ih = item_head(bh, cut_item_num);
if (is_direntry_le_ih(ih)) {
/* first cut entry () */
@ -1055,7 +1167,6 @@ void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
cut_item_num);
/* change item key by key of first entry in the item */
set_le_ih_k_offset(ih, deh_offset(B_I_DEH(bh, ih)));
/*memcpy (&ih->ih_key.k_offset, &(B_I_DEH (bh, ih)->deh_offset), SHORT_KEY_SIZE); */
}
} else {
/* item is direct or indirect */
@ -1089,7 +1200,7 @@ void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
}
/* location of the last item */
last_loc = ih_location(&(ih[nr - cut_item_num - 1]));
last_loc = ih_location(&ih[nr - cut_item_num - 1]);
/* location of the item, which is remaining at the same place */
unmoved_loc = cut_item_num ? ih_location(ih - 1) : bh->b_size;
@ -1108,7 +1219,7 @@ void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
/* change locations */
for (i = cut_item_num; i < nr; i++)
put_ih_location(&(ih[i - cut_item_num]),
put_ih_location(&ih[i - cut_item_num],
ih_location(&ih[i - cut_item_num]) + cut_size);
/* size, free space */
@ -1156,14 +1267,14 @@ static void leaf_delete_items_entirely(struct buffer_info *bi,
return;
}
ih = B_N_PITEM_HEAD(bh, first);
ih = item_head(bh, first);
/* location of unmovable item */
j = (first == 0) ? bh->b_size : ih_location(ih - 1);
/* delete items */
last_loc = ih_location(&(ih[nr - 1 - first]));
last_removed_loc = ih_location(&(ih[del_num - 1]));
last_loc = ih_location(&ih[nr - 1 - first]);
last_removed_loc = ih_location(&ih[del_num - 1]);
memmove(bh->b_data + last_loc + j - last_removed_loc,
bh->b_data + last_loc, last_removed_loc - last_loc);
@ -1173,8 +1284,8 @@ static void leaf_delete_items_entirely(struct buffer_info *bi,
/* change item location */
for (i = first; i < nr - del_num; i++)
put_ih_location(&(ih[i - first]),
ih_location(&(ih[i - first])) + (j -
put_ih_location(&ih[i - first],
ih_location(&ih[i - first]) + (j -
last_removed_loc));
/* sizes, item number */
@ -1195,7 +1306,10 @@ static void leaf_delete_items_entirely(struct buffer_info *bi,
}
}
/* paste new_entry_count entries (new_dehs, records) into position before to item_num-th item */
/*
* paste new_entry_count entries (new_dehs, records) into position
* before to item_num-th item
*/
void leaf_paste_entries(struct buffer_info *bi,
int item_num,
int before,
@ -1213,13 +1327,16 @@ void leaf_paste_entries(struct buffer_info *bi,
if (new_entry_count == 0)
return;
ih = B_N_PITEM_HEAD(bh, item_num);
ih = item_head(bh, item_num);
/* make sure, that item is directory, and there are enough records in it */
/*
* make sure, that item is directory, and there are enough
* records in it
*/
RFALSE(!is_direntry_le_ih(ih), "10225: item is not directory item");
RFALSE(I_ENTRY_COUNT(ih) < before,
RFALSE(ih_entry_count(ih) < before,
"10230: there are no entry we paste entries before. entry_count = %d, before = %d",
I_ENTRY_COUNT(ih), before);
ih_entry_count(ih), before);
/* first byte of dest item */
item = bh->b_data + ih_location(ih);
@ -1230,21 +1347,21 @@ void leaf_paste_entries(struct buffer_info *bi,
/* new records will be pasted at this point */
insert_point =
item +
(before ? deh_location(&(deh[before - 1]))
(before ? deh_location(&deh[before - 1])
: (ih_item_len(ih) - paste_size));
/* adjust locations of records that will be AFTER new records */
for (i = I_ENTRY_COUNT(ih) - 1; i >= before; i--)
put_deh_location(&(deh[i]),
deh_location(&(deh[i])) +
for (i = ih_entry_count(ih) - 1; i >= before; i--)
put_deh_location(&deh[i],
deh_location(&deh[i]) +
(DEH_SIZE * new_entry_count));
/* adjust locations of records that will be BEFORE new records */
for (i = 0; i < before; i++)
put_deh_location(&(deh[i]),
deh_location(&(deh[i])) + paste_size);
put_deh_location(&deh[i],
deh_location(&deh[i]) + paste_size);
old_entry_num = I_ENTRY_COUNT(ih);
old_entry_num = ih_entry_count(ih);
put_ih_entry_count(ih, ih_entry_count(ih) + new_entry_count);
/* prepare space for pasted records */
@ -1266,10 +1383,10 @@ void leaf_paste_entries(struct buffer_info *bi,
/* set locations of new records */
for (i = 0; i < new_entry_count; i++) {
put_deh_location(&(deh[i]),
deh_location(&(deh[i])) +
put_deh_location(&deh[i],
deh_location(&deh[i]) +
(-deh_location
(&(new_dehs[new_entry_count - 1])) +
(&new_dehs[new_entry_count - 1]) +
insert_point + DEH_SIZE * new_entry_count -
item));
}
@ -1277,28 +1394,26 @@ void leaf_paste_entries(struct buffer_info *bi,
/* change item key if necessary (when we paste before 0-th entry */
if (!before) {
set_le_ih_k_offset(ih, deh_offset(new_dehs));
/* memcpy (&ih->ih_key.k_offset,
&new_dehs->deh_offset, SHORT_KEY_SIZE);*/
}
#ifdef CONFIG_REISERFS_CHECK
{
int prev, next;
/* check record locations */
deh = B_I_DEH(bh, ih);
for (i = 0; i < I_ENTRY_COUNT(ih); i++) {
for (i = 0; i < ih_entry_count(ih); i++) {
next =
(i <
I_ENTRY_COUNT(ih) -
1) ? deh_location(&(deh[i + 1])) : 0;
prev = (i != 0) ? deh_location(&(deh[i - 1])) : 0;
ih_entry_count(ih) -
1) ? deh_location(&deh[i + 1]) : 0;
prev = (i != 0) ? deh_location(&deh[i - 1]) : 0;
if (prev && prev <= deh_location(&(deh[i])))
if (prev && prev <= deh_location(&deh[i]))
reiserfs_error(sb_from_bi(bi), "vs-10240",
"directory item (%h) "
"corrupted (prev %a, "
"cur(%d) %a)",
ih, deh + i - 1, i, deh + i);
if (next && next >= deh_location(&(deh[i])))
if (next && next >= deh_location(&deh[i]))
reiserfs_error(sb_from_bi(bi), "vs-10250",
"directory item (%h) "
"corrupted (cur(%d) %a, "

File diff suppressed because it is too large Load Diff

View File

@ -7,7 +7,7 @@
#include <linux/time.h>
#include "reiserfs.h"
// find where objectid map starts
/* find where objectid map starts */
#define objectid_map(s,rs) (old_format_only (s) ? \
(__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
(__le32 *)((rs) + 1))
@ -20,7 +20,7 @@ static void check_objectid_map(struct super_block *s, __le32 * map)
reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
(long unsigned int)le32_to_cpu(map[0]));
// FIXME: add something else here
/* FIXME: add something else here */
}
#else
@ -29,19 +29,21 @@ static void check_objectid_map(struct super_block *s, __le32 * map)
}
#endif
/* When we allocate objectids we allocate the first unused objectid.
Each sequence of objectids in use (the odd sequences) is followed
by a sequence of objectids not in use (the even sequences). We
only need to record the last objectid in each of these sequences
(both the odd and even sequences) in order to fully define the
boundaries of the sequences. A consequence of allocating the first
objectid not in use is that under most conditions this scheme is
extremely compact. The exception is immediately after a sequence
of operations which deletes a large number of objects of
non-sequential objectids, and even then it will become compact
again as soon as more objects are created. Note that many
interesting optimizations of layout could result from complicating
objectid assignment, but we have deferred making them for now. */
/*
* When we allocate objectids we allocate the first unused objectid.
* Each sequence of objectids in use (the odd sequences) is followed
* by a sequence of objectids not in use (the even sequences). We
* only need to record the last objectid in each of these sequences
* (both the odd and even sequences) in order to fully define the
* boundaries of the sequences. A consequence of allocating the first
* objectid not in use is that under most conditions this scheme is
* extremely compact. The exception is immediately after a sequence
* of operations which deletes a large number of objects of
* non-sequential objectids, and even then it will become compact
* again as soon as more objects are created. Note that many
* interesting optimizations of layout could result from complicating
* objectid assignment, but we have deferred making them for now.
*/
/* get unique object identifier */
__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
@ -64,26 +66,30 @@ __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
return 0;
}
/* This incrementation allocates the first unused objectid. That
is to say, the first entry on the objectid map is the first
unused objectid, and by incrementing it we use it. See below
where we check to see if we eliminated a sequence of unused
objectids.... */
/*
* This incrementation allocates the first unused objectid. That
* is to say, the first entry on the objectid map is the first
* unused objectid, and by incrementing it we use it. See below
* where we check to see if we eliminated a sequence of unused
* objectids....
*/
map[1] = cpu_to_le32(unused_objectid + 1);
/* Now we check to see if we eliminated the last remaining member of
the first even sequence (and can eliminate the sequence by
eliminating its last objectid from oids), and can collapse the
first two odd sequences into one sequence. If so, then the net
result is to eliminate a pair of objectids from oids. We do this
by shifting the entire map to the left. */
/*
* Now we check to see if we eliminated the last remaining member of
* the first even sequence (and can eliminate the sequence by
* eliminating its last objectid from oids), and can collapse the
* first two odd sequences into one sequence. If so, then the net
* result is to eliminate a pair of objectids from oids. We do this
* by shifting the entire map to the left.
*/
if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
memmove(map + 1, map + 3,
(sb_oid_cursize(rs) - 3) * sizeof(__u32));
set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
}
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
return unused_objectid;
}
@ -97,30 +103,33 @@ void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
int i = 0;
BUG_ON(!th->t_trans_id);
//return;
/*return; */
check_objectid_map(s, map);
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
/* start at the beginning of the objectid map (i = 0) and go to
the end of it (i = disk_sb->s_oid_cursize). Linear search is
what we use, though it is possible that binary search would be
more efficient after performing lots of deletions (which is
when oids is large.) We only check even i's. */
/*
* start at the beginning of the objectid map (i = 0) and go to
* the end of it (i = disk_sb->s_oid_cursize). Linear search is
* what we use, though it is possible that binary search would be
* more efficient after performing lots of deletions (which is
* when oids is large.) We only check even i's.
*/
while (i < sb_oid_cursize(rs)) {
if (objectid_to_release == le32_to_cpu(map[i])) {
/* This incrementation unallocates the objectid. */
//map[i]++;
le32_add_cpu(&map[i], 1);
/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
/*
* Did we unallocate the last member of an
* odd sequence, and can shrink oids?
*/
if (map[i] == map[i + 1]) {
/* shrink objectid map */
memmove(map + i, map + i + 2,
(sb_oid_cursize(rs) - i -
2) * sizeof(__u32));
//disk_sb->s_oid_cursize -= 2;
set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
RFALSE(sb_oid_cursize(rs) < 2 ||
@ -135,14 +144,19 @@ void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
objectid_to_release < le32_to_cpu(map[i + 1])) {
/* size of objectid map is not changed */
if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
//objectid_map[i+1]--;
le32_add_cpu(&map[i + 1], -1);
return;
}
/* JDM comparing two little-endian values for equality -- safe */
/*
* JDM comparing two little-endian values for
* equality -- safe
*/
/*
* objectid map must be expanded, but
* there is no space
*/
if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
/* objectid map must be expanded, but there is no space */
PROC_INFO_INC(s, leaked_oid);
return;
}
@ -178,8 +192,9 @@ int reiserfs_convert_objectid_map_v1(struct super_block *s)
new_objectid_map = (__le32 *) (disk_sb + 1);
if (cur_size > new_size) {
/* mark everyone used that was listed as free at the end of the objectid
** map
/*
* mark everyone used that was listed as free at
* the end of the objectid map
*/
objectid_map[new_size - 1] = objectid_map[cur_size - 1];
set_sb_oid_cursize(disk_sb, new_size);

