mei: Add transport driver for IVSC device

The Intel visual sensing controller (IVSC) device is designed to control
the camera sharing between host IPU for media usage and IVSC for context
sensing (face detection).

IVSC is exposed to HOST as an SPI device and the message protocol over
the SPI BUS for communicating with the IVSC device is implemented. This
is the backend of mei framework for IVSC device, which usually handles
the hardware data transfer. The mei_csi and mei_ace are the clients of
IVSC mei framework.

The firmware downloading for the IVSC device is implemented as well.

Signed-off-by: Wentong Wu <wentong.wu@intel.com>
Reviewed-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Tested-by: Hao Yao <hao.yao@intel.com>
Acked-by: Tomas Winkler <tomas.winkler@intel.com>
Link: https://lore.kernel.org/r/1701651344-20723-2-git-send-email-wentong.wu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Wentong Wu 2023-12-04 08:55:43 +08:00 committed by Greg Kroah-Hartman
parent 5dac2a98f6
commit 566f5ca976
5 changed files with 1442 additions and 0 deletions

View File

@ -60,6 +60,17 @@ config INTEL_MEI_GSC
tasks such as graphics card firmware update and security
tasks.
config INTEL_MEI_VSC_HW
tristate "Intel visual sensing controller device transport driver"
depends on ACPI && SPI
depends on GPIOLIB || COMPILE_TEST
help
Intel SPI transport driver between host and Intel visual sensing
controller (IVSC) device.
This driver can also be built as a module. If so, the module
will be called mei-vsc-hw.
source "drivers/misc/mei/hdcp/Kconfig"
source "drivers/misc/mei/pxp/Kconfig"
source "drivers/misc/mei/gsc_proxy/Kconfig"

View File

@ -31,3 +31,7 @@ CFLAGS_mei-trace.o = -I$(src)
obj-$(CONFIG_INTEL_MEI_HDCP) += hdcp/
obj-$(CONFIG_INTEL_MEI_PXP) += pxp/
obj-$(CONFIG_INTEL_MEI_GSC_PROXY) += gsc_proxy/
obj-$(CONFIG_INTEL_MEI_VSC_HW) += mei-vsc-hw.o
mei-vsc-hw-y := vsc-tp.o
mei-vsc-hw-y += vsc-fw-loader.o

View File

@ -0,0 +1,822 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2023, Intel Corporation.
* Intel Visual Sensing Controller Transport Layer Linux driver
*/
#include <linux/acpi.h>
#include <linux/align.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/firmware.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/types.h>
#include <asm-generic/unaligned.h>
#include "vsc-tp.h"
#define VSC_MAGIC_NUM 0x49505343 /* IPSC */
#define VSC_MAGIC_FW 0x49574653 /* IWFS */
#define VSC_MAGIC_FILE 0x46564353 /* FVCS */
#define VSC_ADDR_BASE 0xE0030000
#define VSC_EFUSE_ADDR (VSC_ADDR_BASE + 0x038)
#define VSC_STRAP_ADDR (VSC_ADDR_BASE + 0x100)
#define VSC_STRAP_KEY_SRC_MASK BIT(0)
#define VSC_STRAP_KEY_SRC_PRODUCT 1
#define VSC_MAINSTEPPING_VERSION_MASK GENMASK(7, 4)
#define VSC_MAINSTEPPING_VERSION_A 0
#define VSC_SUBSTEPPING_VERSION_MASK GENMASK(3, 0)
#define VSC_SUBSTEPPING_VERSION_0 0
#define VSC_SUBSTEPPING_VERSION_1 2
#define VSC_BOOT_IMG_OPTION_MASK GENMASK(15, 0)
#define VSC_SKU_CFG_LOCATION 0x5001A000
#define VSC_SKU_MAX_SIZE 4100u
#define VSC_ACE_IMG_CNT 2
#define VSC_CSI_IMG_CNT 4
#define VSC_IMG_CNT_MAX 6
#define VSC_ROM_PKG_SIZE 256u
#define VSC_FW_PKG_SIZE 512u
#define VSC_CSI_IMAGE_NAME_FMT "ivsc_fw_a1.bin"
#define VSC_CSI_IMAGE_NAME_FMT_PROD "ivsc_fw_a1_%s.bin"
#define VSC_ACE_IMAGE_NAME_FMT "ivsc_pkg_%s_0_a1.bin"
#define VSC_ACE_IMAGE_NAME_FMT_PROD "ivsc_pkg_%s_0_a1_%s.bin"
#define VSC_CFG_IMAGE_NAME_FMT "ivsc_skucfg_%s_0_1_a1.bin"
#define VSC_CFG_IMAGE_NAME_FMT_PROD "ivsc_skucfg_%s_0_1_a1_%s.bin"
#define VSC_IMAGE_FOLDER_FMT "vsc/soc_a1"
#define VSC_IMAGE_FOLDER_FMT_PROD "vsc/soc_a1_%s"
#define VSC_IMAGE_NAME_MAX_LEN 64
#define VSC_IMAGE_PATH_MAX_LEN 128
#define VSC_SENSOR_NAME_MAX_LEN 16
#define VSC_IMAGE_FOLDER_NAME_MAX_LEN 32
#define VSC_IMAGE_NAME_SUFFIX_MAX_LEN 8
/* command id */
enum {
VSC_CMD_QUERY = 0,
VSC_CMD_DL_SET = 1,
VSC_CMD_DL_START = 2,
VSC_CMD_DL_CONT = 3,
VSC_CMD_DUMP_MEM = 4,
VSC_CMD_GET_CONT = 8,
VSC_CMD_CAM_BOOT = 10,
};
/* command ack token */
enum {
VSC_TOKEN_BOOTLOADER_REQ = 1,
VSC_TOKEN_DUMP_RESP = 4,
VSC_TOKEN_ERROR = 7,
};
/* image type */
enum {
VSC_IMG_BOOTLOADER_TYPE = 1,
VSC_IMG_CSI_EM7D_TYPE,
VSC_IMG_CSI_SEM_TYPE,
VSC_IMG_CSI_RUNTIME_TYPE,
VSC_IMG_ACE_VISION_TYPE,
