* Fix syzkaller NULL pointer dereference

* Fix TDP MMU performance issue with disabling dirty logging
 * Fix 5.14 regression with SVM TSC scaling
 * Fix indefinite stall on applying live patches
 * Fix unstable selftest
 * Fix memory leak from wrong copy-and-paste
 * Fix missed PV TLB flush when racing with emulation
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKglysUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOJDAgArpPcAnJbeT2VQTQcp94e4tp9k1Sf
 gmUewajco4zFVB/sldE0fIporETkaX+FYYPiaNDdNgJ2lUw/HUJBN7KoFEYTZ37N
 Xx/qXiIXQYFw1bmxTnacLzIQtD3luMCzOs/6/Q7CAFZIBpUtUEjkMlQOBuxoKeG0
 B0iLCTJSw0taWcN170aN8G6T+5+bdR3AJW1k2wkgfESfYF9NfJoTUHQj9WTMzM2R
 aBRuXvUI/rWKvQY3DfoRmgg9Ig/SirSC+abbKIs4H08vZIEUlPk3WOZSKpsN/Wzh
 3XDnVRxgnaRLx6NI/ouI2UYJCmjPKbNcueGCf5IfUcHvngHjAEG/xxe4Qw==
 =zQ9u
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:

 - syzkaller NULL pointer dereference

 - TDP MMU performance issue with disabling dirty logging

 - 5.14 regression with SVM TSC scaling

 - indefinite stall on applying live patches

 - unstable selftest

 - memory leak from wrong copy-and-paste

 - missed PV TLB flush when racing with emulation

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: do not report a vCPU as preempted outside instruction boundaries
  KVM: x86: do not set st->preempted when going back to user space
  KVM: SVM: fix tsc scaling cache logic
  KVM: selftests: Make hyperv_clock selftest more stable
  KVM: x86/MMU: Zap non-leaf SPTEs when disabling dirty logging
  x86: drop bogus "cc" clobber from __try_cmpxchg_user_asm()
  KVM: x86/mmu: Check every prev_roots in __kvm_mmu_free_obsolete_roots()
  entry/kvm: Exit to user mode when TIF_NOTIFY_SIGNAL is set
  KVM: Don't null dereference ops->destroy
This commit is contained in:
Linus Torvalds 2022-06-08 09:16:31 -07:00
commit 34f4335c16
15 changed files with 124 additions and 47 deletions

View File

@ -653,6 +653,7 @@ struct kvm_vcpu_arch {
u64 ia32_misc_enable_msr; u64 ia32_misc_enable_msr;
u64 smbase; u64 smbase;
u64 smi_count; u64 smi_count;
bool at_instruction_boundary;
bool tpr_access_reporting; bool tpr_access_reporting;
bool xsaves_enabled; bool xsaves_enabled;
bool xfd_no_write_intercept; bool xfd_no_write_intercept;
@ -1300,6 +1301,8 @@ struct kvm_vcpu_stat {
u64 nested_run; u64 nested_run;
u64 directed_yield_attempted; u64 directed_yield_attempted;
u64 directed_yield_successful; u64 directed_yield_successful;
u64 preemption_reported;
u64 preemption_other;
u64 guest_mode; u64 guest_mode;
}; };

View File

@ -439,7 +439,7 @@ do { \
[ptr] "+m" (*_ptr), \ [ptr] "+m" (*_ptr), \
[old] "+a" (__old) \ [old] "+a" (__old) \
: [new] ltype (__new) \ : [new] ltype (__new) \
: "memory", "cc"); \ : "memory"); \
if (unlikely(__err)) \ if (unlikely(__err)) \
goto label; \ goto label; \
if (unlikely(!success)) \ if (unlikely(!success)) \

View File

@ -5179,7 +5179,7 @@ static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
roots_to_free |= KVM_MMU_ROOT_CURRENT; roots_to_free |= KVM_MMU_ROOT_CURRENT;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
if (is_obsolete_root(kvm, mmu->root.hpa)) if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
} }

View File

@ -145,6 +145,15 @@ static bool try_step_up(struct tdp_iter *iter)
return true; return true;
} }
/*
* Step the iterator back up a level in the paging structure. Should only be
* used when the iterator is below the root level.
*/
void tdp_iter_step_up(struct tdp_iter *iter)
{
WARN_ON(!try_step_up(iter));
}
/* /*
* Step to the next SPTE in a pre-order traversal of the paging structure. * Step to the next SPTE in a pre-order traversal of the paging structure.
* To get to the next SPTE, the iterator either steps down towards the goal * To get to the next SPTE, the iterator either steps down towards the goal