View File

@ -172,18 +172,19 @@ static char *is_there_reiserfs_struct(char *fmt, int *what)
return k;
}
/* debugging reiserfs we used to print out a lot of different
variables, like keys, item headers, buffer heads etc. Values of
most fields matter. So it took a long time just to write
appropriative printk. With this reiserfs_warning you can use format
specification for complex structures like you used to do with
printfs for integers, doubles and pointers. For instance, to print
out key structure you have to write just:
reiserfs_warning ("bad key %k", key);
instead of
printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid,
key->k_offset, key->k_uniqueness);
*/
/*
* debugging reiserfs we used to print out a lot of different
* variables, like keys, item headers, buffer heads etc. Values of
* most fields matter. So it took a long time just to write
* appropriative printk. With this reiserfs_warning you can use format
* specification for complex structures like you used to do with
* printfs for integers, doubles and pointers. For instance, to print
* out key structure you have to write just:
* reiserfs_warning ("bad key %k", key);
* instead of
* printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid,
* key->k_offset, key->k_uniqueness);
*/
static DEFINE_SPINLOCK(error_lock);
static void prepare_error_buf(const char *fmt, va_list args)
{
@ -243,15 +244,16 @@ static void prepare_error_buf(const char *fmt, va_list args)
}
/* in addition to usual conversion specifiers this accepts reiserfs
specific conversion specifiers:
%k to print little endian key,
%K to print cpu key,
%h to print item_head,
%t to print directory entry
%z to print block head (arg must be struct buffer_head *
%b to print buffer_head
*/
/*
* in addition to usual conversion specifiers this accepts reiserfs
* specific conversion specifiers:
* %k to print little endian key,
* %K to print cpu key,
* %h to print item_head,
* %t to print directory entry
* %z to print block head (arg must be struct buffer_head *
* %b to print buffer_head
*/
#define do_reiserfs_warning(fmt)\
{\
@ -304,50 +306,52 @@ void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...)
#endif
}
/* The format:
maintainer-errorid: [function-name:] message
where errorid is unique to the maintainer and function-name is
optional, is recommended, so that anyone can easily find the bug
with a simple grep for the short to type string
maintainer-errorid. Don't bother with reusing errorids, there are
lots of numbers out there.
Example:
reiserfs_panic(
p_sb, "reiser-29: reiserfs_new_blocknrs: "
"one of search_start or rn(%d) is equal to MAX_B_NUM,"
"which means that we are optimizing location based on the bogus location of a temp buffer (%p).",
rn, bh
);
Regular panic()s sometimes clear the screen before the message can
be read, thus the need for the while loop.
Numbering scheme for panic used by Vladimir and Anatoly( Hans completely ignores this scheme, and considers it
pointless complexity):
panics in reiserfs.h have numbers from 1000 to 1999
super.c 2000 to 2999
preserve.c (unused) 3000 to 3999
bitmap.c 4000 to 4999
stree.c 5000 to 5999
prints.c 6000 to 6999
namei.c 7000 to 7999
fix_nodes.c 8000 to 8999
dir.c 9000 to 9999
lbalance.c 10000 to 10999
ibalance.c 11000 to 11999 not ready
do_balan.c 12000 to 12999
inode.c 13000 to 13999
file.c 14000 to 14999
objectid.c 15000 - 15999
buffer.c 16000 - 16999
symlink.c 17000 - 17999
. */
/*
* The format:
*
* maintainer-errorid: [function-name:] message
*
* where errorid is unique to the maintainer and function-name is
* optional, is recommended, so that anyone can easily find the bug
* with a simple grep for the short to type string
* maintainer-errorid. Don't bother with reusing errorids, there are
* lots of numbers out there.
*
* Example:
*
* reiserfs_panic(
* p_sb, "reiser-29: reiserfs_new_blocknrs: "
* "one of search_start or rn(%d) is equal to MAX_B_NUM,"
* "which means that we are optimizing location based on the "
* "bogus location of a temp buffer (%p).",
* rn, bh
* );
*
* Regular panic()s sometimes clear the screen before the message can
* be read, thus the need for the while loop.
*
* Numbering scheme for panic used by Vladimir and Anatoly( Hans completely
* ignores this scheme, and considers it pointless complexity):
*
* panics in reiserfs_fs.h have numbers from 1000 to 1999
* super.c 2000 to 2999
* preserve.c (unused) 3000 to 3999
* bitmap.c 4000 to 4999
* stree.c 5000 to 5999
* prints.c 6000 to 6999
* namei.c 7000 to 7999
* fix_nodes.c 8000 to 8999
* dir.c 9000 to 9999
* lbalance.c 10000 to 10999
* ibalance.c 11000 to 11999 not ready
* do_balan.c 12000 to 12999
* inode.c 13000 to 13999
* file.c 14000 to 14999
* objectid.c 15000 - 15999
* buffer.c 16000 - 16999
* symlink.c 17000 - 17999
*
* . */
void __reiserfs_panic(struct super_block *sb, const char *id,
const char *function, const char *fmt, ...)
@ -411,9 +415,11 @@ void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...)
reiserfs_abort_journal(sb, errno);
}
/* this prints internal nodes (4 keys/items in line) (dc_number,
dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number,
dc_size)...*/
/*
* this prints internal nodes (4 keys/items in line) (dc_number,
* dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number,
* dc_size)...
*/
static int print_internal(struct buffer_head *bh, int first, int last)
{
struct reiserfs_key *key;
@ -439,7 +445,7 @@ static int print_internal(struct buffer_head *bh, int first, int last)
dc = B_N_CHILD(bh, from);
reiserfs_printk("PTR %d: %y ", from, dc);
for (i = from, key = B_N_PDELIM_KEY(bh, from), dc++; i < to;
for (i = from, key = internal_key(bh, from), dc++; i < to;
i++, key++, dc++) {
reiserfs_printk("KEY %d: %k PTR %d: %y ", i, key, i + 1, dc);
if (i && i % 4 == 0)
@ -463,7 +469,7 @@ static int print_leaf(struct buffer_head *bh, int print_mode, int first,
check_leaf(bh);
blkh = B_BLK_HEAD(bh);
ih = B_N_PITEM_HEAD(bh, 0);
ih = item_head(bh, 0);
nr = blkh_nr_item(blkh);
printk
@ -496,7 +502,7 @@ static int print_leaf(struct buffer_head *bh, int print_mode, int first,
("-------------------------------------------------------------------------------\n");
reiserfs_printk("|%2d| %h |\n", i, ih);
if (print_mode & PRINT_LEAF_ITEMS)
op_print_item(ih, B_I_PITEM(bh, ih));
op_print_item(ih, ih_item_body(bh, ih));
}
printk
@ -543,9 +549,11 @@ static int print_super_block(struct buffer_head *bh)
printk("Block count %u\n", sb_block_count(rs));
printk("Blocksize %d\n", sb_blocksize(rs));
printk("Free blocks %u\n", sb_free_blocks(rs));
// FIXME: this would be confusing if
// someone stores reiserfs super block in some data block ;)
/*
* FIXME: this would be confusing if
* someone stores reiserfs super block in some data block ;)
// skipped = (bh->b_blocknr * bh->b_size) / sb_blocksize(rs);
*/
skipped = bh->b_blocknr;
data_blocks = sb_block_count(rs) - skipped - 1 - sb_bmap_nr(rs) -
(!is_reiserfs_jr(rs) ? sb_jp_journal_size(rs) +
@ -581,8 +589,8 @@ static int print_desc_block(struct buffer_head *bh)
return 0;
}
void print_block(struct buffer_head *bh, ...) //int print_mode, int first, int last)
/* ..., int print_mode, int first, int last) */
void print_block(struct buffer_head *bh, ...)
{
va_list args;
int mode, first, last;
@ -644,11 +652,11 @@ void store_print_tb(struct tree_balance *tb)
"* %d * %3lld(%2d) * %3lld(%2d) * %3lld(%2d) * %5lld * %5lld * %5lld * %5lld * %5lld *\n",
h,
(tbSh) ? (long long)(tbSh->b_blocknr) : (-1LL),
(tbSh) ? atomic_read(&(tbSh->b_count)) : -1,
(tbSh) ? atomic_read(&tbSh->b_count) : -1,
(tb->L[h]) ? (long long)(tb->L[h]->b_blocknr) : (-1LL),
(tb->L[h]) ? atomic_read(&(tb->L[h]->b_count)) : -1,
(tb->L[h]) ? atomic_read(&tb->L[h]->b_count) : -1,
(tb->R[h]) ? (long long)(tb->R[h]->b_blocknr) : (-1LL),
(tb->R[h]) ? atomic_read(&(tb->R[h]->b_count)) : -1,
(tb->R[h]) ? atomic_read(&tb->R[h]->b_count) : -1,
(tbFh) ? (long long)(tbFh->b_blocknr) : (-1LL),
(tb->FL[h]) ? (long long)(tb->FL[h]->
b_blocknr) : (-1LL),
@ -665,9 +673,9 @@ void store_print_tb(struct tree_balance *tb)
"* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n"
"* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n",
tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0],
tb->rbytes, tb->blknum[0], tb->s0num, tb->s1num, tb->s1bytes,
tb->s2num, tb->s2bytes, tb->cur_blknum, tb->lkey[0],
tb->rkey[0]);
tb->rbytes, tb->blknum[0], tb->s0num, tb->snum[0],
tb->sbytes[0], tb->snum[1], tb->sbytes[1],
tb->cur_blknum, tb->lkey[0], tb->rkey[0]);
/* this prints balance parameters for non-leaf levels */
h = 0;
@ -690,7 +698,7 @@ void store_print_tb(struct tree_balance *tb)
"%p (%llu %d)%s", tb->FEB[i],
tb->FEB[i] ? (unsigned long long)tb->FEB[i]->
b_blocknr : 0ULL,
tb->FEB[i] ? atomic_read(&(tb->FEB[i]->b_count)) : 0,
tb->FEB[i] ? atomic_read(&tb->FEB[i]->b_count) : 0,
(i == ARRAY_SIZE(tb->FEB) - 1) ? "\n" : ", ");
sprintf(print_tb_buf + strlen(print_tb_buf),
@ -744,8 +752,8 @@ void check_leaf(struct buffer_head *bh)
if (!bh)
return;
check_leaf_block_head(bh);
for (i = 0, ih = B_N_PITEM_HEAD(bh, 0); i < B_NR_ITEMS(bh); i++, ih++)
op_check_item(ih, B_I_PITEM(bh, ih));
for (i = 0, ih = item_head(bh, 0); i < B_NR_ITEMS(bh); i++, ih++)
op_check_item(ih, ih_item_body(bh, ih));
}
void check_internal(struct buffer_head *bh)