VSC_IMG_ACE_CFG_TYPE,
VSC_IMG_SKU_CFG_TYPE,
};
/* image fragments */
enum {
VSC_IMG_BOOTLOADER_FRAG,
VSC_IMG_CSI_SEM_FRAG,
VSC_IMG_CSI_RUNTIME_FRAG,
VSC_IMG_ACE_VISION_FRAG,
VSC_IMG_ACE_CFG_FRAG,
VSC_IMG_CSI_EM7D_FRAG,
VSC_IMG_SKU_CFG_FRAG,
VSC_IMG_FRAG_MAX
};
struct vsc_rom_cmd {
__le32 magic;
__u8 cmd_id;
union {
/* download start */
struct {
__u8 img_type;
__le16 option;
__le32 img_len;
__le32 img_loc;
__le32 crc;
DECLARE_FLEX_ARRAY(__u8, res);
} __packed dl_start;
/* download set */
struct {
__u8 option;
__le16 img_cnt;
DECLARE_FLEX_ARRAY(__le32, payload);
} __packed dl_set;
/* download continue */
struct {
__u8 end_flag;
__le16 len;
/* 8 is the offset of payload */
__u8 payload[VSC_ROM_PKG_SIZE - 8];
} __packed dl_cont;
/* dump memory */
struct {
__u8 res;
__le16 len;
__le32 addr;
DECLARE_FLEX_ARRAY(__u8, payload);
} __packed dump_mem;
/* 5 is the offset of padding */
__u8 padding[VSC_ROM_PKG_SIZE - 5];
} data;
};
struct vsc_rom_cmd_ack {
__le32 magic;
__u8 token;
__u8 type;
__u8 res[2];
__u8 payload[];
};
struct vsc_fw_cmd {
__le32 magic;
__u8 cmd_id;
union {
struct {
__le16 option;
__u8 img_type;
__le32 img_len;
__le32 img_loc;
__le32 crc;
DECLARE_FLEX_ARRAY(__u8, res);
} __packed dl_start;
struct {
__le16 option;
__u8 img_cnt;
DECLARE_FLEX_ARRAY(__le32, payload);
} __packed dl_set;
struct {
__le32 addr;
__u8 len;
DECLARE_FLEX_ARRAY(__u8, payload);
} __packed dump_mem;
struct {
__u8 resv[3];
__le32 crc;
DECLARE_FLEX_ARRAY(__u8, payload);
} __packed boot;
/* 5 is the offset of padding */
__u8 padding[VSC_FW_PKG_SIZE - 5];
} data;
};
struct vsc_img {
__le32 magic;
__le32 option;
__le32 image_count;
__le32 image_location[VSC_IMG_CNT_MAX];
};
struct vsc_fw_sign {
__le32 magic;
__le32 image_size;
__u8 image[];
};
struct vsc_image_code_data {
/* fragment index */
u8 frag_index;
/* image type */
u8 image_type;
};
struct vsc_img_frag {
u8 type;
u32 location;
const u8 *data;
u32 size;
};
/**
* struct vsc_fw_loader - represent vsc firmware loader
* @dev: device used to request fimware
* @tp: transport layer used with the firmware loader
* @csi: CSI image
* @ace: ACE image
* @cfg: config image
* @tx_buf: tx buffer
* @rx_buf: rx buffer
* @option: command option
* @count: total image count
* @key_src: key source
* @folder: image folder
* @sensor_name: camera sensor name
* @suffix: image name suffix
* @frags: image fragments
*/
struct vsc_fw_loader {
struct device *dev;
struct vsc_tp *tp;
const struct firmware *csi;
const struct firmware *ace;
const struct firmware *cfg;
void *tx_buf;
void *rx_buf;
u16 option;
u16 count;
u32 key_src;
char folder[VSC_IMAGE_FOLDER_NAME_MAX_LEN];
char sensor_name[VSC_SENSOR_NAME_MAX_LEN];
char suffix[VSC_IMAGE_NAME_SUFFIX_MAX_LEN];
struct vsc_img_frag frags[VSC_IMG_FRAG_MAX];
};
static inline u32 vsc_sum_crc(void *data, size_t size)
{
u32 crc = 0;
size_t i;
for (i = 0; i < size; i++)
crc += *((u8 *)data + i);
return crc;
}
/* get sensor name to construct image name */
static int vsc_get_sensor_name(struct vsc_fw_loader *fw_loader,
struct device *dev)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER };
union acpi_object obj = {
.type = ACPI_TYPE_INTEGER,
.integer.value = 1,
};
struct acpi_object_list arg_list = {
.count = 1,
.pointer = &obj,
};
union acpi_object *ret_obj;
acpi_handle handle;
acpi_status status;
int ret = 0;
handle = ACPI_HANDLE(dev);
if (!handle)
return -EINVAL;
status = acpi_evaluate_object(handle, "SID", &arg_list, &buffer);
if (ACPI_FAILURE(status)) {
dev_err(dev, "can't evaluate SID method: %d\n", status);
return -ENODEV;
}
ret_obj = buffer.pointer;
if (!ret_obj) {
dev_err(dev, "can't locate ACPI buffer\n");
return -ENODEV;
}
if (ret_obj->type != ACPI_TYPE_STRING) {
dev_err(dev, "found non-string entry\n");
ret = -ENODEV;
goto out_free_buff;
}
/* string length excludes trailing NUL */
if (ret_obj->string.length >= sizeof(fw_loader->sensor_name)) {
dev_err(dev, "sensor name buffer too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(fw_loader->sensor_name, ret_obj->string.pointer,
ret_obj->string.length);
string_lower(fw_loader->sensor_name, fw_loader->sensor_name);
out_free_buff:
ACPI_FREE(buffer.pointer);
return ret;
}
static int vsc_identify_silicon(struct vsc_fw_loader *fw_loader)
