mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-03 19:55:31 +00:00
slub: Rework allocator fastpaths
Rework the allocation paths so that updates of the page freelist, frozen state and number of objects use cmpxchg_double_slab(). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
parent
61728d1efc
commit
2cfb7455d2
417
mm/slub.c
417
mm/slub.c
@ -992,11 +992,6 @@ static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *pa
|
||||
if (!check_slab(s, page))
|
||||
goto bad;
|
||||
|
||||
if (!on_freelist(s, page, object)) {
|
||||
object_err(s, page, object, "Object already allocated");
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (!check_valid_pointer(s, page, object)) {
|
||||
object_err(s, page, object, "Freelist Pointer check fails");
|
||||
goto bad;
|
||||
@ -1060,14 +1055,6 @@ static noinline int free_debug_processing(struct kmem_cache *s,
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/* Special debug activities for freeing objects */
|
||||
if (!page->frozen && !page->freelist) {
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
|
||||
spin_lock(&n->list_lock);
|
||||
remove_full(s, page);
|
||||
spin_unlock(&n->list_lock);
|
||||
}
|
||||
if (s->flags & SLAB_STORE_USER)
|
||||
set_track(s, object, TRACK_FREE, addr);
|
||||
trace(s, page, object, 0);
|
||||
@ -1178,6 +1165,7 @@ static inline int check_object(struct kmem_cache *s, struct page *page,
|
||||
void *object, u8 val) { return 1; }
|
||||
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
struct page *page) {}
|
||||
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
|
||||
static inline unsigned long kmem_cache_flags(unsigned long objsize,
|
||||
unsigned long flags, const char *name,
|
||||
void (*ctor)(void *))
|
||||
@ -1460,11 +1448,52 @@ static inline void remove_partial(struct kmem_cache_node *n,
|
||||
static inline int lock_and_freeze_slab(struct kmem_cache *s,
|
||||
struct kmem_cache_node *n, struct page *page)
|
||||
{
|
||||
if (slab_trylock(page)) {
|
||||
remove_partial(n, page);
|
||||
void *freelist;
|
||||
unsigned long counters;
|
||||
struct page new;
|
||||
|
||||
|
||||
if (!slab_trylock(page))
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Zap the freelist and set the frozen bit.
|
||||
* The old freelist is the list of objects for the
|
||||
* per cpu allocation list.
|
||||
*/
|
||||
do {
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
new.inuse = page->objects;
|
||||
|
||||
VM_BUG_ON(new.frozen);
|
||||
new.frozen = 1;
|
||||
|
||||
} while (!cmpxchg_double_slab(s, page,
|
||||
freelist, counters,
|
||||
NULL, new.counters,
|
||||
"lock and freeze"));
|
||||
|
||||
remove_partial(n, page);
|
||||
|
||||
if (freelist) {
|
||||
/* Populate the per cpu freelist */
|
||||
this_cpu_write(s->cpu_slab->freelist, freelist);
|
||||
this_cpu_write(s->cpu_slab->page, page);
|
||||
this_cpu_write(s->cpu_slab->node, page_to_nid(page));
|
||||
return 1;
|
||||
} else {
|
||||
/*
|
||||
* Slab page came from the wrong list. No object to allocate
|
||||
* from. Put it onto the correct list and continue partial
|
||||
* scan.
|
||||
*/
|
||||
printk(KERN_ERR "SLUB: %s : Page without available objects on"
|
||||
" partial list\n", s->name);
|
||||
slab_unlock(page);
|
||||
return 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1564,59 +1593,6 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
|
||||
return get_any_partial(s, flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Move a page back to the lists.
|
||||
*
|
||||
* Must be called with the slab lock held.
|
||||
*
|
||||
* On exit the slab lock will have been dropped.
|
||||
*/
|
||||
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
||||
__releases(bitlock)
|
||||
{
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
|
||||
if (page->inuse) {
|
||||
|
||||
if (page->freelist) {
|
||||
spin_lock(&n->list_lock);
|
||||
add_partial(n, page, tail);
|
||||
spin_unlock(&n->list_lock);
|
||||
stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
|
||||
} else {
|
||||
stat(s, DEACTIVATE_FULL);
|
||||
if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) {
|
||||
spin_lock(&n->list_lock);
|
||||
add_full(s, n, page);
|
||||
spin_unlock(&n->list_lock);
|
||||
}
|
||||
}
|
||||
slab_unlock(page);
|
||||
} else {
|
||||
stat(s, DEACTIVATE_EMPTY);
|
||||
if (n->nr_partial < s->min_partial) {
|
||||
/*
|
||||
* Adding an empty slab to the partial slabs in order
|
||||
* to avoid page allocator overhead. This slab needs
|
||||
* to come after the other slabs with objects in
|
||||
* so that the others get filled first. That way the
|
||||
* size of the partial list stays small.