File diff suppressed because it is too large Load Diff

View File

@ -53,8 +53,10 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
}
bforget(bh);
/* old disk layout detection; those partitions can be mounted, but
* cannot be resized */
/*
* old disk layout detection; those partitions can be mounted, but
* cannot be resized
*/
if (SB_BUFFER_WITH_SB(s)->b_blocknr * SB_BUFFER_WITH_SB(s)->b_size
!= REISERFS_DISK_OFFSET_IN_BYTES) {
printk
@ -86,12 +88,14 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
("reiserfs_resize: unable to allocate memory for journal bitmaps\n");
return -ENOMEM;
}
/* the new journal bitmaps are zero filled, now we copy in the bitmap
** node pointers from the old journal bitmap structs, and then
** transfer the new data structures into the journal struct.
**
** using the copy_size var below allows this code to work for
** both shrinking and expanding the FS.
/*
* the new journal bitmaps are zero filled, now we copy i
* the bitmap node pointers from the old journal bitmap
* structs, and then transfer the new data structures
* into the journal struct.
*
* using the copy_size var below allows this code to work for
* both shrinking and expanding the FS.
*/
copy_size = bmap_nr_new < bmap_nr ? bmap_nr_new : bmap_nr;
copy_size =
@ -101,36 +105,45 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
jb = SB_JOURNAL(s)->j_list_bitmap + i;
memcpy(jbitmap[i].bitmaps, jb->bitmaps, copy_size);
/* just in case vfree schedules on us, copy the new
** pointer into the journal struct before freeing the
** old one
/*
* just in case vfree schedules on us, copy the new
* pointer into the journal struct before freeing the
* old one
*/
node_tmp = jb->bitmaps;
jb->bitmaps = jbitmap[i].bitmaps;
vfree(node_tmp);
}
/* allocate additional bitmap blocks, reallocate array of bitmap
* block pointers */
/*
* allocate additional bitmap blocks, reallocate
* array of bitmap block pointers
*/
bitmap =
vzalloc(sizeof(struct reiserfs_bitmap_info) * bmap_nr_new);
if (!bitmap) {
/* Journal bitmaps are still supersized, but the memory isn't
* leaked, so I guess it's ok */
/*
* Journal bitmaps are still supersized, but the
* memory isn't leaked, so I guess it's ok
*/
printk("reiserfs_resize: unable to allocate memory.\n");
return -ENOMEM;
}
for (i = 0; i < bmap_nr; i++)
bitmap[i] = old_bitmap[i];
/* This doesn't go through the journal, but it doesn't have to.
* The changes are still atomic: We're synced up when the journal
* transaction begins, and the new bitmaps don't matter if the
* transaction fails. */
/*
* This doesn't go through the journal, but it doesn't have to.
* The changes are still atomic: We're synced up when the
* journal transaction begins, and the new bitmaps don't
* matter if the transaction fails.
*/
for (i = bmap_nr; i < bmap_nr_new; i++) {
int depth;
/* don't use read_bitmap_block since it will cache
* the uninitialized bitmap */
/*
* don't use read_bitmap_block since it will cache
* the uninitialized bitmap
*/
depth = reiserfs_write_unlock_nested(s);
bh = sb_bread(s, i * s->s_blocksize * 8);
reiserfs_write_lock_nested(s, depth);
@ -147,7 +160,7 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
depth = reiserfs_write_unlock_nested(s);
sync_dirty_buffer(bh);
reiserfs_write_lock_nested(s, depth);
// update bitmap_info stuff
/* update bitmap_info stuff */
bitmap[i].free_count = sb_blocksize(sb) * 8 - 1;
brelse(bh);
}
@ -156,9 +169,11 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
vfree(old_bitmap);
}
/* begin transaction, if there was an error, it's fine. Yes, we have
/*
* begin transaction, if there was an error, it's fine. Yes, we have
* incorrect bitmaps now, but none of it is ever going to touch the
* disk anyway. */
* disk anyway.
*/
err = journal_begin(&th, s, 10);
if (err)
return err;
@ -167,7 +182,7 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
info = SB_AP_BITMAP(s) + bmap_nr - 1;
bh = reiserfs_read_bitmap_block(s, bmap_nr - 1);
if (!bh) {
int jerr = journal_end(&th, s, 10);
int jerr = journal_end(&th);
if (jerr)
return jerr;
return -EIO;
@ -178,14 +193,14 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
reiserfs_clear_le_bit(i, bh->b_data);
info->free_count += s->s_blocksize * 8 - block_r;
journal_mark_dirty(&th, s, bh);
journal_mark_dirty(&th, bh);
brelse(bh);
/* Correct new last bitmap block - It may not be full */
info = SB_AP_BITMAP(s) + bmap_nr_new - 1;
bh = reiserfs_read_bitmap_block(s, bmap_nr_new - 1);
if (!bh) {
int jerr = journal_end(&th, s, 10);
int jerr = journal_end(&th);
if (jerr)
return jerr;
return -EIO;
@ -194,7 +209,7 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
reiserfs_prepare_for_journal(s, bh, 1);
for (i = block_r_new; i < s->s_blocksize * 8; i++)
reiserfs_set_le_bit(i, bh->b_data);
journal_mark_dirty(&th, s, bh);
journal_mark_dirty(&th, bh);
brelse(bh);
info->free_count -= s->s_blocksize * 8 - block_r_new;
@ -207,8 +222,8 @@ int reiserfs_resize(struct super_block *s, unsigned long block_count_new)
PUT_SB_BLOCK_COUNT(s, block_count_new);
PUT_SB_BMAP_NR(s, bmap_would_wrap(bmap_nr_new) ? : bmap_nr_new);
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
SB_JOURNAL(s)->j_must_wait = 1;
return journal_end(&th, s, 10);
return journal_end(&th);
}