{
struct vsc_rom_cmd_ack *ack = fw_loader->rx_buf;
struct vsc_rom_cmd *cmd = fw_loader->tx_buf;
u8 version, sub_version;
int ret;
/* identify stepping information */
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DUMP_MEM;
cmd->data.dump_mem.addr = cpu_to_le32(VSC_EFUSE_ADDR);
cmd->data.dump_mem.len = cpu_to_le16(sizeof(__le32));
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, ack, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
if (ack->token == VSC_TOKEN_ERROR)
return -EINVAL;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_GET_CONT;
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, ack, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
if (ack->token != VSC_TOKEN_DUMP_RESP)
return -EINVAL;
version = FIELD_GET(VSC_MAINSTEPPING_VERSION_MASK, ack->payload[0]);
sub_version = FIELD_GET(VSC_SUBSTEPPING_VERSION_MASK, ack->payload[0]);
if (version != VSC_MAINSTEPPING_VERSION_A)
return -EINVAL;
if (sub_version != VSC_SUBSTEPPING_VERSION_0 &&
sub_version != VSC_SUBSTEPPING_VERSION_1)
return -EINVAL;
dev_info(fw_loader->dev, "silicon stepping version is %u:%u\n",
version, sub_version);
/* identify strap information */
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DUMP_MEM;
cmd->data.dump_mem.addr = cpu_to_le32(VSC_STRAP_ADDR);
cmd->data.dump_mem.len = cpu_to_le16(sizeof(__le32));
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, ack, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
if (ack->token == VSC_TOKEN_ERROR)
return -EINVAL;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_GET_CONT;
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, ack, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
if (ack->token != VSC_TOKEN_DUMP_RESP)
return -EINVAL;
fw_loader->key_src = FIELD_GET(VSC_STRAP_KEY_SRC_MASK, ack->payload[2]);
if (fw_loader->key_src == VSC_STRAP_KEY_SRC_PRODUCT)
strscpy(fw_loader->suffix, "prod", sizeof(fw_loader->suffix));
return 0;
}
static int vsc_identify_csi_image(struct vsc_fw_loader *fw_loader)
{
char path[VSC_IMAGE_PATH_MAX_LEN];
char name[VSC_IMAGE_NAME_MAX_LEN];
const struct firmware *image;
struct vsc_fw_sign *sign;
struct vsc_img *img;
unsigned int i;
int ret;
if (fw_loader->key_src == VSC_STRAP_KEY_SRC_PRODUCT)
snprintf(name, sizeof(name), VSC_CSI_IMAGE_NAME_FMT_PROD,
fw_loader->suffix);
else
snprintf(name, sizeof(name), VSC_CSI_IMAGE_NAME_FMT);
snprintf(path, sizeof(path), "%s/%s", fw_loader->folder, name);
ret = request_firmware(&image, path, fw_loader->dev);
if (ret)
return ret;
img = (struct vsc_img *)image->data;
if (!img) {
ret = -ENOENT;
goto err_release_image;
}
if (le32_to_cpu(img->magic) != VSC_MAGIC_FILE) {
ret = -EINVAL;
goto err_release_image;
}
if (le32_to_cpu(img->image_count) != VSC_CSI_IMG_CNT) {
ret = -EINVAL;
goto err_release_image;
}
fw_loader->count += le32_to_cpu(img->image_count) - 1;
fw_loader->option =
FIELD_GET(VSC_BOOT_IMG_OPTION_MASK, le32_to_cpu(img->option));
sign = (struct vsc_fw_sign *)
(img->image_location + le32_to_cpu(img->image_count));
for (i = 0; i < VSC_CSI_IMG_CNT; i++) {
/* mapping from CSI image index to image code data */
static const struct vsc_image_code_data csi_image_map[] = {
{ VSC_IMG_BOOTLOADER_FRAG, VSC_IMG_BOOTLOADER_TYPE },
{ VSC_IMG_CSI_SEM_FRAG, VSC_IMG_CSI_SEM_TYPE },
{ VSC_IMG_CSI_RUNTIME_FRAG, VSC_IMG_CSI_RUNTIME_TYPE },
{ VSC_IMG_CSI_EM7D_FRAG, VSC_IMG_CSI_EM7D_TYPE },
};
struct vsc_img_frag *frag;
if ((u8 *)sign + sizeof(*sign) > image->data + image->size) {
ret = -EINVAL;
goto err_release_image;
}
if (le32_to_cpu(sign->magic) != VSC_MAGIC_FW) {
ret = -EINVAL;
goto err_release_image;
}
if (!le32_to_cpu(img->image_location[i])) {
ret = -EINVAL;
goto err_release_image;
}
frag = &fw_loader->frags[csi_image_map[i].frag_index];
frag->data = sign->image;
frag->size = le32_to_cpu(sign->image_size);
frag->location = le32_to_cpu(img->image_location[i]);
frag->type = csi_image_map[i].image_type;
sign = (struct vsc_fw_sign *)
(sign->image + le32_to_cpu(sign->image_size));
}
fw_loader->csi = image;
return 0;
err_release_image:
release_firmware(image);
return ret;
}
static int vsc_identify_ace_image(struct vsc_fw_loader *fw_loader)
{
char path[VSC_IMAGE_PATH_MAX_LEN];
char name[VSC_IMAGE_NAME_MAX_LEN];