|
||||
*
|
||||
* kmem_cache_shrink can reclaim any empty slabs from
|
||||
* the partial list.
|
||||
*/
|
||||
spin_lock(&n->list_lock);
|
||||
add_partial(n, page, 1);
|
||||
spin_unlock(&n->list_lock);
|
||||
slab_unlock(page);
|
||||
} else {
|
||||
slab_unlock(page);
|
||||
stat(s, FREE_SLAB);
|
||||
discard_slab(s, page);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PREEMPT
|
||||
/*
|
||||
* Calculate the next globally unique transaction for disambiguiation
|
||||
@ -1683,40 +1659,161 @@ void init_kmem_cache_cpus(struct kmem_cache *s)
|
||||
for_each_possible_cpu(cpu)
|
||||
per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
|
||||
}
|
||||
/*
|
||||
* Remove the cpu slab
|
||||
*/
|
||||
|
||||
/*
|
||||
* Remove the cpu slab
|
||||
*/
|
||||
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
__releases(bitlock)
|
||||
{
|
||||
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
|
||||
struct page *page = c->page;
|
||||
int tail = 1;
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
int lock = 0;
|
||||
enum slab_modes l = M_NONE, m = M_NONE;
|
||||
void *freelist;
|
||||
void *nextfree;
|
||||
int tail = 0;
|
||||
struct page new;
|
||||
struct page old;
|
||||
|
||||
if (page->freelist)
|
||||
if (page->freelist) {
|
||||
stat(s, DEACTIVATE_REMOTE_FREES);
|
||||
/*
|
||||
* Merge cpu freelist into slab freelist. Typically we get here
|
||||
* because both freelists are empty. So this is unlikely
|
||||
* to occur.
|
||||
*/
|
||||
while (unlikely(c->freelist)) {
|
||||
void **object;
|
||||
|
||||
tail = 0; /* Hot objects. Put the slab first */
|
||||
|
||||
/* Retrieve object from cpu_freelist */
|
||||
object = c->freelist;
|
||||
c->freelist = get_freepointer(s, c->freelist);
|
||||
|
||||
/* And put onto the regular freelist */
|
||||
set_freepointer(s, object, page->freelist);
|
||||
page->freelist = object;
|
||||
page->inuse--;
|
||||
tail = 1;
|
||||
}
|
||||
c->page = NULL;
|
||||
|
||||
c->tid = next_tid(c->tid);
|
||||
page->frozen = 0;
|
||||
unfreeze_slab(s, page, tail);
|
||||
c->page = NULL;
|
||||
freelist = c->freelist;
|
||||
c->freelist = NULL;
|
||||
|
||||
/*
|
||||
* Stage one: Free all available per cpu objects back
|
||||
* to the page freelist while it is still frozen. Leave the
|
||||
* last one.
|
||||
*
|
||||
* There is no need to take the list->lock because the page
|
||||
* is still frozen.
|
||||
*/
|
||||
while (freelist && (nextfree = get_freepointer(s, freelist))) {
|
||||
void *prior;
|
||||
unsigned long counters;
|
||||
|
||||
do {
|
||||
prior = page->freelist;
|
||||
counters = page->counters;
|
||||
set_freepointer(s, freelist, prior);
|
||||
new.counters = counters;
|
||||
new.inuse--;
|
||||
VM_BUG_ON(!new.frozen);
|
||||
|
||||
} while (!cmpxchg_double_slab(s, page,
|
||||
prior, counters,
|
||||
freelist, new.counters,
|
||||
"drain percpu freelist"));
|
||||
|
||||
freelist = nextfree;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stage two: Ensure that the page is unfrozen while the
|
||||
* list presence reflects the actual number of objects
|
||||
* during unfreeze.
|
||||
*
|
||||
* We setup the list membership and then perform a cmpxchg
|
||||
* with the count. If there is a mismatch then the page
|
||||
* is not unfrozen but the page is on the wrong list.
|
||||
*
|
||||
* Then we restart the process which may have to remove
|
||||
* the page from the list that we just put it on again
|
||||
* because the number of objects in the slab may have
|
||||
* changed.