File diff suppressed because it is too large Load Diff

View File

@ -74,7 +74,7 @@ static int reiserfs_sync_fs(struct super_block *s, int wait)
dquot_writeback_dquots(s, -1);
reiserfs_write_lock(s);
if (!journal_begin(&th, s, 1))
if (!journal_end_sync(&th, s, 1))
if (!journal_end_sync(&th))
reiserfs_flush_old_commits(s);
reiserfs_write_unlock(s);
return 0;
@ -136,9 +136,9 @@ static int reiserfs_freeze(struct super_block *s)
} else {
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s),
1);
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
reiserfs_block_writes(&th);
journal_end_sync(&th, s, 1);
journal_end_sync(&th);
}
}
reiserfs_write_unlock(s);
@ -153,13 +153,15 @@ static int reiserfs_unfreeze(struct super_block *s)
extern const struct in_core_key MAX_IN_CORE_KEY;
/* this is used to delete "save link" when there are no items of a
file it points to. It can either happen if unlink is completed but
"save unlink" removal, or if file has both unlink and truncate
pending and as unlink completes first (because key of "save link"
protecting unlink is bigger that a key lf "save link" which
protects truncate), so there left no items to make truncate
completion on */
/*
* this is used to delete "save link" when there are no items of a
* file it points to. It can either happen if unlink is completed but
* "save unlink" removal, or if file has both unlink and truncate
* pending and as unlink completes first (because key of "save link"
* protecting unlink is bigger that a key lf "save link" which
* protects truncate), so there left no items to make truncate
* completion on
*/
static int remove_save_link_only(struct super_block *s,
struct reiserfs_key *key, int oid_free)
{
@ -176,7 +178,7 @@ static int remove_save_link_only(struct super_block *s,
/* removals are protected by direct items */
reiserfs_release_objectid(&th, le32_to_cpu(key->k_objectid));
return journal_end(&th, s, JOURNAL_PER_BALANCE_CNT);
return journal_end(&th);
}
#ifdef CONFIG_QUOTA
@ -258,7 +260,7 @@ static int finish_unfinished(struct super_block *s)
break;
}
item_pos--;
ih = B_N_PITEM_HEAD(bh, item_pos);
ih = item_head(bh, item_pos);
if (le32_to_cpu(ih->ih_key.k_dir_id) != MAX_KEY_OBJECTID)
/* there are no "save" links anymore */
@ -271,7 +273,7 @@ static int finish_unfinished(struct super_block *s)
truncate = 0;
/* reiserfs_iget needs k_dirid and k_objectid only */
item = B_I_PITEM(bh, ih);
item = ih_item_body(bh, ih);
obj_key.on_disk_key.k_dir_id = le32_to_cpu(*(__le32 *) item);
obj_key.on_disk_key.k_objectid =
le32_to_cpu(ih->ih_key.k_objectid);
@ -282,8 +284,10 @@ static int finish_unfinished(struct super_block *s)
inode = reiserfs_iget(s, &obj_key);
if (!inode) {
/* the unlink almost completed, it just did not manage to remove
"save" link and release objectid */
/*
* the unlink almost completed, it just did not
* manage to remove "save" link and release objectid
*/
reiserfs_warning(s, "vs-2180", "iget failed for %K",
&obj_key);
retval = remove_save_link_only(s, &save_link_key, 1);
@ -303,10 +307,13 @@ static int finish_unfinished(struct super_block *s)
reiserfs_write_lock_nested(inode->i_sb, depth);
if (truncate && S_ISDIR(inode->i_mode)) {
/* We got a truncate request for a dir which is impossible.
The only imaginable way is to execute unfinished truncate request
then boot into old kernel, remove the file and create dir with
the same key. */
/*
* We got a truncate request for a dir which
* is impossible. The only imaginable way is to
* execute unfinished truncate request then boot
* into old kernel, remove the file and create dir
* with the same key.
*/
reiserfs_warning(s, "green-2101",
"impossible truncate on a "
"directory %k. Please report",
@ -320,14 +327,16 @@ static int finish_unfinished(struct super_block *s)
if (truncate) {
REISERFS_I(inode)->i_flags |=
i_link_saved_truncate_mask;
/* not completed truncate found. New size was committed together
with "save" link */
/*
* not completed truncate found. New size was
* committed together with "save" link
*/
reiserfs_info(s, "Truncating %k to %Ld ..",
INODE_PKEY(inode), inode->i_size);
reiserfs_truncate_file(inode,
0
/*don't update modification time */
);
/* don't update modification time */
reiserfs_truncate_file(inode, 0);
retval = remove_save_link(inode, truncate);
} else {
REISERFS_I(inode)->i_flags |= i_link_saved_unlink_mask;
@ -373,10 +382,12 @@ static int finish_unfinished(struct super_block *s)
return retval;
}
/* to protect file being unlinked from getting lost we "safe" link files
being unlinked. This link will be deleted in the same transaction with last
item of file. mounting the filesystem we scan all these links and remove
files which almost got lost */
/*
* to protect file being unlinked from getting lost we "safe" link files
* being unlinked. This link will be deleted in the same transaction with last
* item of file. mounting the filesystem we scan all these links and remove
* files which almost got lost
*/
void add_save_link(struct reiserfs_transaction_handle *th,
struct inode *inode, int truncate)
{
@ -495,7 +506,7 @@ int remove_save_link(struct inode *inode, int truncate)
} else
REISERFS_I(inode)->i_flags &= ~i_link_saved_truncate_mask;
return journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT);
return journal_end(&th);
}
static void reiserfs_kill_sb(struct super_block *s)
@ -530,19 +541,23 @@ static void reiserfs_put_super(struct super_block *s)
reiserfs_write_lock(s);
/* change file system state to current state if it was mounted with read-write permissions */
/*
* change file system state to current state if it was mounted
* with read-write permissions
*/
if (!(s->s_flags & MS_RDONLY)) {
if (!journal_begin(&th, s, 10)) {
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s),
1);
set_sb_umount_state(SB_DISK_SUPER_BLOCK(s),
REISERFS_SB(s)->s_mount_state);
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
}
}
/* note, journal_release checks for readonly mount, and can decide not
** to do a journal_end
/*
* note, journal_release checks for readonly mount, and can
* decide not to do a journal_end
*/
journal_release(&th, s);
@ -559,6 +574,7 @@ static void reiserfs_put_super(struct super_block *s)
reiserfs_write_unlock(s);
mutex_destroy(&REISERFS_SB(s)->lock);
destroy_workqueue(REISERFS_SB(s)->commit_wq);
kfree(s->s_fs_info);
s->s_fs_info = NULL;
}
@ -634,15 +650,16 @@ static void reiserfs_dirty_inode(struct inode *inode, int flags)
}
reiserfs_write_lock(inode->i_sb);
/* this is really only used for atime updates, so they don't have
** to be included in O_SYNC or fsync
/*
* this is really only used for atime updates, so they don't have
* to be included in O_SYNC or fsync
*/
err = journal_begin(&th, inode->i_sb, 1);
if (err)
goto out;
reiserfs_update_sd(&th, inode);
journal_end(&th, inode->i_sb, 1);
journal_end(&th);
out:
reiserfs_write_unlock(inode->i_sb);
@ -788,31 +805,53 @@ static const struct export_operations reiserfs_export_ops = {
.get_parent = reiserfs_get_parent,
};
/* this struct is used in reiserfs_getopt () for containing the value for those
mount options that have values rather than being toggles. */
/*
* this struct is used in reiserfs_getopt () for containing the value for
* those mount options that have values rather than being toggles.
*/
typedef struct {
char *value;
int setmask; /* bitmask which is to set on mount_options bitmask when this
value is found, 0 is no bits are to be changed. */
int clrmask; /* bitmask which is to clear on mount_options bitmask when this
value is found, 0 is no bits are to be changed. This is
applied BEFORE setmask */
/*
* bitmask which is to set on mount_options bitmask
* when this value is found, 0 is no bits are to be changed.
*/
int setmask;
/*
* bitmask which is to clear on mount_options bitmask
* when this value is found, 0 is no bits are to be changed.
* This is applied BEFORE setmask
*/
int clrmask;
} arg_desc_t;
/* Set this bit in arg_required to allow empty arguments */
#define REISERFS_OPT_ALLOWEMPTY 31
/* this struct is used in reiserfs_getopt() for describing the set of reiserfs
mount options */
/*
* this struct is used in reiserfs_getopt() for describing the
* set of reiserfs mount options
*/
typedef struct {
char *option_name;
int arg_required; /* 0 if argument is not required, not 0 otherwise */
const arg_desc_t *values; /* list of values accepted by an option */
int setmask; /* bitmask which is to set on mount_options bitmask when this
value is found, 0 is no bits are to be changed. */
int clrmask; /* bitmask which is to clear on mount_options bitmask when this
value is found, 0 is no bits are to be changed. This is
applied BEFORE setmask */
/* 0 if argument is not required, not 0 otherwise */
int arg_required;
/* list of values accepted by an option */
const arg_desc_t *values;
/*
* bitmask which is to set on mount_options bitmask
* when this value is found, 0 is no bits are to be changed.
*/
int setmask;
/*
* bitmask which is to clear on mount_options bitmask
* when this value is found, 0 is no bits are to be changed.
* This is applied BEFORE setmask
*/
int clrmask;
} opt_desc_t;
/* possible values for -o data= */
@ -833,8 +872,10 @@ static const arg_desc_t barrier_mode[] = {
{.value = NULL}
};
/* possible values for "-o block-allocator=" and bits which are to be set in
s_mount_opt of reiserfs specific part of in-core super block */
/*
* possible values for "-o block-allocator=" and bits which are to be set in
* s_mount_opt of reiserfs specific part of in-core super block
*/
static const arg_desc_t balloc[] = {
{"noborder", 1 << REISERFS_NO_BORDER, 0},
{"border", 0, 1 << REISERFS_NO_BORDER},
@ -864,21 +905,25 @@ static const arg_desc_t error_actions[] = {
{NULL, 0, 0},
};
/* proceed only one option from a list *cur - string containing of mount options
opts - array of options which are accepted
opt_arg - if option is found and requires an argument and if it is specifed
in the input - pointer to the argument is stored here
bit_flags - if option requires to set a certain bit - it is set here
return -1 if unknown option is found, opt->arg_required otherwise */
/*
* proceed only one option from a list *cur - string containing of mount
* options
* opts - array of options which are accepted
* opt_arg - if option is found and requires an argument and if it is specifed
* in the input - pointer to the argument is stored here
* bit_flags - if option requires to set a certain bit - it is set here
* return -1 if unknown option is found, opt->arg_required otherwise
*/
static int reiserfs_getopt(struct super_block *s, char **cur, opt_desc_t * opts,
char **opt_arg, unsigned long *bit_flags)
{
char *p;
/* foo=bar,
^ ^ ^
| | +-- option_end
| +-- arg_start
+-- option_start
/*
* foo=bar,
* ^ ^ ^
* | | +-- option_end
* | +-- arg_start
* +-- option_start
*/
const opt_desc_t *opt;
const arg_desc_t *arg;
@ -893,9 +938,12 @@ static int reiserfs_getopt(struct super_block *s, char **cur, opt_desc_t * opts,
}
if (!strncmp(p, "alloc=", 6)) {
/* Ugly special case, probably we should redo options parser so that
it can understand several arguments for some options, also so that
it can fill several bitfields with option values. */
/*
* Ugly special case, probably we should redo options