const struct firmware *image;
struct vsc_fw_sign *sign;
struct vsc_img *img;
unsigned int i;
int ret;
if (fw_loader->key_src == VSC_STRAP_KEY_SRC_PRODUCT)
snprintf(name, sizeof(name), VSC_ACE_IMAGE_NAME_FMT_PROD,
fw_loader->sensor_name, fw_loader->suffix);
else
snprintf(name, sizeof(name), VSC_ACE_IMAGE_NAME_FMT,
fw_loader->sensor_name);
snprintf(path, sizeof(path), "%s/%s", fw_loader->folder, name);
ret = request_firmware(&image, path, fw_loader->dev);
if (ret)
return ret;
img = (struct vsc_img *)image->data;
if (!img) {
ret = -ENOENT;
goto err_release_image;
}
if (le32_to_cpu(img->magic) != VSC_MAGIC_FILE) {
ret = -EINVAL;
goto err_release_image;
}
if (le32_to_cpu(img->image_count) != VSC_ACE_IMG_CNT) {
ret = -EINVAL;
goto err_release_image;
}
fw_loader->count += le32_to_cpu(img->image_count);
sign = (struct vsc_fw_sign *)
(img->image_location + le32_to_cpu(img->image_count));
for (i = 0; i < VSC_ACE_IMG_CNT; i++) {
/* mapping from ACE image index to image code data */
static const struct vsc_image_code_data ace_image_map[] = {
{ VSC_IMG_ACE_VISION_FRAG, VSC_IMG_ACE_VISION_TYPE },
{ VSC_IMG_ACE_CFG_FRAG, VSC_IMG_ACE_CFG_TYPE },
};
struct vsc_img_frag *frag, *last_frag;
u8 frag_index;
if ((u8 *)sign + sizeof(*sign) > image->data + image->size) {
ret = -EINVAL;
goto err_release_image;
}
if (le32_to_cpu(sign->magic) != VSC_MAGIC_FW) {
ret = -EINVAL;
goto err_release_image;
}
frag_index = ace_image_map[i].frag_index;
frag = &fw_loader->frags[frag_index];
frag->data = sign->image;
frag->size = le32_to_cpu(sign->image_size);
frag->location = le32_to_cpu(img->image_location[i]);
frag->type = ace_image_map[i].image_type;
if (!frag->location) {
last_frag = &fw_loader->frags[frag_index - 1];
frag->location =
ALIGN(last_frag->location + last_frag->size, SZ_4K);
}
sign = (struct vsc_fw_sign *)
(sign->image + le32_to_cpu(sign->image_size));
}
fw_loader->ace = image;
return 0;
err_release_image:
release_firmware(image);
return ret;
}
static int vsc_identify_cfg_image(struct vsc_fw_loader *fw_loader)
{
struct vsc_img_frag *frag = &fw_loader->frags[VSC_IMG_SKU_CFG_FRAG];
char path[VSC_IMAGE_PATH_MAX_LEN];
char name[VSC_IMAGE_NAME_MAX_LEN];
const struct firmware *image;
u32 size;
int ret;
if (fw_loader->key_src == VSC_STRAP_KEY_SRC_PRODUCT)
snprintf(name, sizeof(name), VSC_CFG_IMAGE_NAME_FMT_PROD,
fw_loader->sensor_name, fw_loader->suffix);
else
snprintf(name, sizeof(name), VSC_CFG_IMAGE_NAME_FMT,
fw_loader->sensor_name);
snprintf(path, sizeof(path), "%s/%s", fw_loader->folder, name);
ret = request_firmware(&image, path, fw_loader->dev);
if (ret)
return ret;
/* identify image size */
if (image->size <= sizeof(u32) || image->size > VSC_SKU_MAX_SIZE) {
ret = -EINVAL;
goto err_release_image;
}
size = le32_to_cpu(*((__le32 *)image->data)) + sizeof(u32);
if (image->size != size) {
ret = -EINVAL;
goto err_release_image;
}
frag->data = image->data;
frag->size = image->size;
frag->type = VSC_IMG_SKU_CFG_TYPE;
frag->location = VSC_SKU_CFG_LOCATION;
fw_loader->cfg = image;
return 0;
err_release_image:
release_firmware(image);
return ret;
}
static int vsc_download_bootloader(struct vsc_fw_loader *fw_loader)
{
struct vsc_img_frag *frag = &fw_loader->frags[VSC_IMG_BOOTLOADER_FRAG];
struct vsc_rom_cmd_ack *ack = fw_loader->rx_buf;
struct vsc_rom_cmd *cmd = fw_loader->tx_buf;
u32 len, c_len;
size_t remain;
const u8 *p;
int ret;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_QUERY;
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, ack, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
if (ack->token != VSC_TOKEN_DUMP_RESP &&
ack->token != VSC_TOKEN_BOOTLOADER_REQ)
return -EINVAL;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DL_START;
cmd->data.dl_start.option = cpu_to_le16(fw_loader->option);
cmd->data.dl_start.img_type = frag->type;
cmd->data.dl_start.img_len = cpu_to_le32(frag->size);
cmd->data.dl_start.img_loc = cpu_to_le32(frag->location);
c_len = offsetof(struct vsc_rom_cmd, data.dl_start.crc);
cmd->data.dl_start.crc = cpu_to_le32(vsc_sum_crc(cmd, c_len));
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, NULL, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
p = frag->data;
remain = frag->size;