|
||||
*/
|
||||
redo:
|
||||
|
||||
old.freelist = page->freelist;
|
||||
old.counters = page->counters;
|
||||
VM_BUG_ON(!old.frozen);
|
||||
|
||||
/* Determine target state of the slab */
|
||||
new.counters = old.counters;
|
||||
if (freelist) {
|
||||
new.inuse--;
|
||||
set_freepointer(s, freelist, old.freelist);
|
||||
new.freelist = freelist;
|
||||
} else
|
||||
new.freelist = old.freelist;
|
||||
|
||||
new.frozen = 0;
|
||||
|
||||
if (!new.inuse && n->nr_partial < s->min_partial)
|
||||
m = M_FREE;
|
||||
else if (new.freelist) {
|
||||
m = M_PARTIAL;
|
||||
if (!lock) {
|
||||
lock = 1;
|
||||
/*
|
||||
* Taking the spinlock removes the possiblity
|
||||
* that acquire_slab() will see a slab page that
|
||||
* is frozen
|
||||
*/
|
||||
spin_lock(&n->list_lock);
|
||||
}
|
||||
} else {
|
||||
m = M_FULL;
|
||||
if (kmem_cache_debug(s) && !lock) {
|
||||
lock = 1;
|
||||
/*
|
||||
* This also ensures that the scanning of full
|
||||
* slabs from diagnostic functions will not see
|
||||
* any frozen slabs.
|
||||
*/
|
||||
spin_lock(&n->list_lock);
|
||||
}
|
||||
}
|
||||
|
||||
if (l != m) {
|
||||
|
||||
if (l == M_PARTIAL)
|
||||
|
||||
remove_partial(n, page);
|
||||
|
||||
else if (l == M_FULL)
|
||||
|
||||
remove_full(s, page);
|
||||
|
||||
if (m == M_PARTIAL) {
|
||||
|
||||
add_partial(n, page, tail);
|
||||
stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
|
||||
|
||||
} else if (m == M_FULL) {
|
||||
|
||||
stat(s, DEACTIVATE_FULL);
|
||||
add_full(s, n, page);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
l = m;
|
||||
if (!cmpxchg_double_slab(s, page,
|
||||
old.freelist, old.counters,
|
||||
new.freelist, new.counters,
|
||||
"unfreezing slab"))
|
||||
goto redo;
|
||||
|
||||
slab_unlock(page);
|
||||
|
||||
if (lock)
|
||||
spin_unlock(&n->list_lock);
|
||||
|
||||
if (m == M_FREE) {
|
||||
stat(s, DEACTIVATE_EMPTY);
|
||||
discard_slab(s, page);
|
||||
stat(s, FREE_SLAB);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
@ -1851,6 +1948,8 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
void **object;
|
||||
struct page *page;
|
||||
unsigned long flags;
|
||||
struct page new;
|
||||
unsigned long counters;
|
||||
|
||||
local_irq_save(flags);
|
||||
#ifdef CONFIG_PREEMPT
|
||||
@ -1873,25 +1972,33 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
if (unlikely(!node_match(c, node)))
|
||||
goto another_slab;
|
||||
|
||||
stat(s, ALLOC_REFILL);
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
|
||||
do {
|
||||
object = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
new.inuse = page->objects;
|
||||
VM_BUG_ON(!new.frozen);
|
||||
|
||||
} while (!cmpxchg_double_slab(s, page,
|
||||
object, counters,
|
||||
NULL, new.counters,
|
||||
"__slab_alloc"));
|
||||
|
||||
load_freelist:
|
||||
VM_BUG_ON(!page->frozen);
|
||||
|
||||
object = page->freelist;
|
||||
if (unlikely(!object))
|
||||
goto another_slab;
|
||||
if (kmem_cache_debug(s))
|
||||
goto debug;
|
||||
|
||||
c->freelist = get_freepointer(s, object);
|
||||
page->inuse = page->objects;
|
||||
page->freelist = NULL;
|
||||
stat(s, ALLOC_REFILL);
|
||||
|
||||
slab_unlock(page);
|
||||
|
||||
c->freelist = get_freepointer(s, object);
|
||||
c->tid = next_tid(c->tid);
|
||||
local_irq_restore(flags);
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
return object;
|
||||
|
||||
another_slab:
|
||||
@ -1901,9 +2008,10 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
page = get_partial(s, gfpflags, node);
|
||||
if (page) {
|
||||
stat(s, ALLOC_FROM_PARTIAL);
|
||||
page->frozen = 1;
|
||||
c->node = page_to_nid(page);
|
||||
c->page = page;
|
||||
object = c->freelist;
|
||||
|
||||
if (kmem_cache_debug(s))
|
||||
goto debug;
|
||||
goto load_freelist;
|
||||
}
|
||||
|
||||
@ -1911,12 +2019,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
|
||||
if (page) {
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
stat(s, ALLOC_SLAB);
|
||||
if (c->page)
|
||||
flush_slab(s, c);
|
||||
|
||||
/*
|
||||
* No other reference to the page yet so we can
|
||||
* muck around with it freely without cmpxchg
|
||||
*/
|
||||
object = page->freelist;
|
||||
page->freelist = NULL;
|
||||
page->inuse = page->objects;