* parser so that it can understand several arguments for
* some options, also so that it can fill several bitfields
* with option values.
*/
if (reiserfs_parse_alloc_options(s, p + 6)) {
return -1;
} else {
@ -958,7 +1006,10 @@ static int reiserfs_getopt(struct super_block *s, char **cur, opt_desc_t * opts,
return -1;
}
/* move to the argument, or to next option if argument is not required */
/*
* move to the argument, or to next option if argument is not
* required
*/
p++;
if (opt->arg_required
@ -995,12 +1046,20 @@ static int reiserfs_getopt(struct super_block *s, char **cur, opt_desc_t * opts,
}
/* returns 0 if something is wrong in option string, 1 - otherwise */
static int reiserfs_parse_options(struct super_block *s, char *options, /* string given via mount's -o */
static int reiserfs_parse_options(struct super_block *s,
/* string given via mount's -o */
char *options,
/*
* after the parsing phase, contains the
* collection of bitflags defining what
* mount options were selected.
*/
unsigned long *mount_options,
/* after the parsing phase, contains the
collection of bitflags defining what
mount options were selected. */
unsigned long *blocks, /* strtol-ed from NNN of resize=NNN */
/* strtol-ed from NNN of resize=NNN */
unsigned long *blocks,
char **jdev_name,
unsigned int *commit_max_age,
char **qf_names,
@ -1010,7 +1069,10 @@ static int reiserfs_parse_options(struct super_block *s, char *options, /* strin
char *arg = NULL;
char *pos;
opt_desc_t opts[] = {
/* Compatibility stuff, so that -o notail for old setups still work */
/*
* Compatibility stuff, so that -o notail for old
* setups still work
*/
{"tails",.arg_required = 't',.values = tails},
{"notail",.clrmask =
(1 << REISERFS_LARGETAIL) | (1 << REISERFS_SMALLTAIL)},
@ -1055,8 +1117,10 @@ static int reiserfs_parse_options(struct super_block *s, char *options, /* strin
*blocks = 0;
if (!options || !*options)
/* use default configuration: create tails, journaling on, no
conversion to newest format */
/*
* use default configuration: create tails, journaling on, no
* conversion to newest format
*/
return 1;
for (pos = options; pos;) {
@ -1109,7 +1173,8 @@ static int reiserfs_parse_options(struct super_block *s, char *options, /* strin
if (c == 'j') {
if (arg && *arg && jdev_name) {
if (*jdev_name) { //Hm, already assigned?
/* Hm, already assigned? */
if (*jdev_name) {
reiserfs_warning(s, "super-6510",
"journal device was "
"already specified to "
@ -1362,8 +1427,10 @@ static int reiserfs_remount(struct super_block *s, int *mount_flags, char *arg)
safe_mask |= 1 << REISERFS_USRQUOTA;
safe_mask |= 1 << REISERFS_GRPQUOTA;
/* Update the bitmask, taking care to keep
* the bits we're not allowed to change here */
/*
* Update the bitmask, taking care to keep
* the bits we're not allowed to change here
*/
REISERFS_SB(s)->s_mount_opt =
(REISERFS_SB(s)->
s_mount_opt & ~safe_mask) | (mount_options & safe_mask);
@ -1410,7 +1477,7 @@ static int reiserfs_remount(struct super_block *s, int *mount_flags, char *arg)
/* Mounting a rw partition read-only. */
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
set_sb_umount_state(rs, REISERFS_SB(s)->s_mount_state);
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
} else {
/* remount read-write */
if (!(s->s_flags & MS_RDONLY)) {
@ -1427,7 +1494,9 @@ static int reiserfs_remount(struct super_block *s, int *mount_flags, char *arg)
handle_data_mode(s, mount_options);
handle_barrier_mode(s, mount_options);
REISERFS_SB(s)->s_mount_state = sb_umount_state(rs);
s->s_flags &= ~MS_RDONLY; /* now it is safe to call journal_begin */
/* now it is safe to call journal_begin */
s->s_flags &= ~MS_RDONLY;
err = journal_begin(&th, s, 10);
if (err)
goto out_err_unlock;
@ -1440,12 +1509,12 @@ static int reiserfs_remount(struct super_block *s, int *mount_flags, char *arg)
if (!old_format_only(s))
set_sb_mnt_count(rs, sb_mnt_count(rs) + 1);
/* mark_buffer_dirty (SB_BUFFER_WITH_SB (s), 1); */
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
REISERFS_SB(s)->s_mount_state = REISERFS_VALID_FS;
}
/* this will force a full flush of all journal lists */
SB_JOURNAL(s)->j_must_wait = 1;
err = journal_end(&th, s, 10);
err = journal_end(&th);
if (err)
goto out_err_unlock;
@ -1489,9 +1558,9 @@ static int read_super_block(struct super_block *s, int offset)
brelse(bh);
return 1;
}
//
// ok, reiserfs signature (old or new) found in at the given offset
//
/*
* ok, reiserfs signature (old or new) found in at the given offset
*/
fs_blocksize = sb_blocksize(rs);
brelse(bh);
sb_set_blocksize(s, fs_blocksize);
@ -1529,9 +1598,11 @@ static int read_super_block(struct super_block *s, int offset)
SB_BUFFER_WITH_SB(s) = bh;
SB_DISK_SUPER_BLOCK(s) = rs;
/*
* magic is of non-standard journal filesystem, look at s_version to
* find which format is in use
*/
if (is_reiserfs_jr(rs)) {
/* magic is of non-standard journal filesystem, look at s_version to
find which format is in use */
if (sb_version(rs) == REISERFS_VERSION_2)
reiserfs_info(s, "found reiserfs format \"3.6\""
" with non-standard journal\n");
@ -1545,8 +1616,10 @@ static int read_super_block(struct super_block *s, int offset)
return 1;
}
} else
/* s_version of standard format may contain incorrect information,
so we just look at the magic string */
/*
* s_version of standard format may contain incorrect
* information, so we just look at the magic string
*/
reiserfs_info(s,
"found reiserfs format \"%s\" with standard journal\n",
is_reiserfs_3_5(rs) ? "3.5" : "3.6");
@ -1558,8 +1631,9 @@ static int read_super_block(struct super_block *s, int offset)
s->dq_op = &reiserfs_quota_operations;
#endif
/* new format is limited by the 32 bit wide i_blocks field, want to
** be one full block below that.
/*
* new format is limited by the 32 bit wide i_blocks field, want to
* be one full block below that.
*/
s->s_maxbytes = (512LL << 32) - s->s_blocksize;
return 0;
@ -1568,7 +1642,7 @@ static int read_super_block(struct super_block *s, int offset)
/* after journal replay, reread all bitmap and super blocks */
static int reread_meta_blocks(struct super_block *s)
{
ll_rw_block(READ, 1, &(SB_BUFFER_WITH_SB(s)));
ll_rw_block(READ, 1, &SB_BUFFER_WITH_SB(s));
wait_on_buffer(SB_BUFFER_WITH_SB(s));
if (!buffer_uptodate(SB_BUFFER_WITH_SB(s))) {
reiserfs_warning(s, "reiserfs-2504", "error reading the super");
@ -1578,14 +1652,15 @@ static int reread_meta_blocks(struct super_block *s)
return 0;
}
/////////////////////////////////////////////////////
// hash detection stuff
/* hash detection stuff */
// if root directory is empty - we set default - Yura's - hash and
// warn about it
// FIXME: we look for only one name in a directory. If tea and yura
// bith have the same value - we ask user to send report to the
// mailing list
/*
* if root directory is empty - we set default - Yura's - hash and
* warn about it
* FIXME: we look for only one name in a directory. If tea and yura
* both have the same value - we ask user to send report to the
* mailing list
*/
static __u32 find_hash_out(struct super_block *s)
{
int retval;
@ -1593,13 +1668,12 @@ static __u32 find_hash_out(struct super_block *s)
struct cpu_key key;
INITIALIZE_PATH(path);
struct reiserfs_dir_entry de;
struct reiserfs_de_head *deh;
__u32 hash = DEFAULT_HASH;
__u32 deh_hashval, teahash, r5hash, yurahash;
inode = s->s_root->d_inode;
do { // Some serious "goto"-hater was there ;)
u32 teahash, r5hash, yurahash;
make_cpu_key(&key, inode, ~0, TYPE_DIRENTRY, 3);
retval = search_by_entry_key(s, &key, &path, &de);
if (retval == IO_ERROR) {
@ -1608,77 +1682,69 @@ static __u32 find_hash_out(struct super_block *s)
}
if (retval == NAME_NOT_FOUND)
de.de_entry_num--;
set_de_name_and_namelen(&de);
if (deh_offset(&(de.de_deh[de.de_entry_num])) == DOT_DOT_OFFSET) {
deh = de.de_deh + de.de_entry_num;
if (deh_offset(deh) == DOT_DOT_OFFSET) {
/* allow override in this case */
if (reiserfs_rupasov_hash(s)) {
if (reiserfs_rupasov_hash(s))
hash = YURA_HASH;
reiserfs_info(s, "FS seems to be empty, autodetect is using the default hash\n");
goto out;
}
reiserfs_info(s, "FS seems to be empty, autodetect "
"is using the default hash\n");
break;
}
deh_hashval = GET_HASH_VALUE(deh_offset(deh));
r5hash = GET_HASH_VALUE(r5_hash(de.de_name, de.de_namelen));
teahash = GET_HASH_VALUE(keyed_hash(de.de_name, de.de_namelen));
yurahash = GET_HASH_VALUE(yura_hash(de.de_name, de.de_namelen));
if (((teahash == r5hash)
&&
(GET_HASH_VALUE(deh_offset(&(de.de_deh[de.de_entry_num])))
== r5hash)) || ((teahash == yurahash)
&& (yurahash ==
GET_HASH_VALUE(deh_offset
(&
(de.
de_deh[de.
de_entry_num])))))
|| ((r5hash == yurahash)
&& (yurahash ==
GET_HASH_VALUE(deh_offset
(&(de.de_deh[de.de_entry_num])))))) {
reiserfs_warning(s, "reiserfs-2506", "Unable to "
"automatically detect hash function. "
"Please mount with -o "
if ((teahash == r5hash && deh_hashval == r5hash) ||
(teahash == yurahash && deh_hashval == yurahash) ||
(r5hash == yurahash && deh_hashval == yurahash)) {
reiserfs_warning(s, "reiserfs-2506",
"Unable to automatically detect hash "
"function. Please mount with -o "
"hash={tea,rupasov,r5}");
hash = UNSET_HASH;
break;
goto out;
}
if (GET_HASH_VALUE(deh_offset(&(de.de_deh[de.de_entry_num]))) ==
yurahash)
if (deh_hashval == yurahash)
hash = YURA_HASH;
else if (GET_HASH_VALUE
(deh_offset(&(de.de_deh[de.de_entry_num]))) == teahash)
else if (deh_hashval == teahash)
hash = TEA_HASH;
else if (GET_HASH_VALUE
(deh_offset(&(de.de_deh[de.de_entry_num]))) == r5hash)
else if (deh_hashval == r5hash)
hash = R5_HASH;
else {
reiserfs_warning(s, "reiserfs-2506",
"Unrecognised hash function");
hash = UNSET_HASH;
}
} while (0);
out:
pathrelse(&path);
return hash;
}
// finds out which hash names are sorted with
/* finds out which hash names are sorted with */
static int what_hash(struct super_block *s)
{
__u32 code;
code = sb_hash_function_code(SB_DISK_SUPER_BLOCK(s));
/* reiserfs_hash_detect() == true if any of the hash mount options
** were used. We must check them to make sure the user isn't
** using a bad hash value
/*
* reiserfs_hash_detect() == true if any of the hash mount options
* were used. We must check them to make sure the user isn't
* using a bad hash value
*/
if (code == UNSET_HASH || reiserfs_hash_detect(s))
code = find_hash_out(s);
if (code != UNSET_HASH && reiserfs_hash_detect(s)) {
/* detection has found the hash, and we must check against the
** mount options
/*
* detection has found the hash, and we must check against the
* mount options
*/
if (reiserfs_rupasov_hash(s) && code != YURA_HASH) {
reiserfs_warning(s, "reiserfs-2507",
@ -1700,7 +1766,10 @@ static int what_hash(struct super_block *s)
code = UNSET_HASH;
}
} else {
/* find_hash_out was not called or could not determine the hash */
/*
* find_hash_out was not called or
* could not determine the hash
*/
if (reiserfs_rupasov_hash(s)) {
code = YURA_HASH;
} else if (reiserfs_tea_hash(s)) {
@ -1710,8 +1779,9 @@ static int what_hash(struct super_block *s)
}
}
/* if we are mounted RW, and we have a new valid hash code, update
** the super
/*
* if we are mounted RW, and we have a new valid hash code, update
* the super
*/
if (code != UNSET_HASH &&
!(s->s_flags & MS_RDONLY) &&
@ -1721,7 +1791,7 @@ static int what_hash(struct super_block *s)