/* download image data */
while (remain > 0) {
len = min(remain, sizeof(cmd->data.dl_cont.payload));
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DL_CONT;
cmd->data.dl_cont.len = cpu_to_le16(len);
cmd->data.dl_cont.end_flag = remain == len;
memcpy(cmd->data.dl_cont.payload, p, len);
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, NULL, VSC_ROM_PKG_SIZE);
if (ret)
return ret;
p += len;
remain -= len;
}
return 0;
}
static int vsc_download_firmware(struct vsc_fw_loader *fw_loader)
{
struct vsc_fw_cmd *cmd = fw_loader->tx_buf;
unsigned int i, index = 0;
u32 c_len;
int ret;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DL_SET;
cmd->data.dl_set.img_cnt = cpu_to_le16(fw_loader->count);
put_unaligned_le16(fw_loader->option, &cmd->data.dl_set.option);
for (i = VSC_IMG_CSI_SEM_FRAG; i <= VSC_IMG_CSI_EM7D_FRAG; i++) {
struct vsc_img_frag *frag = &fw_loader->frags[i];
cmd->data.dl_set.payload[index++] = cpu_to_le32(frag->location);
cmd->data.dl_set.payload[index++] = cpu_to_le32(frag->size);
}
c_len = offsetof(struct vsc_fw_cmd, data.dl_set.payload[index]);
cmd->data.dl_set.payload[index] = cpu_to_le32(vsc_sum_crc(cmd, c_len));
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, NULL, VSC_FW_PKG_SIZE);
if (ret)
return ret;
for (i = VSC_IMG_CSI_SEM_FRAG; i < VSC_IMG_FRAG_MAX; i++) {
struct vsc_img_frag *frag = &fw_loader->frags[i];
const u8 *p;
u32 remain;
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_DL_START;
cmd->data.dl_start.img_type = frag->type;
cmd->data.dl_start.img_len = cpu_to_le32(frag->size);
cmd->data.dl_start.img_loc = cpu_to_le32(frag->location);
put_unaligned_le16(fw_loader->option, &cmd->data.dl_start.option);
c_len = offsetof(struct vsc_fw_cmd, data.dl_start.crc);
cmd->data.dl_start.crc = cpu_to_le32(vsc_sum_crc(cmd, c_len));
ret = vsc_tp_rom_xfer(fw_loader->tp, cmd, NULL, VSC_FW_PKG_SIZE);
if (ret)
return ret;
p = frag->data;
remain = frag->size;
/* download image data */
while (remain > 0) {
u32 len = min(remain, VSC_FW_PKG_SIZE);
memcpy(fw_loader->tx_buf, p, len);
memset(fw_loader->tx_buf + len, 0, VSC_FW_PKG_SIZE - len);
ret = vsc_tp_rom_xfer(fw_loader->tp, fw_loader->tx_buf,
NULL, VSC_FW_PKG_SIZE);
if (ret)
break;
p += len;
remain -= len;
}
}
cmd->magic = cpu_to_le32(VSC_MAGIC_NUM);
cmd->cmd_id = VSC_CMD_CAM_BOOT;
c_len = offsetof(struct vsc_fw_cmd, data.dl_start.crc);
cmd->data.boot.crc = cpu_to_le32(vsc_sum_crc(cmd, c_len));
return vsc_tp_rom_xfer(fw_loader->tp, cmd, NULL, VSC_FW_PKG_SIZE);
}
/**
* vsc_tp_init - init vsc_tp
* @tp: vsc_tp device handle
* @dev: device node for mei vsc device
* Return: 0 in case of success, negative value in case of error
*/
int vsc_tp_init(struct vsc_tp *tp, struct device *dev)
{
struct vsc_fw_loader *fw_loader __free(kfree) = NULL;
void *tx_buf __free(kfree) = NULL;
void *rx_buf __free(kfree) = NULL;
int ret;
fw_loader = kzalloc(sizeof(*fw_loader), GFP_KERNEL);
if (!fw_loader)
return -ENOMEM;
tx_buf = kzalloc(VSC_FW_PKG_SIZE, GFP_KERNEL);
if (!tx_buf)
return -ENOMEM;
rx_buf = kzalloc(VSC_FW_PKG_SIZE, GFP_KERNEL);
if (!rx_buf)
return -ENOMEM;
fw_loader->tx_buf = tx_buf;
fw_loader->rx_buf = rx_buf;
fw_loader->tp = tp;
fw_loader->dev = dev;
ret = vsc_get_sensor_name(fw_loader, dev);
if (ret)
return ret;
ret = vsc_identify_silicon(fw_loader);
if (ret)
return ret;
if (fw_loader->key_src == VSC_STRAP_KEY_SRC_PRODUCT)
snprintf(fw_loader->folder, sizeof(fw_loader->folder),
VSC_IMAGE_FOLDER_FMT_PROD, fw_loader->suffix);
else
snprintf(fw_loader->folder, sizeof(fw_loader->folder),
VSC_IMAGE_FOLDER_FMT);
ret = vsc_identify_csi_image(fw_loader);
if (ret)
return ret;
ret = vsc_identify_ace_image(fw_loader);
if (ret)
goto err_release_csi;
ret = vsc_identify_cfg_image(fw_loader);
if (ret)
goto err_release_ace;
ret = vsc_download_bootloader(fw_loader);
if (!ret)
ret = vsc_download_firmware(fw_loader);
release_firmware(fw_loader->cfg);
err_release_ace:
release_firmware(fw_loader->ace);
err_release_csi:
release_firmware(fw_loader->csi);
return ret;
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_init, VSC_TP);

555
drivers/misc/mei/vsc-tp.c Normal file
View File

@ -0,0 +1,555 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2023, Intel Corporation.