|
||||
|
||||
stat(s, ALLOC_SLAB);
|
||||
slab_lock(page);
|
||||
page->frozen = 1;
|
||||
c->node = page_to_nid(page);
|
||||
c->page = page;
|
||||
goto load_freelist;
|
||||
@ -1925,12 +2040,12 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
slab_out_of_memory(s, gfpflags, node);
|
||||
local_irq_restore(flags);
|
||||
return NULL;
|
||||
debug:
|
||||
if (!alloc_debug_processing(s, page, object, addr))
|
||||
goto another_slab;
|
||||
|
||||
page->inuse++;
|
||||
page->freelist = get_freepointer(s, object);
|
||||
debug:
|
||||
if (!object || !alloc_debug_processing(s, page, object, addr))
|
||||
goto new_slab;
|
||||
|
||||
c->freelist = get_freepointer(s, object);
|
||||
deactivate_slab(s, c);
|
||||
c->page = NULL;
|
||||
c->node = NUMA_NO_NODE;
|
||||
@ -2082,6 +2197,11 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
||||
{
|
||||
void *prior;
|
||||
void **object = (void *)x;
|
||||
int was_frozen;
|
||||
int inuse;
|
||||
struct page new;
|
||||
unsigned long counters;
|
||||
struct kmem_cache_node *n = NULL;
|
||||
unsigned long uninitialized_var(flags);
|
||||
|
||||
local_irq_save(flags);
|
||||
@ -2091,32 +2211,65 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
||||
if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
|
||||
goto out_unlock;
|
||||
|
||||
prior = page->freelist;
|
||||
set_freepointer(s, object, prior);
|
||||
page->freelist = object;
|
||||
page->inuse--;
|
||||
do {
|
||||
prior = page->freelist;
|
||||
counters = page->counters;
|
||||
set_freepointer(s, object, prior);
|
||||
new.counters = counters;
|
||||
was_frozen = new.frozen;
|
||||
new.inuse--;
|
||||
if ((!new.inuse || !prior) && !was_frozen && !n) {
|
||||
n = get_node(s, page_to_nid(page));
|
||||
/*
|
||||
* Speculatively acquire the list_lock.
|
||||
* If the cmpxchg does not succeed then we may
|
||||
* drop the list_lock without any processing.
|
||||
*
|
||||
* Otherwise the list_lock will synchronize with
|
||||
* other processors updating the list of slabs.
|
||||
*/
|
||||
spin_lock(&n->list_lock);
|
||||
}
|
||||
inuse = new.inuse;
|
||||
|
||||
if (unlikely(page->frozen)) {
|
||||
stat(s, FREE_FROZEN);
|
||||
goto out_unlock;
|
||||
}
|
||||
} while (!cmpxchg_double_slab(s, page,
|
||||
prior, counters,
|
||||
object, new.counters,
|
||||
"__slab_free"));
|
||||
|
||||
if (unlikely(!page->inuse))
|
||||
goto slab_empty;
|
||||
if (likely(!n)) {
|
||||
/*
|
||||
* The list lock was not taken therefore no list
|
||||
* activity can be necessary.
|
||||
*/
|
||||
if (was_frozen)
|
||||
stat(s, FREE_FROZEN);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
/*
|
||||
* Objects left in the slab. If it was not on the partial list before
|
||||
* then add it.
|
||||
* was_frozen may have been set after we acquired the list_lock in
|
||||
* an earlier loop. So we need to check it here again.
|
||||
*/
|
||||
if (unlikely(!prior)) {
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
if (was_frozen)
|
||||
stat(s, FREE_FROZEN);
|
||||
else {
|
||||
if (unlikely(!inuse && n->nr_partial > s->min_partial))
|
||||
goto slab_empty;
|
||||
|
||||
spin_lock(&n->list_lock);
|
||||
add_partial(get_node(s, page_to_nid(page)), page, 1);
|
||||
spin_unlock(&n->list_lock);
|
||||
stat(s, FREE_ADD_PARTIAL);
|
||||
/*
|
||||
* Objects left in the slab. If it was not on the partial list before
|
||||
* then add it.
|
||||
*/
|
||||
if (unlikely(!prior)) {
|
||||
remove_full(s, page);
|
||||
add_partial(n, page, 0);
|
||||
stat(s, FREE_ADD_PARTIAL);
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&n->list_lock);
|
||||
|
||||
out_unlock:
|
||||
slab_unlock(page);
|
||||
local_irq_restore(flags);
|
||||
@ -2127,13 +2280,11 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
||||
/*
|
||||
* Slab still on the partial list.
|
||||
*/
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
|
||||
spin_lock(&n->list_lock);
|
||||
remove_partial(n, page);
|
||||
spin_unlock(&n->list_lock);
|
||||
stat(s, FREE_REMOVE_PARTIAL);
|
||||
}
|
||||
|
||||
spin_unlock(&n->list_lock);
|
||||
slab_unlock(page);
|
||||
local_irq_restore(flags);
|
||||
stat(s, FREE_SLAB);
|
||||
|
Loading…
Reference in New Issue
Block a user