return code;
}
// return pointer to appropriate function
/* return pointer to appropriate function */
static hashf_t hash_function(struct super_block *s)
{
switch (what_hash(s)) {
@ -1738,7 +1808,7 @@ static hashf_t hash_function(struct super_block *s)
return NULL;
}
// this is used to set up correct value for old partitions
/* this is used to set up correct value for old partitions */
static int function2code(hashf_t func)
{
if (func == keyed_hash)
@ -1748,7 +1818,7 @@ static int function2code(hashf_t func)
if (func == r5_hash)
return R5_HASH;
BUG(); // should never happen
BUG(); /* should never happen */
return 0;
}
@ -1783,8 +1853,7 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
sbi->s_mount_opt |= (1 << REISERFS_SMALLTAIL);
sbi->s_mount_opt |= (1 << REISERFS_ERROR_RO);
sbi->s_mount_opt |= (1 << REISERFS_BARRIER_FLUSH);
/* no preallocation minimum, be smart in
reiserfs_file_write instead */
/* no preallocation minimum, be smart in reiserfs_file_write instead */
sbi->s_alloc_options.preallocmin = 0;
/* Preallocate by 16 blocks (17-1) at once */
sbi->s_alloc_options.preallocsize = 17;
@ -1796,9 +1865,17 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
mutex_init(&sbi->lock);
sbi->lock_depth = -1;
sbi->commit_wq = alloc_workqueue("reiserfs/%s", WQ_MEM_RECLAIM, 0,
s->s_id);
if (!sbi->commit_wq) {
SWARN(silent, s, "", "Cannot allocate commit workqueue");
errval = -ENOMEM;
goto error_unlocked;
}
jdev_name = NULL;
if (reiserfs_parse_options
(s, (char *)data, &(sbi->s_mount_opt), &blocks, &jdev_name,
(s, (char *)data, &sbi->s_mount_opt, &blocks, &jdev_name,
&commit_max_age, qf_names, &qfmt) == 0) {
goto error_unlocked;
}
@ -1819,10 +1896,17 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
goto error_unlocked;
}
/* try old format (undistributed bitmap, super block in 8-th 1k block of a device) */
/*
* try old format (undistributed bitmap, super block in 8-th 1k
* block of a device)
*/
if (!read_super_block(s, REISERFS_OLD_DISK_OFFSET_IN_BYTES))
old_format = 1;
/* try new format (64-th 1k block), which can contain reiserfs super block */
/*
* try new format (64-th 1k block), which can contain reiserfs
* super block
*/
else if (read_super_block(s, REISERFS_DISK_OFFSET_IN_BYTES)) {
SWARN(silent, s, "sh-2021", "can not find reiserfs on %s",
s->s_id);
@ -1830,9 +1914,11 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
}
rs = SB_DISK_SUPER_BLOCK(s);
/* Let's do basic sanity check to verify that underlying device is not
smaller than the filesystem. If the check fails then abort and scream,
because bad stuff will happen otherwise. */
/*
* Let's do basic sanity check to verify that underlying device is not
* smaller than the filesystem. If the check fails then abort and
* scream, because bad stuff will happen otherwise.
*/
if (s->s_bdev && s->s_bdev->bd_inode
&& i_size_read(s->s_bdev->bd_inode) <
sb_block_count(rs) * sb_blocksize(rs)) {
@ -1876,15 +1962,16 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
printk("reiserfs: using flush barriers\n");
}
// set_device_ro(s->s_dev, 1) ;
if (journal_init(s, jdev_name, old_format, commit_max_age)) {
SWARN(silent, s, "sh-2022",
"unable to initialize journal space");
goto error_unlocked;
} else {
jinit_done = 1; /* once this is set, journal_release must be called
** if we error out of the mount
/*
* once this is set, journal_release must be called
* if we error out of the mount
*/
jinit_done = 1;
}
if (reread_meta_blocks(s)) {
@ -1905,7 +1992,7 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
args.dirid = REISERFS_ROOT_PARENT_OBJECTID;
root_inode =
iget5_locked(s, REISERFS_ROOT_OBJECTID, reiserfs_find_actor,
reiserfs_init_locked_inode, (void *)(&args));
reiserfs_init_locked_inode, (void *)&args);
if (!root_inode) {
SWARN(silent, s, "jmacd-10", "get root inode failed");
goto error_unlocked;
@ -1929,7 +2016,7 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
s->s_root = d_make_root(root_inode);
if (!s->s_root)
goto error;
// define and initialize hash function
/* define and initialize hash function */
sbi->s_hash_function = hash_function(s);
if (sbi->s_hash_function == NULL) {
dput(s->s_root);
@ -1939,11 +2026,11 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
if (is_reiserfs_3_5(rs)
|| (is_reiserfs_jr(rs) && SB_VERSION(s) == REISERFS_VERSION_1))
set_bit(REISERFS_3_5, &(sbi->s_properties));
set_bit(REISERFS_3_5, &sbi->s_properties);
else if (old_format)
set_bit(REISERFS_OLD_FORMAT, &(sbi->s_properties));
set_bit(REISERFS_OLD_FORMAT, &sbi->s_properties);
else
set_bit(REISERFS_3_6, &(sbi->s_properties));
set_bit(REISERFS_3_6, &sbi->s_properties);
if (!(s->s_flags & MS_RDONLY)) {
@ -1958,10 +2045,12 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
set_sb_umount_state(rs, REISERFS_ERROR_FS);
set_sb_fs_state(rs, 0);
/* Clear out s_bmap_nr if it would wrap. We can handle this
/*
* Clear out s_bmap_nr if it would wrap. We can handle this
* case, but older revisions can't. This will cause the
* file system to fail mount on those older implementations,
* avoiding corruption. -jeffm */
* avoiding corruption. -jeffm
*/
if (bmap_would_wrap(reiserfs_bmap_count(s)) &&
sb_bmap_nr(rs) != 0) {
reiserfs_warning(s, "super-2030", "This file system "
@ -1974,8 +2063,10 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
}
if (old_format_only(s)) {
/* filesystem of format 3.5 either with standard or non-standard
journal */
/*
* filesystem of format 3.5 either with standard
* or non-standard journal
*/
if (convert_reiserfs(s)) {
/* and -o conv is given */
if (!silent)
@ -1983,8 +2074,11 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
"converting 3.5 filesystem to the 3.6 format");
if (is_reiserfs_3_5(rs))
/* put magic string of 3.6 format. 2.2 will not be able to
mount this filesystem anymore */
/*
* put magic string of 3.6 format.
* 2.2 will not be able to
* mount this filesystem anymore
*/
memcpy(rs->s_v1.s_magic,
reiserfs_3_6_magic_string,
sizeof
@ -1992,8 +2086,8 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
set_sb_version(rs, REISERFS_VERSION_2);
reiserfs_convert_objectid_map_v1(s);
set_bit(REISERFS_3_6, &(sbi->s_properties));
clear_bit(REISERFS_3_5, &(sbi->s_properties));
set_bit(REISERFS_3_6, &sbi->s_properties);
clear_bit(REISERFS_3_5, &sbi->s_properties);
} else if (!silent) {
reiserfs_info(s, "using 3.5.x disk format\n");
}
@ -2001,8 +2095,8 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
set_sb_mnt_count(rs, sb_mnt_count(rs) + 1);
journal_mark_dirty(&th, s, SB_BUFFER_WITH_SB(s));
errval = journal_end(&th, s, 1);
journal_mark_dirty(&th, SB_BUFFER_WITH_SB(s));
errval = journal_end(&th);
if (errval) {
dput(s->s_root);
s->s_root = NULL;
@ -2018,7 +2112,9 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
}
reiserfs_write_lock(s);
/* look for files which were to be removed in previous session */
/*
* look for files which were to be removed in previous session
*/
finish_unfinished(s);
} else {
if (old_format_only(s) && !silent) {
@ -2034,7 +2130,9 @@ static int reiserfs_fill_super(struct super_block *s, void *data, int silent)
}
reiserfs_write_lock(s);
}
// mark hash in super block: it could be unset. overwrite should be ok
/*
* mark hash in super block: it could be unset. overwrite should be ok
*/
set_sb_hash_function_code(rs, function2code(sbi->s_hash_function));
handle_attrs(s);
@ -2111,9 +2209,7 @@ static int reiserfs_write_dquot(struct dquot *dquot)
depth = reiserfs_write_unlock_nested(dquot->dq_sb);
ret = dquot_commit(dquot);
reiserfs_write_lock_nested(dquot->dq_sb, depth);
err =
journal_end(&th, dquot->dq_sb,
REISERFS_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
err = journal_end(&th);
if (!ret && err)
ret = err;
out:
@ -2136,9 +2232,7 @@ static int reiserfs_acquire_dquot(struct dquot *dquot)
depth = reiserfs_write_unlock_nested(dquot->dq_sb);
ret = dquot_acquire(dquot);
reiserfs_write_lock_nested(dquot->dq_sb, depth);
err =
journal_end(&th, dquot->dq_sb,
REISERFS_QUOTA_INIT_BLOCKS(dquot->dq_sb));
err = journal_end(&th);
if (!ret && err)
ret = err;
out:
@ -2163,9 +2257,7 @@ static int reiserfs_release_dquot(struct dquot *dquot)
}
ret = dquot_release(dquot);
reiserfs_write_lock(dquot->dq_sb);
err =
journal_end(&th, dquot->dq_sb,
REISERFS_QUOTA_DEL_BLOCKS(dquot->dq_sb));
err = journal_end(&th);
if (!ret && err)
ret = err;
reiserfs_write_unlock(dquot->dq_sb);
@ -2198,7 +2290,7 @@ static int reiserfs_write_info(struct super_block *sb, int type)
depth = reiserfs_write_unlock_nested(sb);
ret = dquot_commit_info(sb, type);
reiserfs_write_lock_nested(sb, depth);
err = journal_end(&th, sb, 2);
err = journal_end(&th);
if (!ret && err)
ret = err;
out:
@ -2238,7 +2330,10 @@ static int reiserfs_quota_on(struct super_block *sb, int type, int format_id,
goto out;
}
inode = path->dentry->d_inode;
/* We must not pack tails for quota files on reiserfs for quota IO to work */
/*
* We must not pack tails for quota files on reiserfs for quota
* IO to work
*/
if (!(REISERFS_I(inode)->i_flags & i_nopack_mask)) {
err = reiserfs_unpack(inode, NULL);
if (err) {
@ -2268,7 +2363,7 @@ static int reiserfs_quota_on(struct super_block *sb, int type, int format_id,
err = journal_begin(&th, sb, 1);
if (err)
goto out;
err = journal_end_sync(&th, sb, 1);
err = journal_end_sync(&th);
if (err)
goto out;
}
@ -2279,10 +2374,12 @@ out:
return err;
}
/* Read data from quotafile - avoid pagecache and such because we cannot afford
/*
* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and no one else should touch the files)
* we don't have to be afraid of races */
* we don't have to be afraid of races
*/
static ssize_t reiserfs_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
@ -2303,7 +2400,10 @@ static ssize_t reiserfs_quota_read(struct super_block *sb, int type, char *data,
sb->s_blocksize - offset <
toread ? sb->s_blocksize - offset : toread;
tmp_bh.b_state = 0;
/* Quota files are without tails so we can safely use this function */
/*
* Quota files are without tails so we can safely
* use this function
*/
reiserfs_write_lock(sb);
err = reiserfs_get_block(inode, blk, &tmp_bh, 0);
reiserfs_write_unlock(sb);
@ -2326,8 +2426,10 @@ static ssize_t reiserfs_quota_read(struct super_block *sb, int type, char *data,
return len;
}
/* Write to quotafile (we know the transaction is already started and has
* enough credits) */
/*
* Write to quotafile (we know the transaction is already started and has
* enough credits)
*/
static ssize_t reiserfs_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
@ -2368,7 +2470,7 @@ static ssize_t reiserfs_quota_write(struct super_block *sb, int type,
unlock_buffer(bh);
reiserfs_write_lock(sb);
reiserfs_prepare_for_journal(sb, bh, 1);
journal_mark_dirty(current->journal_info, sb, bh);
journal_mark_dirty(current->journal_info, bh);
if (!journal_quota)
reiserfs_add_ordered_list(inode, bh);
reiserfs_write_unlock(sb);
@ -2402,18 +2504,18 @@ static int __init init_reiserfs_fs(void)
{
int ret;
if ((ret = init_inodecache())) {
ret = init_inodecache();
if (ret)
return ret;
}
reiserfs_proc_info_global_init();
ret = register_filesystem(&reiserfs_fs_type);
if (ret)
goto out;
if (ret == 0) {
return 0;
}
out:
reiserfs_proc_info_global_done();
destroy_inodecache();