* Intel Visual Sensing Controller Transport Layer Linux driver
*/
#include <linux/acpi.h>
#include <linux/cleanup.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/irqreturn.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "vsc-tp.h"
#define VSC_TP_RESET_PIN_TOGGLE_INTERVAL_MS 20
#define VSC_TP_ROM_BOOTUP_DELAY_MS 10
#define VSC_TP_ROM_XFER_POLL_TIMEOUT_US (500 * USEC_PER_MSEC)
#define VSC_TP_ROM_XFER_POLL_DELAY_US (20 * USEC_PER_MSEC)
#define VSC_TP_WAIT_FW_ASSERTED_TIMEOUT (2 * HZ)
#define VSC_TP_MAX_XFER_COUNT 5
#define VSC_TP_PACKET_SYNC 0x31
#define VSC_TP_CRC_SIZE sizeof(u32)
#define VSC_TP_MAX_MSG_SIZE 2048
/* SPI xfer timeout size */
#define VSC_TP_XFER_TIMEOUT_BYTES 700
#define VSC_TP_PACKET_PADDING_SIZE 1
#define VSC_TP_PACKET_SIZE(pkt) \
(sizeof(struct vsc_tp_packet) + le16_to_cpu((pkt)->len) + VSC_TP_CRC_SIZE)
#define VSC_TP_MAX_PACKET_SIZE \
(sizeof(struct vsc_tp_packet) + VSC_TP_MAX_MSG_SIZE + VSC_TP_CRC_SIZE)
#define VSC_TP_MAX_XFER_SIZE \
(VSC_TP_MAX_PACKET_SIZE + VSC_TP_XFER_TIMEOUT_BYTES)
#define VSC_TP_NEXT_XFER_LEN(len, offset) \
(len + sizeof(struct vsc_tp_packet) + VSC_TP_CRC_SIZE - offset + VSC_TP_PACKET_PADDING_SIZE)
struct vsc_tp_packet {
__u8 sync;
__u8 cmd;
__le16 len;
__le32 seq;
__u8 buf[] __counted_by(len);
};
struct vsc_tp {
/* do the actual data transfer */
struct spi_device *spi;
/* bind with mei framework */
struct platform_device *pdev;
struct gpio_desc *wakeuphost;
struct gpio_desc *resetfw;
struct gpio_desc *wakeupfw;
/* command sequence number */
u32 seq;
/* command buffer */
void *tx_buf;
void *rx_buf;
atomic_t assert_cnt;
wait_queue_head_t xfer_wait;
vsc_tp_event_cb_t event_notify;
void *event_notify_context;
/* used to protect command download */
struct mutex mutex;
};
/* GPIO resources */
static const struct acpi_gpio_params wakeuphost_gpio = { 0, 0, false };
static const struct acpi_gpio_params wakeuphostint_gpio = { 1, 0, false };
static const struct acpi_gpio_params resetfw_gpio = { 2, 0, false };
static const struct acpi_gpio_params wakeupfw = { 3, 0, false };
static const struct acpi_gpio_mapping vsc_tp_acpi_gpios[] = {
{ "wakeuphost-gpios", &wakeuphost_gpio, 1 },
{ "wakeuphostint-gpios", &wakeuphostint_gpio, 1 },
{ "resetfw-gpios", &resetfw_gpio, 1 },
{ "wakeupfw-gpios", &wakeupfw, 1 },
{}
};
/* wakeup firmware and wait for response */
static int vsc_tp_wakeup_request(struct vsc_tp *tp)
{
int ret;
gpiod_set_value_cansleep(tp->wakeupfw, 0);
ret = wait_event_timeout(tp->xfer_wait,
atomic_read(&tp->assert_cnt) &&
gpiod_get_value_cansleep(tp->wakeuphost),
VSC_TP_WAIT_FW_ASSERTED_TIMEOUT);
if (!ret)
return -ETIMEDOUT;
return 0;
}
static void vsc_tp_wakeup_release(struct vsc_tp *tp)
{
atomic_dec_if_positive(&tp->assert_cnt);
gpiod_set_value_cansleep(tp->wakeupfw, 1);
}
static int vsc_tp_dev_xfer(struct vsc_tp *tp, void *obuf, void *ibuf, size_t len)
{
struct spi_message msg = { 0 };
struct spi_transfer xfer = {
.tx_buf = obuf,
.rx_buf = ibuf,
.len = len,
};
spi_message_init_with_transfers(&msg, &xfer, 1);
return spi_sync_locked(tp->spi, &msg);
}
static int vsc_tp_xfer_helper(struct vsc_tp *tp, struct vsc_tp_packet *pkt,
void *ibuf, u16 ilen)
{
int ret, offset = 0, cpy_len, src_len, dst_len = sizeof(struct vsc_tp_packet);
int next_xfer_len = VSC_TP_PACKET_SIZE(pkt) + VSC_TP_XFER_TIMEOUT_BYTES;
u8 *src, *crc_src, *rx_buf = tp->rx_buf;
int count_down = VSC_TP_MAX_XFER_COUNT;
u32 recv_crc = 0, crc = ~0;
struct vsc_tp_packet ack;
u8 *dst = (u8 *)&ack;
bool synced = false;
do {
ret = vsc_tp_dev_xfer(tp, pkt, rx_buf, next_xfer_len);
if (ret)
return ret;
memset(pkt, 0, VSC_TP_MAX_XFER_SIZE);
if (synced) {
src = rx_buf;
src_len = next_xfer_len;
} else {
src = memchr(rx_buf, VSC_TP_PACKET_SYNC, next_xfer_len);
if (!src)
continue;
synced = true;
src_len = next_xfer_len - (src - rx_buf);
}
/* traverse received data */
while (src_len > 0) {
cpy_len = min(src_len, dst_len);
memcpy(dst, src, cpy_len);
crc_src = src;
src += cpy_len;
src_len -= cpy_len;
dst += cpy_len;
dst_len -= cpy_len;
if (offset < sizeof(ack)) {
offset += cpy_len;
crc = crc32(crc, crc_src, cpy_len);
if (!src_len)
continue;
if (le16_to_cpu(ack.len)) {
dst = ibuf;
dst_len = min(ilen, le16_to_cpu(ack.len));
} else {
dst = (u8 *)&recv_crc;
dst_len = sizeof(recv_crc);
}
} else if (offset < sizeof(ack) + le16_to_cpu(ack.len)) {
offset += cpy_len;
crc = crc32(crc, crc_src, cpy_len);
if (src_len) {
int remain = sizeof(ack) + le16_to_cpu(ack.len) - offset;
cpy_len = min(src_len, remain);
offset += cpy_len;
crc = crc32(crc, src, cpy_len);
src += cpy_len;
src_len -= cpy_len;
if (src_len) {
dst = (u8 *)&recv_crc;
dst_len = sizeof(recv_crc);
continue;
}
}
next_xfer_len = VSC_TP_NEXT_XFER_LEN(le16_to_cpu(ack.len), offset);