View File

@ -114,5 +114,6 @@ void tdp_iter_start(struct tdp_iter *iter, struct kvm_mmu_page *root,
int min_level, gfn_t next_last_level_gfn); int min_level, gfn_t next_last_level_gfn);
void tdp_iter_next(struct tdp_iter *iter); void tdp_iter_next(struct tdp_iter *iter);
void tdp_iter_restart(struct tdp_iter *iter); void tdp_iter_restart(struct tdp_iter *iter);
void tdp_iter_step_up(struct tdp_iter *iter);
#endif /* __KVM_X86_MMU_TDP_ITER_H */ #endif /* __KVM_X86_MMU_TDP_ITER_H */

View File

@ -1742,12 +1742,12 @@ static void zap_collapsible_spte_range(struct kvm *kvm,
gfn_t start = slot->base_gfn; gfn_t start = slot->base_gfn;
gfn_t end = start + slot->npages; gfn_t end = start + slot->npages;
struct tdp_iter iter; struct tdp_iter iter;
int max_mapping_level;
kvm_pfn_t pfn; kvm_pfn_t pfn;
rcu_read_lock(); rcu_read_lock();
tdp_root_for_each_pte(iter, root, start, end) { tdp_root_for_each_pte(iter, root, start, end) {
retry:
if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
continue; continue;
@ -1755,15 +1755,41 @@ static void zap_collapsible_spte_range(struct kvm *kvm,
!is_last_spte(iter.old_spte, iter.level)) !is_last_spte(iter.old_spte, iter.level))
continue; continue;
/*
* This is a leaf SPTE. Check if the PFN it maps can
* be mapped at a higher level.
*/
pfn = spte_to_pfn(iter.old_spte); pfn = spte_to_pfn(iter.old_spte);
if (kvm_is_reserved_pfn(pfn) ||
iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn, if (kvm_is_reserved_pfn(pfn))
pfn, PG_LEVEL_NUM))
continue; continue;
max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
iter.gfn, pfn, PG_LEVEL_NUM);
WARN_ON(max_mapping_level < iter.level);
/*
* If this page is already mapped at the highest
* viable level, there's nothing more to do.
*/
if (max_mapping_level == iter.level)
continue;
/*
* The page can be remapped at a higher level, so step
* up to zap the parent SPTE.
*/
while (max_mapping_level > iter.level)
tdp_iter_step_up(&iter);
/* Note, a successful atomic zap also does a remote TLB flush. */ /* Note, a successful atomic zap also does a remote TLB flush. */
if (tdp_mmu_zap_spte_atomic(kvm, &iter)) tdp_mmu_zap_spte_atomic(kvm, &iter);
goto retry;
/*
* If the atomic zap fails, the iter will recurse back into
* the same subtree to retry.
*/
} }
rcu_read_unlock(); rcu_read_unlock();

View File

@ -982,7 +982,7 @@ int nested_svm_vmexit(struct vcpu_svm *svm)
if (svm->tsc_ratio_msr != kvm_default_tsc_scaling_ratio) { if (svm->tsc_ratio_msr != kvm_default_tsc_scaling_ratio) {
WARN_ON(!svm->tsc_scaling_enabled); WARN_ON(!svm->tsc_scaling_enabled);
vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
svm_write_tsc_multiplier(vcpu, vcpu->arch.tsc_scaling_ratio); __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
} }
svm->nested.ctl.nested_cr3 = 0; svm->nested.ctl.nested_cr3 = 0;
@ -1387,7 +1387,7 @@ void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
vcpu->arch.tsc_scaling_ratio = vcpu->arch.tsc_scaling_ratio =
kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio, kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio,
svm->tsc_ratio_msr); svm->tsc_ratio_msr);
svm_write_tsc_multiplier(vcpu, vcpu->arch.tsc_scaling_ratio); __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
} }
/* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */ /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */

View File

@ -465,11 +465,24 @@ static int has_svm(void)
return 1; return 1;
} }
void __svm_write_tsc_multiplier(u64 multiplier)
{
preempt_disable();
if (multiplier == __this_cpu_read(current_tsc_ratio))
goto out;
wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
__this_cpu_write(current_tsc_ratio, multiplier);
out:
preempt_enable();
}
static void svm_hardware_disable(void) static void svm_hardware_disable(void)
{ {
/* Make sure we clean up behind us */ /* Make sure we clean up behind us */
if (tsc_scaling) if (tsc_scaling)
wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT); __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
cpu_svm_disable(); cpu_svm_disable();
@ -515,8 +528,7 @@ static int svm_hardware_enable(void)
* Set the default value, even if we don't use TSC scaling * Set the default value, even if we don't use TSC scaling
* to avoid having stale value in the msr * to avoid having stale value in the msr
*/ */
wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT); __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
__this_cpu_write(current_tsc_ratio, SVM_TSC_RATIO_DEFAULT);
} }
@ -999,11 +1011,12 @@ static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
} }
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
{ {
wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); __svm_write_tsc_multiplier(multiplier);
} }
/* Evaluate instruction intercepts that depend on guest CPUID features. */ /* Evaluate instruction intercepts that depend on guest CPUID features. */
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
struct vcpu_svm *svm) struct vcpu_svm *svm)
@ -1363,13 +1376,8 @@ static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
sev_es_prepare_switch_to_guest(hostsa); sev_es_prepare_switch_to_guest(hostsa);
} }
if (tsc_scaling) { if (tsc_scaling)
u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
__this_cpu_write(current_tsc_ratio, tsc_ratio);
wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
}
}
if (likely(tsc_aux_uret_slot >= 0)) if (likely(tsc_aux_uret_slot >= 0))
kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
@ -4255,6 +4263,8 @@ static int svm_check_intercept(struct kvm_vcpu *vcpu,
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{ {
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
vcpu->arch.at_instruction_boundary = true;
} }
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)

View File

@ -590,7 +590,7 @@ int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code); bool has_error_code, u32 error_code);
int nested_svm_exit_special(struct vcpu_svm *svm); int nested_svm_exit_special(struct vcpu_svm *svm);
void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu); void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier); void __svm_write_tsc_multiplier(u64 multiplier);
void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
struct vmcb_control_area *control); struct vmcb_control_area *control);
void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,

View File

@ -6547,6 +6547,7 @@ static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
return; return;
handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
vcpu->arch.at_instruction_boundary = true;
} }
static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)

View File

@ -296,6 +296,8 @@ const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
STATS_DESC_COUNTER(VCPU, nested_run), STATS_DESC_COUNTER(VCPU, nested_run),
STATS_DESC_COUNTER(VCPU, directed_yield_attempted), STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
STATS_DESC_COUNTER(VCPU, directed_yield_successful), STATS_DESC_COUNTER(VCPU, directed_yield_successful),
STATS_DESC_COUNTER(VCPU, preemption_reported),
STATS_DESC_COUNTER(VCPU, preemption_other),
STATS_DESC_ICOUNTER(VCPU, guest_mode) STATS_DESC_ICOUNTER(VCPU, guest_mode)
}; };
@ -4625,6 +4627,19 @@ static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
struct kvm_memslots *slots; struct kvm_memslots *slots;
static const u8 preempted = KVM_VCPU_PREEMPTED; static const u8 preempted = KVM_VCPU_PREEMPTED;
/*
* The vCPU can be marked preempted if and only if the VM-Exit was on
* an instruction boundary and will not trigger guest emulation of any
* kind (see vcpu_run). Vendor specific code controls (conservatively)
* when this is true, for example allowing the vCPU to be marked
* preempted if and only if the VM-Exit was due to a host interrupt.
*/
if (!vcpu->arch.at_instruction_boundary) {
vcpu->stat.preemption_other++;
return;
}
vcpu->stat.preemption_reported++;
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return; return;
@ -4654,19 +4669,21 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{ {
int idx; int idx;
if (vcpu->preempted && !vcpu->arch.guest_state_protected) if (vcpu->preempted) {
vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); if (!vcpu->arch.guest_state_protected)
vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
/* /*
* Take the srcu lock as memslots will be accessed to check the gfn * Take the srcu lock as memslots will be accessed to check the gfn
* cache generation against the memslots generation. * cache generation against the memslots generation.
*/ */
idx = srcu_read_lock(&vcpu->kvm->srcu); idx = srcu_read_lock(&vcpu->kvm->srcu);
if (kvm_xen_msr_enabled(vcpu->kvm)) if (kvm_xen_msr_enabled(vcpu->kvm))
kvm_xen_runstate_set_preempted(vcpu); kvm_xen_runstate_set_preempted(vcpu);
else else
kvm_steal_time_set_preempted(vcpu); kvm_steal_time_set_preempted(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx); srcu_read_unlock(&vcpu->kvm->srcu, idx);
}
static_call(kvm_x86_vcpu_put)(vcpu); static_call(kvm_x86_vcpu_put)(vcpu);
vcpu->arch.last_host_tsc = rdtsc(); vcpu->arch.last_host_tsc = rdtsc();
@ -10422,6 +10439,13 @@ static int vcpu_run(struct kvm_vcpu *vcpu)
vcpu->arch.l1tf_flush_l1d = true; vcpu->arch.l1tf_flush_l1d = true;
for (;;) { for (;;) {
/*
* If another guest vCPU requests a PV TLB flush in the middle
* of instruction emulation, the rest of the emulation could
* use a stale page translation. Assume that any code after
* this point can start executing an instruction.
*/
vcpu->arch.at_instruction_boundary = false;
if (kvm_vcpu_running(vcpu)) { if (kvm_vcpu_running(vcpu)) {
r = vcpu_enter_guest(vcpu); r = vcpu_enter_guest(vcpu);
} else { } else {