View File

@ -1,5 +1,6 @@
/*
* Copyright 1999 Hans Reiser, see reiserfs/README for licensing and copyright details
* Copyright 1999 Hans Reiser, see reiserfs/README for licensing and copyright
* details
*/
#include <linux/time.h>
@ -7,29 +8,41 @@
#include <linux/buffer_head.h>
#include "reiserfs.h"
/* access to tail : when one is going to read tail it must make sure, that is not running.
direct2indirect and indirect2direct can not run concurrently */
/*
* access to tail : when one is going to read tail it must make sure, that is
* not running. direct2indirect and indirect2direct can not run concurrently
*/
/* Converts direct items to an unformatted node. Panics if file has no
tail. -ENOSPC if no disk space for conversion */
/* path points to first direct item of the file regarless of how many of
them are there */
/*
* Converts direct items to an unformatted node. Panics if file has no
* tail. -ENOSPC if no disk space for conversion
*/
/*
* path points to first direct item of the file regardless of how many of
* them are there
*/
int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
struct treepath *path, struct buffer_head *unbh,
loff_t tail_offset)
{
struct super_block *sb = inode->i_sb;
struct buffer_head *up_to_date_bh;
struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
struct item_head *p_le_ih = tp_item_head(path);
unsigned long total_tail = 0;
struct cpu_key end_key; /* Key to search for the last byte of the
converted item. */
struct item_head ind_ih; /* new indirect item to be inserted or
key of unfm pointer to be pasted */
int blk_size, retval; /* returned value for reiserfs_insert_item and clones */
unp_t unfm_ptr; /* Handle on an unformatted node
that will be inserted in the
tree. */
/* Key to search for the last byte of the converted item. */
struct cpu_key end_key;
/*
* new indirect item to be inserted or key
* of unfm pointer to be pasted
*/
struct item_head ind_ih;
int blk_size;
/* returned value for reiserfs_insert_item and clones */
int retval;
/* Handle on an unformatted node that will be inserted in the tree. */
unp_t unfm_ptr;
BUG_ON(!th->t_trans_id);
@ -37,8 +50,10 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
blk_size = sb->s_blocksize;
/* and key to search for append or insert pointer to the new
unformatted node. */
/*
* and key to search for append or insert pointer to the new
* unformatted node.
*/
copy_item_head(&ind_ih, p_le_ih);
set_le_ih_k_offset(&ind_ih, tail_offset);
set_le_ih_k_type(&ind_ih, TYPE_INDIRECT);
@ -55,7 +70,7 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
return -EIO;
}
p_le_ih = PATH_PITEM_HEAD(path);
p_le_ih = tp_item_head(path);
unfm_ptr = cpu_to_le32(unbh->b_blocknr);
@ -76,36 +91,43 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
if (retval) {
return retval;
}
// note: from here there are two keys which have matching first
// three key components. They only differ by the fourth one.
/*
* note: from here there are two keys which have matching first
* three key components. They only differ by the fourth one.
*/
/* Set the key to search for the direct items of the file */
make_cpu_key(&end_key, inode, max_reiserfs_offset(inode), TYPE_DIRECT,
4);
/* Move bytes from the direct items to the new unformatted node
and delete them. */
/*
* Move bytes from the direct items to the new unformatted node
* and delete them.
*/
while (1) {
int tail_size;
/* end_key.k_offset is set so, that we will always have found
last item of the file */
/*
* end_key.k_offset is set so, that we will always have found
* last item of the file
*/
if (search_for_position_by_key(sb, &end_key, path) ==
POSITION_FOUND)
reiserfs_panic(sb, "PAP-14050",
"direct item (%K) not found", &end_key);
p_le_ih = PATH_PITEM_HEAD(path);
p_le_ih = tp_item_head(path);
RFALSE(!is_direct_le_ih(p_le_ih),
"vs-14055: direct item expected(%K), found %h",
&end_key, p_le_ih);
tail_size = (le_ih_k_offset(p_le_ih) & (blk_size - 1))
+ ih_item_len(p_le_ih) - 1;
/* we only send the unbh pointer if the buffer is not up to date.
** this avoids overwriting good data from writepage() with old data
** from the disk or buffer cache
** Special case: unbh->b_page will be NULL if we are coming through
** DIRECT_IO handler here.
/*
* we only send the unbh pointer if the buffer is not
* up to date. this avoids overwriting good data from
* writepage() with old data from the disk or buffer cache
* Special case: unbh->b_page will be NULL if we are coming
* through DIRECT_IO handler here.
*/
if (!unbh->b_page || buffer_uptodate(unbh)
|| PageUptodate(unbh->b_page)) {
@ -117,13 +139,15 @@ int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
up_to_date_bh);
total_tail += retval;
/* done: file does not have direct items anymore */
if (tail_size == retval)
// done: file does not have direct items anymore
break;
}
/* if we've copied bytes from disk into the page, we need to zero
** out the unused part of the block (it was not up to date before)
/*
* if we've copied bytes from disk into the page, we need to zero
* out the unused part of the block (it was not up to date before)
*/
if (up_to_date_bh) {
unsigned pgoff =
@ -146,9 +170,11 @@ void reiserfs_unmap_buffer(struct buffer_head *bh)
BUG();
}
clear_buffer_dirty(bh);
/* Remove the buffer from whatever list it belongs to. We are mostly
interested in removing it from per-sb j_dirty_buffers list, to avoid
BUG() on attempt to write not mapped buffer */
/*
* Remove the buffer from whatever list it belongs to. We are mostly
* interested in removing it from per-sb j_dirty_buffers list, to avoid
* BUG() on attempt to write not mapped buffer
*/
if ((!list_empty(&bh->b_assoc_buffers) || bh->b_private) && bh->b_page) {
struct inode *inode = bh->b_page->mapping->host;
struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
@ -164,12 +190,14 @@ void reiserfs_unmap_buffer(struct buffer_head *bh)
unlock_buffer(bh);
}
/* this first locks inode (neither reads nor sync are permitted),
reads tail through page cache, insert direct item. When direct item
inserted successfully inode is left locked. Return value is always
what we expect from it (number of cut bytes). But when tail remains
in the unformatted node, we set mode to SKIP_BALANCING and unlock
inode */
/*
* this first locks inode (neither reads nor sync are permitted),
* reads tail through page cache, insert direct item. When direct item
* inserted successfully inode is left locked. Return value is always
* what we expect from it (number of cut bytes). But when tail remains
* in the unformatted node, we set mode to SKIP_BALANCING and unlock
* inode
*/
int indirect2direct(struct reiserfs_transaction_handle *th,
struct inode *inode, struct page *page,
struct treepath *path, /* path to the indirect item. */
@ -194,7 +222,7 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
*mode = M_SKIP_BALANCING;
/* store item head path points to. */
copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
copy_item_head(&s_ih, tp_item_head(path));
tail_len = (n_new_file_size & (block_size - 1));
if (get_inode_sd_version(inode) == STAT_DATA_V2)
@ -207,9 +235,11 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
1) * sb->s_blocksize;
pos1 = pos;
// we are protected by i_mutex. The tail can not disapper, not
// append can be done either
// we are in truncate or packing tail in file_release
/*
* we are protected by i_mutex. The tail can not disapper, not
* append can be done either
* we are in truncate or packing tail in file_release
*/
tail = (char *)kmap(page); /* this can schedule */
@ -220,7 +250,7 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
reiserfs_panic(sb, "PAP-5520",
"item to be converted %K does not exist",
item_key);
copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
copy_item_head(&s_ih, tp_item_head(path));
#ifdef CONFIG_REISERFS_CHECK
pos = le_ih_k_offset(&s_ih) - 1 +
(ih_item_len(&s_ih) / UNFM_P_SIZE -
@ -236,9 +266,10 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
pos1 + 1, TYPE_DIRECT, round_tail_len,
0xffff /*ih_free_space */ );
/* we want a pointer to the first byte of the tail in the page.
** the page was locked and this part of the page was up to date when
** indirect2direct was called, so we know the bytes are still valid
/*
* we want a pointer to the first byte of the tail in the page.
* the page was locked and this part of the page was up to date when
* indirect2direct was called, so we know the bytes are still valid
*/
tail = tail + (pos & (PAGE_CACHE_SIZE - 1));
@ -250,12 +281,14 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
/* Insert tail as new direct item in the tree */
if (reiserfs_insert_item(th, path, &key, &s_ih, inode,
tail ? tail : NULL) < 0) {
/* No disk memory. So we can not convert last unformatted node
to the direct item. In this case we used to adjust
indirect items's ih_free_space. Now ih_free_space is not
used, it would be ideal to write zeros to corresponding
unformatted node. For now i_size is considered as guard for
going out of file size */
/*
* No disk memory. So we can not convert last unformatted node
* to the direct item. In this case we used to adjust
* indirect items's ih_free_space. Now ih_free_space is not
* used, it would be ideal to write zeros to corresponding
* unformatted node. For now i_size is considered as guard for
* going out of file size
*/
kunmap(page);
return block_size - round_tail_len;
}
@ -264,12 +297,16 @@ int indirect2direct(struct reiserfs_transaction_handle *th,
/* make sure to get the i_blocks changes from reiserfs_insert_item */
reiserfs_update_sd(th, inode);
// note: we have now the same as in above direct2indirect
// conversion: there are two keys which have matching first three
// key components. They only differ by the fouhth one.
/*
* note: we have now the same as in above direct2indirect
* conversion: there are two keys which have matching first three
* key components. They only differ by the fourth one.
*/
/* We have inserted new direct item and must remove last
unformatted node. */
/*
* We have inserted new direct item and must remove last
* unformatted node.
*/
*mode = M_CUT;
/* we store position of first direct item in the in-core inode */