} else if (offset < sizeof(ack) + le16_to_cpu(ack.len) + VSC_TP_CRC_SIZE) {
offset += cpy_len;
if (src_len) {
/* terminate the traverse */
next_xfer_len = 0;
break;
}
next_xfer_len = VSC_TP_NEXT_XFER_LEN(le16_to_cpu(ack.len), offset);
}
}
} while (next_xfer_len > 0 && --count_down);
if (next_xfer_len > 0)
return -EAGAIN;
if (~recv_crc != crc || le32_to_cpu(ack.seq) != tp->seq) {
dev_err(&tp->spi->dev, "recv crc or seq error\n");
return -EINVAL;
}
if (ack.cmd == VSC_TP_CMD_ACK || ack.cmd == VSC_TP_CMD_NACK ||
ack.cmd == VSC_TP_CMD_BUSY) {
dev_err(&tp->spi->dev, "recv cmd ack error\n");
return -EAGAIN;
}
return min(le16_to_cpu(ack.len), ilen);
}
/**
* vsc_tp_xfer - transfer data to firmware
* @tp: vsc_tp device handle
* @cmd: the command to be sent to the device
* @obuf: the tx buffer to be sent to the device
* @olen: the length of tx buffer
* @ibuf: the rx buffer to receive from the device
* @ilen: the length of rx buffer
* Return: the length of received data in case of success,
* otherwise negative value
*/
int vsc_tp_xfer(struct vsc_tp *tp, u8 cmd, const void *obuf, size_t olen,
void *ibuf, size_t ilen)
{
struct vsc_tp_packet *pkt = tp->tx_buf;
u32 crc;
int ret;
if (!obuf || !ibuf || olen > VSC_TP_MAX_MSG_SIZE)
return -EINVAL;
guard(mutex)(&tp->mutex);
pkt->sync = VSC_TP_PACKET_SYNC;
pkt->cmd = cmd;
pkt->len = cpu_to_le16(olen);
pkt->seq = cpu_to_le32(++tp->seq);
memcpy(pkt->buf, obuf, olen);
crc = ~crc32(~0, (u8 *)pkt, sizeof(pkt) + olen);
memcpy(pkt->buf + olen, &crc, sizeof(crc));
ret = vsc_tp_wakeup_request(tp);
if (unlikely(ret))
dev_err(&tp->spi->dev, "wakeup firmware failed ret: %d\n", ret);
else
ret = vsc_tp_xfer_helper(tp, pkt, ibuf, ilen);
vsc_tp_wakeup_release(tp);
return ret;
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_xfer, VSC_TP);
/**
* vsc_tp_rom_xfer - transfer data to rom code
* @tp: vsc_tp device handle
* @obuf: the data buffer to be sent to the device
* @ibuf: the buffer to receive data from the device
* @len: the length of tx buffer and rx buffer
* Return: 0 in case of success, negative value in case of error
*/
int vsc_tp_rom_xfer(struct vsc_tp *tp, const void *obuf, void *ibuf, size_t len)
{
size_t words = len / sizeof(__be32);
int ret;
if (len % sizeof(__be32) || len > VSC_TP_MAX_MSG_SIZE)
return -EINVAL;
guard(mutex)(&tp->mutex);
/* rom xfer is big endian */
cpu_to_be32_array(tp->tx_buf, obuf, words);
ret = read_poll_timeout(gpiod_get_value_cansleep, ret,
!ret, VSC_TP_ROM_XFER_POLL_DELAY_US,
VSC_TP_ROM_XFER_POLL_TIMEOUT_US, false,
tp->wakeuphost);
if (ret) {
dev_err(&tp->spi->dev, "wait rom failed ret: %d\n", ret);
return ret;
}
ret = vsc_tp_dev_xfer(tp, tp->tx_buf, tp->rx_buf, len);
if (ret)
return ret;
if (ibuf)
cpu_to_be32_array(ibuf, tp->rx_buf, words);
return ret;
}
/**
* vsc_tp_reset - reset vsc transport layer
* @tp: vsc_tp device handle
*/
void vsc_tp_reset(struct vsc_tp *tp)
{
disable_irq(tp->spi->irq);
/* toggle reset pin */
gpiod_set_value_cansleep(tp->resetfw, 0);
msleep(VSC_TP_RESET_PIN_TOGGLE_INTERVAL_MS);
gpiod_set_value_cansleep(tp->resetfw, 1);
/* wait for ROM */
msleep(VSC_TP_ROM_BOOTUP_DELAY_MS);
/*
* Set default host wakeup pin to non-active
* to avoid unexpected host irq interrupt.
*/
gpiod_set_value_cansleep(tp->wakeupfw, 1);
atomic_set(&tp->assert_cnt, 0);
enable_irq(tp->spi->irq);
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_reset, VSC_TP);
/**
* vsc_tp_need_read - check if device has data to sent
* @tp: vsc_tp device handle
* Return: true if device has data to sent, otherwise false
*/
bool vsc_tp_need_read(struct vsc_tp *tp)
{
if (!atomic_read(&tp->assert_cnt))
return false;
if (!gpiod_get_value_cansleep(tp->wakeuphost))
return false;
if (!gpiod_get_value_cansleep(tp->wakeupfw))
return false;
return true;
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_need_read, VSC_TP);
/**
* vsc_tp_register_event_cb - register a callback function to receive event
* @tp: vsc_tp device handle
* @event_cb: callback function
* @context: execution context of event callback
* Return: 0 in case of success, negative value in case of error
*/
int vsc_tp_register_event_cb(struct vsc_tp *tp, vsc_tp_event_cb_t event_cb,
void *context)
{
tp->event_notify = event_cb;
tp->event_notify_context = context;
return 0;
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_register_event_cb, VSC_TP);
/**
* vsc_tp_intr_synchronize - synchronize vsc_tp interrupt
* @tp: vsc_tp device handle
*/
void vsc_tp_intr_synchronize(struct vsc_tp *tp)
{
synchronize_irq(tp->spi->irq);
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_synchronize, VSC_TP);
/**
* vsc_tp_intr_enable - enable vsc_tp interrupt
* @tp: vsc_tp device handle
*/
void vsc_tp_intr_enable(struct vsc_tp *tp)
{