View File

@ -159,8 +159,10 @@ static inline void kvm_xen_runstate_set_preempted(struct kvm_vcpu *vcpu)
* behalf of the vCPU. Only if the VMM does actually block * behalf of the vCPU. Only if the VMM does actually block
* does it need to enter RUNSTATE_blocked. * does it need to enter RUNSTATE_blocked.
*/ */
if (vcpu->preempted) if (WARN_ON_ONCE(!vcpu->preempted))
kvm_xen_update_runstate_guest(vcpu, RUNSTATE_runnable); return;
kvm_xen_update_runstate_guest(vcpu, RUNSTATE_runnable);
} }
/* 32-bit compatibility definitions, also used natively in 32-bit build */ /* 32-bit compatibility definitions, also used natively in 32-bit build */

View File

@ -9,12 +9,6 @@ static int xfer_to_guest_mode_work(struct kvm_vcpu *vcpu, unsigned long ti_work)
int ret; int ret;
if (ti_work & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) { if (ti_work & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
clear_notify_signal();
if (task_work_pending(current))
task_work_run();
}
if (ti_work & _TIF_SIGPENDING) {
kvm_handle_signal_exit(vcpu); kvm_handle_signal_exit(vcpu);
return -EINTR; return -EINTR;
} }

View File

@ -44,7 +44,7 @@ static inline void nop_loop(void)
{ {
int i; int i;
for (i = 0; i < 1000000; i++) for (i = 0; i < 100000000; i++)
asm volatile("nop"); asm volatile("nop");
} }
@ -56,12 +56,14 @@ static inline void check_tsc_msr_rdtsc(void)
tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY); tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY);
GUEST_ASSERT(tsc_freq > 0); GUEST_ASSERT(tsc_freq > 0);
/* First, check MSR-based clocksource */ /* For increased accuracy, take mean rdtsc() before and afrer rdmsr() */
r1 = rdtsc(); r1 = rdtsc();
t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
r1 = (r1 + rdtsc()) / 2;
nop_loop(); nop_loop();
r2 = rdtsc(); r2 = rdtsc();
t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
r2 = (r2 + rdtsc()) / 2;
GUEST_ASSERT(r2 > r1 && t2 > t1); GUEST_ASSERT(r2 > r1 && t2 > t1);
@ -181,12 +183,14 @@ static void host_check_tsc_msr_rdtsc(struct kvm_vm *vm)
tsc_freq = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TSC_FREQUENCY); tsc_freq = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TSC_FREQUENCY);
TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero"); TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero");
/* First, check MSR-based clocksource */ /* For increased accuracy, take mean rdtsc() before and afrer ioctl */
r1 = rdtsc(); r1 = rdtsc();
t1 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT); t1 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT);
r1 = (r1 + rdtsc()) / 2;
nop_loop(); nop_loop();
r2 = rdtsc(); r2 = rdtsc();
t2 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT); t2 = vcpu_get_msr(vm, VCPU_ID, HV_X64_MSR_TIME_REF_COUNT);
r2 = (r2 + rdtsc()) / 2;
TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2); TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2);

View File

@ -4300,8 +4300,11 @@ static int kvm_ioctl_create_device(struct kvm *kvm,
kvm_put_kvm_no_destroy(kvm); kvm_put_kvm_no_destroy(kvm);
mutex_lock(&kvm->lock); mutex_lock(&kvm->lock);
list_del(&dev->vm_node); list_del(&dev->vm_node);
if (ops->release)
ops->release(dev);
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
ops->destroy(dev); if (ops->destroy)
ops->destroy(dev);
return ret; return ret;
} }