View File

@ -56,9 +56,11 @@
#define XAROOT_NAME "xattrs"
/* Helpers for inode ops. We do this so that we don't have all the VFS
/*
* Helpers for inode ops. We do this so that we don't have all the VFS
* overhead and also for proper i_mutex annotation.
* dir->i_mutex must be held for all of them. */
* dir->i_mutex must be held for all of them.
*/
#ifdef CONFIG_REISERFS_FS_XATTR
static int xattr_create(struct inode *dir, struct dentry *dentry, int mode)
{
@ -73,10 +75,12 @@ static int xattr_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
return dir->i_op->mkdir(dir, dentry, mode);
}
/* We use I_MUTEX_CHILD here to silence lockdep. It's safe because xattr
/*
* We use I_MUTEX_CHILD here to silence lockdep. It's safe because xattr
* mutation ops aren't called during rename or splace, which are the
* only other users of I_MUTEX_CHILD. It violates the ordering, but that's
* better than allocating another subclass just for this code. */
* better than allocating another subclass just for this code.
*/
static int xattr_unlink(struct inode *dir, struct dentry *dentry)
{
int error;
@ -166,9 +170,11 @@ static struct dentry *open_xa_dir(const struct inode *inode, int flags)
return xadir;
}
/* The following are side effects of other operations that aren't explicitly
/*
* The following are side effects of other operations that aren't explicitly
* modifying extended attributes. This includes operations such as permissions
* or ownership changes, object deletions, etc. */
* or ownership changes, object deletions, etc.
*/
struct reiserfs_dentry_buf {
struct dir_context ctx;
struct dentry *xadir;
@ -267,11 +273,13 @@ static int reiserfs_for_each_xattr(struct inode *inode,
cleanup_dentry_buf(&buf);
if (!err) {
/* We start a transaction here to avoid a ABBA situation
/*
* We start a transaction here to avoid a ABBA situation
* between the xattr root's i_mutex and the journal lock.
* This doesn't incur much additional overhead since the
* new transaction will just nest inside the
* outer transaction. */
* outer transaction.
*/
int blocks = JOURNAL_PER_BALANCE_CNT * 2 + 2 +
4 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
struct reiserfs_transaction_handle th;
@ -284,7 +292,7 @@ static int reiserfs_for_each_xattr(struct inode *inode,
I_MUTEX_XATTR);
err = action(dir, data);
reiserfs_write_lock(inode->i_sb);
jerror = journal_end(&th, inode->i_sb, blocks);
jerror = journal_end(&th);
reiserfs_write_unlock(inode->i_sb);
mutex_unlock(&dir->d_parent->d_inode->i_mutex);
err = jerror ?: err;
@ -349,9 +357,11 @@ int reiserfs_chown_xattrs(struct inode *inode, struct iattr *attrs)
}
#ifdef CONFIG_REISERFS_FS_XATTR
/* Returns a dentry corresponding to a specific extended attribute file
/*
* Returns a dentry corresponding to a specific extended attribute file
* for the inode. If flags allow, the file is created. Otherwise, a
* valid or negative dentry, or an error is returned. */
* valid or negative dentry, or an error is returned.
*/
static struct dentry *xattr_lookup(struct inode *inode, const char *name,
int flags)
{
@ -400,8 +410,10 @@ static struct page *reiserfs_get_page(struct inode *dir, size_t n)
{
struct address_space *mapping = dir->i_mapping;
struct page *page;
/* We can deadlock if we try to free dentries,
and an unlink/rmdir has just occurred - GFP_NOFS avoids this */
/*
* We can deadlock if we try to free dentries,
* and an unlink/rmdir has just occurred - GFP_NOFS avoids this
*/
mapping_set_gfp_mask(mapping, GFP_NOFS);
page = read_mapping_page(mapping, n >> PAGE_CACHE_SHIFT, NULL);
if (!IS_ERR(page)) {
@ -411,7 +423,7 @@ static struct page *reiserfs_get_page(struct inode *dir, size_t n)
}
return page;
fail:
fail:
reiserfs_put_page(page);
return ERR_PTR(-EIO);
}
@ -589,7 +601,7 @@ int reiserfs_xattr_set(struct inode *inode, const char *name,
buffer, buffer_size, flags);
reiserfs_write_lock(inode->i_sb);
error2 = journal_end(&th, inode->i_sb, jbegin_count);
error2 = journal_end(&th);
reiserfs_write_unlock(inode->i_sb);
if (error == 0)
error = error2;
@ -615,8 +627,10 @@ reiserfs_xattr_get(struct inode *inode, const char *name, void *buffer,
if (name == NULL)
return -EINVAL;
/* We can't have xattrs attached to v1 items since they don't have
* generation numbers */
/*
* We can't have xattrs attached to v1 items since they don't have
* generation numbers
*/
if (get_inode_sd_version(inode) == STAT_DATA_V1)
return -EOPNOTSUPP;
@ -913,12 +927,16 @@ static const struct xattr_handler *reiserfs_xattr_handlers[] = {
static int xattr_mount_check(struct super_block *s)
{
/* We need generation numbers to ensure that the oid mapping is correct
* v3.5 filesystems don't have them. */
/*
* We need generation numbers to ensure that the oid mapping is correct
* v3.5 filesystems don't have them.
*/
if (old_format_only(s)) {
if (reiserfs_xattrs_optional(s)) {
/* Old format filesystem, but optional xattrs have
* been enabled. Error out. */
/*
* Old format filesystem, but optional xattrs have
* been enabled. Error out.
*/
reiserfs_warning(s, "jdm-2005",
"xattrs/ACLs not supported "
"on pre-v3.6 format filesystems. "
@ -972,9 +990,11 @@ int reiserfs_lookup_privroot(struct super_block *s)
return err;
}
/* We need to take a copy of the mount flags since things like
/*
* We need to take a copy of the mount flags since things like
* MS_RDONLY don't get set until *after* we're called.
* mount_flags != mount_options */
* mount_flags != mount_options
*/
int reiserfs_xattr_init(struct super_block *s, int mount_flags)
{
int err = 0;
@ -1007,8 +1027,8 @@ int reiserfs_xattr_init(struct super_block *s, int mount_flags)
error:
if (err) {
clear_bit(REISERFS_XATTRS_USER, &(REISERFS_SB(s)->s_mount_opt));
clear_bit(REISERFS_POSIXACL, &(REISERFS_SB(s)->s_mount_opt));
clear_bit(REISERFS_XATTRS_USER, &REISERFS_SB(s)->s_mount_opt);
clear_bit(REISERFS_POSIXACL, &REISERFS_SB(s)->s_mount_opt);
}
/* The super_block MS_POSIXACL must mirror the (no)acl mount option. */

View File

@ -61,7 +61,8 @@ static inline loff_t reiserfs_xattr_nblocks(struct inode *inode, loff_t size)
return ret;
}
/* We may have to create up to 3 objects: xattr root, xattr dir, xattr file.
/*
* We may have to create up to 3 objects: xattr root, xattr dir, xattr file.
* Let's try to be smart about it.
* xattr root: We cache it. If it's not cached, we may need to create it.
* xattr dir: If anything has been loaded for this inode, we can set a flag

View File

@ -25,8 +25,10 @@ reiserfs_set_acl(struct inode *inode, struct posix_acl *acl, int type)
int size = acl ? posix_acl_xattr_size(acl->a_count) : 0;
/* Pessimism: We can't assume that anything from the xattr root up
* has been created. */
/*
* Pessimism: We can't assume that anything from the xattr root up
* has been created.
*/
jcreate_blocks = reiserfs_xattr_jcreate_nblocks(inode) +
reiserfs_xattr_nblocks(inode, size) * 2;
@ -37,7 +39,7 @@ reiserfs_set_acl(struct inode *inode, struct posix_acl *acl, int type)
if (error == 0) {
error = __reiserfs_set_acl(&th, inode, type, acl);
reiserfs_write_lock(inode->i_sb);
error2 = journal_end(&th, inode->i_sb, jcreate_blocks);
error2 = journal_end(&th);
reiserfs_write_unlock(inode->i_sb);
if (error2)
error = error2;
@ -111,7 +113,7 @@ static struct posix_acl *reiserfs_posix_acl_from_disk(const void *value, size_t
goto fail;
return acl;
fail:
fail:
posix_acl_release(acl);
return ERR_PTR(-EINVAL);
}
@ -164,7 +166,7 @@ static void *reiserfs_posix_acl_to_disk(const struct posix_acl *acl, size_t * si
}
return (char *)ext_acl;
fail:
fail:
kfree(ext_acl);
return ERR_PTR(-EINVAL);
}
@ -208,8 +210,10 @@ struct posix_acl *reiserfs_get_acl(struct inode *inode, int type)
retval = reiserfs_xattr_get(inode, name, value, size);
if (retval == -ENODATA || retval == -ENOSYS) {
/* This shouldn't actually happen as it should have
been caught above.. but just in case */
/*
* This shouldn't actually happen as it should have
* been caught above.. but just in case
*/
acl = NULL;
} else if (retval < 0) {
acl = ERR_PTR(retval);
@ -290,8 +294,10 @@ __reiserfs_set_acl(struct reiserfs_transaction_handle *th, struct inode *inode,
return error;
}
/* dir->i_mutex: locked,
* inode is new and not released into the wild yet */
/*
* dir->i_mutex: locked,
* inode is new and not released into the wild yet
*/
int
reiserfs_inherit_default_acl(struct reiserfs_transaction_handle *th,
struct inode *dir, struct dentry *dentry,
@ -304,14 +310,18 @@ reiserfs_inherit_default_acl(struct reiserfs_transaction_handle *th,
if (S_ISLNK(inode->i_mode))
return 0;
/* ACLs can only be used on "new" objects, so if it's an old object
* there is nothing to inherit from */
/*
* ACLs can only be used on "new" objects, so if it's an old object
* there is nothing to inherit from
*/
if (get_inode_sd_version(dir) == STAT_DATA_V1)
goto apply_umask;
/* Don't apply ACLs to objects in the .reiserfs_priv tree.. This
/*
* Don't apply ACLs to objects in the .reiserfs_priv tree.. This
* would be useless since permissions are ignored, and a pain because
* it introduces locking cycles */
* it introduces locking cycles
*/
if (IS_PRIVATE(dir)) {
inode->i_flags |= S_PRIVATE;
goto apply_umask;
@ -335,7 +345,7 @@ reiserfs_inherit_default_acl(struct reiserfs_transaction_handle *th,
return err;
apply_umask:
apply_umask:
/* no ACL, apply umask */
inode->i_mode &= ~current_umask();
return err;