enable_irq(tp->spi->irq);
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_enable, VSC_TP);
/**
* vsc_tp_intr_disable - disable vsc_tp interrupt
* @tp: vsc_tp device handle
*/
void vsc_tp_intr_disable(struct vsc_tp *tp)
{
disable_irq(tp->spi->irq);
}
EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_disable, VSC_TP);
static irqreturn_t vsc_tp_isr(int irq, void *data)
{
struct vsc_tp *tp = data;
atomic_inc(&tp->assert_cnt);
wake_up(&tp->xfer_wait);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vsc_tp_thread_isr(int irq, void *data)
{
struct vsc_tp *tp = data;
if (tp->event_notify)
tp->event_notify(tp->event_notify_context);
return IRQ_HANDLED;
}
static int vsc_tp_match_any(struct acpi_device *adev, void *data)
{
struct acpi_device **__adev = data;
*__adev = adev;
return 1;
}
static int vsc_tp_probe(struct spi_device *spi)
{
struct platform_device_info pinfo = { 0 };
struct device *dev = &spi->dev;
struct platform_device *pdev;
struct acpi_device *adev;
struct vsc_tp *tp;
int ret;
tp = devm_kzalloc(dev, sizeof(*tp), GFP_KERNEL);
if (!tp)
return -ENOMEM;
tp->tx_buf = devm_kzalloc(dev, VSC_TP_MAX_XFER_SIZE, GFP_KERNEL);
if (!tp->tx_buf)
return -ENOMEM;
tp->rx_buf = devm_kzalloc(dev, VSC_TP_MAX_XFER_SIZE, GFP_KERNEL);
if (!tp->rx_buf)
return -ENOMEM;
ret = devm_acpi_dev_add_driver_gpios(dev, vsc_tp_acpi_gpios);
if (ret)
return ret;
tp->wakeuphost = devm_gpiod_get(dev, "wakeuphost", GPIOD_IN);
if (IS_ERR(tp->wakeuphost))
return PTR_ERR(tp->wakeuphost);
tp->resetfw = devm_gpiod_get(dev, "resetfw", GPIOD_OUT_HIGH);
if (IS_ERR(tp->resetfw))
return PTR_ERR(tp->resetfw);
tp->wakeupfw = devm_gpiod_get(dev, "wakeupfw", GPIOD_OUT_HIGH);
if (IS_ERR(tp->wakeupfw))
return PTR_ERR(tp->wakeupfw);
atomic_set(&tp->assert_cnt, 0);
init_waitqueue_head(&tp->xfer_wait);
tp->spi = spi;
irq_set_status_flags(spi->irq, IRQ_DISABLE_UNLAZY);
ret = devm_request_threaded_irq(dev, spi->irq, vsc_tp_isr,
vsc_tp_thread_isr,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(dev), tp);
if (ret)
return ret;
mutex_init(&tp->mutex);
/* only one child acpi device */
ret = acpi_dev_for_each_child(ACPI_COMPANION(dev),
vsc_tp_match_any, &adev);
if (!ret) {
ret = -ENODEV;
goto err_destroy_lock;
}
pinfo.fwnode = acpi_fwnode_handle(adev);
pinfo.name = "intel_vsc";
pinfo.data = &tp;
pinfo.size_data = sizeof(tp);
pinfo.id = PLATFORM_DEVID_NONE;
pdev = platform_device_register_full(&pinfo);
if (IS_ERR(pdev)) {
ret = PTR_ERR(pdev);
goto err_destroy_lock;
}
tp->pdev = pdev;
spi_set_drvdata(spi, tp);
return 0;
err_destroy_lock:
mutex_destroy(&tp->mutex);
return ret;
}
static void vsc_tp_remove(struct spi_device *spi)
{
struct vsc_tp *tp = spi_get_drvdata(spi);
platform_device_unregister(tp->pdev);
mutex_destroy(&tp->mutex);
}
static const struct acpi_device_id vsc_tp_acpi_ids[] = {
{ "INTC1009" }, /* Raptor Lake */
{ "INTC1058" }, /* Tiger Lake */
{ "INTC1094" }, /* Alder Lake */
{}
};
MODULE_DEVICE_TABLE(acpi, vsc_tp_acpi_ids);
static struct spi_driver vsc_tp_driver = {
.probe = vsc_tp_probe,
.remove = vsc_tp_remove,
.driver = {
.name = "vsc-tp",
.acpi_match_table = vsc_tp_acpi_ids,
},
};
module_spi_driver(vsc_tp_driver);
MODULE_AUTHOR("Wentong Wu <wentong.wu@intel.com>");
MODULE_AUTHOR("Zhifeng Wang <zhifeng.wang@intel.com>");
MODULE_DESCRIPTION("Intel Visual Sensing Controller Transport Layer");
MODULE_LICENSE("GPL");

50
drivers/misc/mei/vsc-tp.h Normal file
View File

@ -0,0 +1,50 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2023, Intel Corporation.
* Intel Visual Sensing Controller Transport Layer Linux driver
*/
#ifndef _VSC_TP_H_
#define _VSC_TP_H_
#include <linux/types.h>
#define VSC_TP_CMD_WRITE 0x01
#define VSC_TP_CMD_READ 0x02
#define VSC_TP_CMD_ACK 0x10
#define VSC_TP_CMD_NACK 0x11
#define VSC_TP_CMD_BUSY 0x12
struct vsc_tp;
/**
* typedef vsc_event_cb_t - event callback function signature
* @context: the execution context of who registered this callback
*
* The callback function is called in interrupt context and the data
* payload is only valid during the call. If the user needs access
* the data payload later, it must copy the payload.
*/
typedef void (*vsc_tp_event_cb_t)(void *context);
int vsc_tp_rom_xfer(struct vsc_tp *tp, const void *obuf, void *ibuf,
size_t len);
int vsc_tp_xfer(struct vsc_tp *tp, u8 cmd, const void *obuf, size_t olen,
void *ibuf, size_t ilen);
int vsc_tp_register_event_cb(struct vsc_tp *tp, vsc_tp_event_cb_t event_cb,
void *context);
void vsc_tp_intr_enable(struct vsc_tp *tp);
void vsc_tp_intr_disable(struct vsc_tp *tp);
void vsc_tp_intr_synchronize(struct vsc_tp *tp);
void vsc_tp_reset(struct vsc_tp *tp);
bool vsc_tp_need_read(struct vsc_tp *tp);
int vsc_tp_init(struct vsc_tp *tp, struct device *dev);
#endif